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ON COUPLED NONLINEAR WAVE EQUATIONS OF KIRCHHOFF
TYPE WITH DAMPING AND SOURCE TERMS

Shun-Tang Wu
Abstract. The initial boundary value problem for a system of nonlinear wave
equations of Kirchhoff type with strong damping in a bounded domain is
considered. The existence, asymptotic behavior and blow-up of solutions are

discussed under some conditions. The decay estimates of the energy function
and the estimates for the lifespan of solutions are given.

1. INTRODUCTION

We consider the initial boundary value problem for the following nonlinear
coupled wave equations of Kirchhoff type :

LD w— M ([Vul3+ [V0]3) Aut hi(ur) = fi(u) in Q2 x [0, 00),

(12) v — M (IVul3 + [IV0ll3) Av + ho(vr) = fo(v) in Qx [0,00),
with initial conditions,

(1.3) u(z,0) = up (), u(z,0)=u; (z), z€Q,

(14) ’U((I,',O) :’Uo(fI,'), ’Ut(fI,',O):’Ul (II,'), erv
and boundary conditions,

(1.5) u(z,t) =v(z,t) =0,z € 9Q,t >0,
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where Q ¢ RV, N > 1, is a bounded domain with smooth boundary 95} so that

N
Divergence theorem can be applied. Let A = % be the Laplace operator,
j=1 7%

hi(ug) = —Auy, ho(vy) = —Awvy and M(r) be a nonnegative locally Lipschitz

function for r > 0 like M (1) = mo+br?, withmg > 0,b > 0, mg+b >0,y > 1,

and f;(s), i = 1,2, s € R, be a nonlinear function. We denote |||, to be LP-norm.
The existence and nonexistence of solutions for a single wave equation of Kirch-

hoff type:

(1.6) ue — M (|| Vull3) Au+ h(ug) = f(u) in Q x [0, 00),

have been discussed by many authors and the references cited therein. The function
h in (1.6) is considered in three different cases. For h(u;) = du, 6 > 0, the
global existence and blow-up results can be found in [3,5,12,17]; for h(u;) =
—Auy, some global existence and blow-up results are given in [4, 5, 10, 13,14, 17];
for h(ut) = |ug|™ ug, m > 0, the main results of existence and blow-up are in
[1,2,8,11,17]. As a model it describes the nonlinear vibrations of an elastic string.
When h = f = 0, Kirchhoff [6] was the first one to study the equation, so that (1.6)
is named the wave equation of Kirchhoff type. For the system of wave equations
related to (1.1) — (1.5), Park and Bae [15, 16] considered the system of (1.1) —(1.5)
with h;(s) = |s|”s, fi(s) = \s\ﬂs, 1 =1,2, a,8 >0, s € R and showed the
global existence and asymptotic behavior of solutions under some restrictions on
initial energy. Recently, Liu and Wang [7] considered the system (1.1) — (1.5) with
M(r) =mo+br, hi(r) = \r\k" r,mg>0,0>0 mg+b>0,X\>0,i=1,2and
obtain the global existence for the nonlinear damping with A\; > A5. Concerning
blowing up property, Benaissa and Messaoudi [2] studied blowing up properties for
the system (1.1) — (1.5) with negative initial energy. Later, Wu and Tsai [18] studied
the system (1.1) — (1.5) with M = M (||Vu||3) and M = M (||Vv|]3) in (1.1),
(1.2), respectively. In that paper, we consider more general function f and obtain
the blow-up result for small positive initial energy. Liu and Wang [7] considered
blow-up properties of solutions for (1.1) — (1.5) with linear damping.

The first purpose of this paper is to study the global existence and to derive
decay properties of solutions to problem (1.1) — (1.5). We obtain the solution
decay at an exponential rate as ¢ — oo in the non-degenerate case (my > 0) and a
certain algebraic rate in the degenerate case (mg = 0) by using Nako’s inequality
[9]. The second purpose is to show blowing up of a local solution to problem
(1.1) — (1.5). We shall prove that the local solution blows up in finite time by
applying the concave method, that is, we show that there exists a finite time 7" > 0

such that li;n Ja <\Vu\2 + \Vv\2> dx = oo. Estimates for the blow-up time 7™
t—=T™—

are also given. In this way, we extend the nonexistence result in [18] for more
general M. This work also improves early one [13] in which the global existence
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and non-existence results have been established only for a single equation. The
paper is organized as follows. In section 2, we present the preliminaries and some
lemmas. In section 3, we will show the existence of a unique local solution (u, v)
of our problem (1.1) — (1.5) with ug,vo € H2(Q) N H}(Q) and u1,v; € L?()
by applying the Banach fixed point theorem. In section 4, we first define an energy
function E(¢) and show that it is a nonincreasing function. Then the global existence
and decay property are derived in Theorem 4.5. Finally, the blow-up properties of
(1.1) — (1.5) are obtained in the case of the initial energy being non-positive.

2. PRELIMINARIES

Let us begin by stating the following lemmas, which will be used later.

Lemma 2.1. (Sobolev-Poincaré¢ inequality [13]). If1 < p < [N_Qévm]+ (1<
p < oo if N <2m), then

[ull, < e

(A% uH2 for u € D((~A)%)
holds with some positive constant c., where [a]"™ = max{a, 0}, a € R.

Lemma 2.2. [9]. Let ¢(t) be a non-increasing and nonnegative function on
[0,T), T > 1, such that

$()'" < wo (6(t) — d(t +1)) on [0, T],
where wy is a positive constant and v is a nonnegative constant. Then we have

(i) if'r >0, then

6(t) < (6(0) " +wytrlt — 1) 7
(ii) If' r =0, then
o(t) < ¢(0)e =" on [0, 77,

where wi = ln(ﬁ), here wg > 1.

3. LocAaL EXISTENCE

In this section we shall discuss the local existence of solutions to problem
(1.1) — (1.5) by method of Banach fixed point theorem. In the sequal, for the sake
of simplicity we will omit the dependence on ¢, when the meaning is clear.

Assume that



588 Shun-Tang Wu

(A1) f;(0) = 0,4 = 1,2 and for any p > 0 there exists a constant k(p) > 0
such that
[f1(s) = ()] < k(p) (Is” + [t[") [s — ¢,
and
[f2(s) = f2(t)] < K(p) (Is|* + \t\q) s =1,
where |s|, [t| < p, for s,t € R, and 0 < p,q < N 5, (0<p,qg<o0,if N<2).
An important step in the proof of local existence Theorem 3.2 below is the study
of the following simpler problem :

u —m(t)Au— Au' = f(t) in Q x [0,T],
(3.1 u(0) = ug, v (0) =uy, z€Q,
u(z,t) =0, z € 0Q, t >0,
here v/ = %% and T > 0..
Theorem 3.1. ([13]). Let m(t) be a nonnegative Lipschitz function and f(t)

be a Lipschitz function on [0, T, T > 0. If ug € H*(Q)NH(Q) and uy € L*(Q),
then there exists a unique solution u of (3.1) satisfying

u(t) € C ([0, T]; H*() N Hy (),

and
u'(t) € C([0,T); LA(Q)) N L* ((0,T); Hy (%)) .

Theorem 3.2. Assume (A1) holds and M (r) is a nonnegative locally Lipschitz
Sfunction for v > 0 with the Lipschitz constant L. If ug,vo € H*(2) N H}(SY) and
uy,v1 € L*(Q), then there exist a unique local solution (u,v) of (1.1) — (1.5)

satisfying
u(t), v(t) € C([0, T]; HA(Q) N Hy (),

and
o' (1), (t) € C([0, T]; L*(Q)) N L2((0, T); HY(Q)), for T > 0.
Moreover, at least one of the following statements hold :
(1) T = oo.
(i1) e(u(t), (1)) = lluelly + [ Aulls + llvell3 + | Avll; — 00 as t — T~

Proof.  We set w(t) = (u(t),v(t)), and define the following two-parameter
space :

u(t), v(t) € C([0, T]; HX() N Hy (),
X1,y = ur(t), vi(t) € C([0, T); LX) N L2((0, T); Hy(2)) - :
)=

e(u(t), v(t)) < R, with w(0) = (uo,vo) , we(0) = (us,v1).
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for ' > 0, Ry > 0. Then X7 R, is a complete metric space with the distance

W=

(2 dy.2)= sw {Ilu—e)l3+1A (i—e)l5 + IE—welz+1A € - 0I5}
0<t<T

where y(t) = (u(t),£()), 2(t) = (@(t), ¥(t)) € X7,R-
Given w(t) = (u(t),v(t)) € X1 Rr,, We consider the linear system

(33w~ M(|Val+ [Vol3) Au— Au, = £1(3) inQx [0,T),

G4 o M(|Val+IV33) Av — Av, = fo(8) in Qx [0,7),
with initial conditions,

(3.5) u(z,0) = up (), u(z,0)=u; (z), z€Q,

(3.6) ’U((I,',O) = UO(x)v ’Ut(fI,',O):’Ul (II,'), z €,
and boundary conditions,
(3.7) u(z,t) =v(z,t) =0, x € 00, t > 0.

By Theorem 3.1, there exists a unique solution w(t) = (u(t), v(t)) of (3.3) — (3.7).
We define the nonlinear mapping S@w = w, and then, we will show that there exist
T > 0 and Ry > 0 such that

(1) S . XT,RO — XT,RW

(if) S'is a contraction mapping in X7 g, with respect to the metric d(-,-) defined
in (3.2).

Indeed, multiplying (3.3) by 2u; and integrating it over €2, and then by Divergence
theorem, we get

d ~ 5
38) 5 {3+ M (1983 + 1 V313) V0l )} + 2 Vudl = L + Lo,
where

d ~ ~
69) = (3 (19813 + 19513) ) 193,

(3.10) Iug :/QQfl(ﬂ)utdx.
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Similarly, we also have

d ~ 5
@11 (ol + M (V@ + [9513) IV0l3} + 2Vl = Ly + L
where

Ivl

d ~ ~
(EM (Ival3 + HwH%)) IVoll3,

Ivg = /Qfg(i)\)’l)tdfl'
Q

From Divergence theorem, w € X7 g, and Lemma2.1, we have

-~ ~ ~ ~ 2
[Lur| < 2L ([[Aully [latlly + AV, [106]ly) Vel

(3.12)
< coLR2e(u,v),
and
(3.13) |La| < coLRGe(u,v).

where cg = 4c2.
By (A1), Lemma 2.1 and Holder inequality, we have from (3.10)

-~ 1
[Tuz| < 2k (cx | A" Jluelly

(3.14) 1
< 2kc§+1Rg+le(u, v)2,

and

(3.15) L] < 2ke?T R e(u, v)2.

Combining (3.8) and (3.11) together, and using (3.12) — (3.15), we arrive at

d ~ ~ 2 2
= { el + leel3 + 2 (113 + 1v213) (19wl + 19013) §
@16 42 (Va3 + [ Vul)
< 2coLR3e(u,v)+ c1 (Rg+1 + Rg“) e(u,v)2,

where ¢; = 2k max (c’jH, CZ—H) . On the other hand, multiplying (3.3) by —2Au
and (3.4) by —2Av and integrating them over 2 and adding them together, we get

—d Aull? + || Av|)? -2 wAudr + [ viAvde
d 2 2
t Q Q

(3.17) w20 (Va3 + |Val3) (Al + 1 Av])

< 2 (IVurl; + I90il3) + en (RE™ + RE™) e, 0)2,
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the last inequality in (3.17) is obtained by following the argument as in (3.14) and
(3.15). Multiplying (3.17) by &, 0 < € < 1, and adding (3.16) together, we obtain

d .
eso(u,0) + 21 = &) [|Vuel3 + | Ver 3]

3.18
> < 2¢oLR%e(u,v) 4+ 2(1 + €)cy (Rg+1 + Rg“) e(u,v)2,
where
€a,5(U; v)
(3.19) = lluellz + lloells + M ([Vall + | Vo]3) (HVUH§ + HWH§>

—2¢ </ u Audr —|—/ vtAvdx) + € (HAuH% + HAU’@) .
Q Q

By Young's inequality, we get |2¢ [, w;Audz| < 2e | ue]|3 + 5 |Au|3 . Hence

* 2 2 € 2 2
exo(,v) = (1=20) (Juell3 + luel3) + 5 (I Aull3 + | Av]3)

~ ~ 2 2
+M (Ival3 + 1Va3) (Ivul} + [Vell3) -
Choosing ¢ = %, we have

(3.20) eso(u,v) > —e(u,v).

Then, from (3.18), we obtain

Lo (ult),0t)) < 1060LEEES H(u(t),o()

dt ’U/,/’l}
14/5
5

N[

+

e (Rg“ + Rg+1) ez 5(u(t), v())3.

By Gronwall Lemma, we deduce
(3.21)

6(“(75) ,o(t)) < (e%(o),a(o) (uo, vo)

N

(&

) *

2
n 7\/561 (Rg-l—l 4 R8+1> T> ol0coLR3T
5

Thanks to Young's inequality, we observe that

(3.22) €5(0),5(0) (0, Vo) < c2,
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where
e = 2 (It + lenll3) + 1 Awol3 + 1 Awol3
+M (IVuoll3 + 11Veo3) (IFuol3 + [ Fw0l13)
Thus, from (3.21) and using (3.20) and (3.22), we obtain for any ¢ € [0, 7],

e(u(t),v(t)) < 5ef(u(t), v(t))

< x(uo, u1,00,v1, Ro, T)

(3.23) 2610COLR3T7

where

Y AV4))
X(uo, w0, 01, By T) = e + qu (RE™ + RS T.

In order that S maps Xt g, into itself, it will be enough that the parameters 1" and
Ry satisfy

(3.24) X(ug, ur,vo, vy, Ro, T)?e!00F 6T < R3.

Moreover, by Theorem 3.1, w € C°([0, T]; H2(Q)NHZ (2))NCL([0, T]; L3(2))
and it follows from (3.24) that v/, v" € L2((0,T); H3()).

Next, we will show that S is a contraction mapping with respect to the metric
d(-, ). Let (U;,0;) € Xr,R, and (u),v@D) € X7 p,, i = 1,2, be the corresponding
solution to (3.3) — (3.7). Setting wy (t) = (u) —u@)(t), wa(t) = (v —v@) (1),
then w; and wo satisfy the following system:

(w1)y — M (Va3 + | V[|3) Awr — A (wr),
(3.25) = fi(in) — fi(@2) + [M (| Va3 + || Vor]|3)
—M (|Va@a|3 + |V5|3)] Aul®

(wa)y — M (VT3 + IVOL]3) Awz — A (w2),
(3.26) = fo(01) = fo(Ba2) + [M (|VaLll3 + [ VT1]3)
—M (||Vai2|l3 + [|V5]3)] Av®),

(3.27) wi1(0) = (w1), (0) = wa(0) = (ws), (0) = 0.

Multiplying (3.25) by 2 (w1), , and integrating it over 2, we have

d ~ ~
oog a U+ (VI + Vo) [Twalis}+ 29 o)l

= ly3 + Iu4 + Iu57
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where
d . A
(.29 L = (1 (1903 + 190.8) ) 19,
Ls = 20M (Va3 + Vo 3)
(3.30) ~ ~
M (| V) + [V3)] /Q Au® (wy), da,
(3.31) Ly = 2 / (F1(@1) — f1(@2)) (wr), da.
Q

Similarly, we also have

d ~ ~
)+ M (1933 + V5 3) Vw3 } +2 IV (w2),

(3.32)
= ly3 + I’u4 + I’U57
where
d - 5
s = (01 (V05 + 1V3118) ) [Vl

o = 2 [ (IV@ 1§ + [V5113) — M (198l + [9513)] | Ao (us), e

Is = 2/9(f2(51) — f2(V2)) (w2), dz.
To proceed the estimation, it follows from (3.29) that
sl < 2L (| AG |12 [|@)ely + 12T I2 | @1)ello) Vw15
(3.33)
< coLRge(wl,wg).
Note that by Lemma 2.1, we have
|M (Va3 + [IVoull3) — M (I[Va2li3 + Vo) ]

< L([Vurlla+[IVazll2+ ([ Voilla 4[| VO2(l2) ([[Vir — Viug|la+[| VUL — Vall2)

< 42RoLe(Ty — s, By — )3.
Then, from (3.30), we obtain

3.34 Iu4 S 8C§LR26 ’71,\1 — ’71,\2,5)\1 — i)\g %e w1, W %
0
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And by (A1), we see that

(3.35) ‘Iu5‘ S 4kC€+2Rge(a1 — ’71,\2,7[)\1 — 62)%e(w1, ’wg)%,

By the same procedure, we have the inequality for 1,3, 1,4 and I,5. Hence, com-
bining (3.28) and (3.32) together and using (3.33) — (3.35), we obtain

d ~ N
= ) 13+ oo 32 (197313 + 182 13) (19w l3+1Vwsll3) |

g (T @O IT @)

< 2cOLRge(w1, U}Q) + 1663LR36(@1 — ag, 01 — 62)%6(11}1, U}Q)%

=

+cs3 (Rg + Rg) e(al — 62,61 — 62)%6(11}1,11}2) ,

where ¢c3 = 4k max <c§+2, cZ+2) . On the other hand, multiplying (3.25) by —2Aw;

and (3.26) by —2Aw, and integrating them over {2 and adding them together, we
deduce

d
p” {|Aw1|§ + [|[Awall; -2 (/ (w1), Awidz +/ (w2), szdﬁ)}
Q Q

+2M (Va3 + [ 9013) (I Awnl3 + | Aws)?)
(3.37)

< 2|V (w)el3 + IV (wa)ellf] + (16 LRYe(i) — g, 1 — 52)’
ez (RD 4 RY) e(T@y — Uz, By — Ba) % )e(wr, wa) .

Multiplying (3.37) by €, 0 < £ < 1, and adding it to (3.36), we have

g G (Wi, w2) +2(1 —¢) [HV(un)tH% + [V (w2)ell3

(3.38) < 2¢gLR2e(wq, wo +16¢2(1+¢)LR2e(t —Ua, 1 — 0o Je w1, W 2
0 0

N

+(1 4 €)es (RE + RY) ety — g, 01 — T2) Te(wr, wy)?,

¥ L . _ _ PN o
where €, 5, (w1, ws) is given by (3.19) with u = w1, v = wy, U = Uy and V = V.

Taking £ = 2 in (3.38), and as in (3.17) — (3.20), we obtain

wy, we) < LR%IOcoe%1 1 (w1, ws)

dr 651 1 (

N

P 1
+c5 (R) + R) (U — U, U1 — U2)2 €5, 5, (w1, wa)?
1

PN | 1
+C4LRge(u1 — g, V1 — Vg)2 651,61 (w1, w9)2,
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where ¢; = 112\/_c2 and c5 = 7\/_03 Noting that €} o) 5, (o) (w1(0),w2(0)) = 0,
and by applylng Gronwall Lemma, we get

2
e%hvl (wl,wg) [ LR0+ (Rg—f—Rq)} T2GIOCOLR(Q)T sup e(al—ag,i)\l—i)\g).
0<tsT

Thus, by (3.2), we have

a ((u®, 0™, (u®,0@)) < T, Ro)bd (@1, 1), (1, 52))

where
(3.39) C(T, Ry) = \/—[ LR? ] (Rp—|—Rq) TePeoLRET

Hence, under inequality (3.24), S is a contraction mappingn if C(T, Ry) < 1.
Indeed, we choose Ry sufficient large and 7' sufficient small so that (3.24) and
(3.39) are satisfied at the same time. By applying Banach fixed point theorem, we
obtain the local existence result.

4. GLoBAL EXISTENCE

In this section, we shall consider the global existence and the asymptotic behavior
of the solution for the following equations :

4.1) ue — M (| Vull3 + |V|3) Au— Auy = |ulPu
4.2) v — M (|Vull3 + | Vo)3) Av — Avy = [v]70,
(4.3) u(z,0) = up (), u(x,0)=uy (z), =€,
(4.4) v(x,0) = v (x), v (2,0) =01 (x), x€Q,

(4.5) u(z,t) =v(z,t) =0, x € 0Q, t >0,

where M (s) = mgy+bs?, withmg > 0,b> 0,7 > 1,5 > 0and 2y < p,q < 7.
Let
I(u,v) = I(t) = Vall2 + [[Voll2) + b (Ivul2 + [vol2)
(u,0) = T(8) = mo (IVal2 + IVol2) + b (IVull2 + Vo2

2 2
(4.6) = [lullpz = llvllgss
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and

b

y+1
s UVl +19el3)

m
J(uv) = J(t) = 52 (IVal + 1Vol3) +

1 1 s
4.7) ) Jullpra — 12 lvllgra -

We define the energy function of the solution (u(t), v(t)) of (4.1) — (4.5) by

43) B, ) = B(t) = 5 (llull3 + lll2) +7(0).

Lemma 4.1. E(t) is a nonincreasing function on [0, T) and we have

d
(4.9) G B0 ==Vl = Vel

Proof. By differenting (4.8) and using (4.1) — (4.5), we get
Y g g g

d
G EO =~ Vurll3 [ Vurll3.

Thus, Lemma 4.1 follows at once.

Lemma 4.2.  Let (u(t),v(t)) be the solution of (4.1) — (4.5) with ug, vy €
W N H%Q) and uy,v1 € L*(Q), where

W = {(u,v) € Hy(Q) x Hy(R); I(u,v) >0} U{0}.

Assume that

(4.10) (l) a; < 1, for mg > 0,
(4.11) (i) ag < 1landp > q, for mg =0,
here

aZ:lmaX{cg:ﬂ (2Dl 2) )T e (200042 0)>m}_
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Then I(t) > 0, for all t > 0.

Proof. Since I1(0) > 0, then it follows from the continuity of u(t) and v(t) that
(4.12) I(t) >0,

for some interval near t = 0. Let ¢,0x > 0 be a maximal time (possibly tmax = T'),
when (4.12) holds on [0, tyax)-
From (4.7) and (4.6), we observe that if my > 0, then

_ Y 2 2 p—2y p+2
I0) = 5oty (19l + 1V0lB) + 55 o gy Il

q—2y q+2
+ A —
s+ D y e e

g 2 2
> sy (I9ul+ 1vel).

(4.13)

I(t)

and if mg = 0, then

1 q—2y 2 2\ 7+
T0) = 510 + 5y (1903 + 1913)

_pP=q [
(q+2)(pra) e

q—2v 2 2\ 7+
\Y \Y .
> s (IFulk+ Ivel)

(4.14)

Thus, by Lemma 4.1, we have that if mg > 0, then

IV7ul3+ 1 Voll3
(4.15)
. @J(t) < LVH)E@) < 2(777“)]5(0),156 [0, tmax),

and if mg = 0, then

2(y+1) (¢+2)
2 J(t) <

< 20+ (g +2)
- q—2v

2(v+1)(g+2)
q—27

L]
(Ival3+1vol3)

IN

E(t)
(4.16)

E(0),t € [0, tmax)-
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Note that (4.10), it follows from (4.15) that, when mg > 0,

+2 +2
lullpz + vl

< &P Vullyt? + et vo§

(4.17) < Pt2 (@E(@))E Va3 4 ¢4 t? (@E(O)f IVl

< aymg (HVUH§ + !!VUH%)

N

mo ([[Val3 +[7013) on [0, wo)-

Similarly, when mg = 0, by (4.16) and (4.11), we have

+2
lally s + llollgs

< Cp+2Hqup 2’YHV H2(7+1 +Cq+2HV’UHq 2’va H2(7+1

(4.18)

IN

y+1
asb (| Vul3 + [V03)

N

y+1
b (I7ull3 +190]3) " on [0, ).

Therefore, whether mg > 0 or mg = 0, we deduce that I(¢) > 0 on [0, tyax). This
implies that we can take ¢, = T

Lemma 4.3. Suppose that the assumptions of Lemma 4.2 are satisfied, then
there exists 0 < m; < 1,4 =1,2 such that

L [ (19l ) o >0
Jullp2 + [vllge < , At on [0, 7],
(1= n2) (IVul3 +V0]3) " mo =0

where n; =1 —ay, 1 =1, 2.
Proof. From (4.17), we have

2 +2
llly 5 + IolEE3 < amo (I9ull3 + [Voll3) , ¢ € [0,7)

Let n1 = 1 — a3, then we have the result for mg > 0. Similarly, from (4.18), we
get the result for mg = 0.
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Remark. It follows from Lemma 4.3 that if mg > 0, then
1
(4.19) IVul}+ Vo3 < -1(0). ¢ € [0.7)
and if mg = 0, then

7+l 1
(4.20) (Iull3 +1v01) ™ < -1(6), + € [0,7]

Theorem 4.4. (Energy decay). Suppose that ug,vg € W N HZ(Q), uy,v1 €
L?(2) and the conditions of Lemma 4.2 are satisfied. Let (u(t), v(t)) be the solution
of the problem (4.1) — (4.5), then we have the following decay estimates:

(i) when mgy > 0,
E(t) < E(0)e ™, on [0,T).

(ii) When mo =0,

EESY
JR. YT2 R
Et) < [E0) 7 + —=[t—1]" on [0,7),
@< (B0 + 2i-1t) T eo)
where T;, 1 = 1,2, is some positive constant given in the proof.
Proof. By integrating (4.9) over [¢,t + 1], t > 0, we have

(4.21) E(t)— E(t+1)=D(t)?
where

t+1
(422) D= [ (IVul+ 19ul3) .

Then, there exist t; € [t,t+ 1] and ¢ € [t + 2, ¢ + 1] such that
(4.23) Ve (t)lf5 + [IVve(t:)[[; < 4D()?, i = 1,2.

Next, multiplying (4.1) by u and (4.2) by v and integrating them over 2 X [t1, t2]
and adding them together, we get

to

to to
(4.24) I(t)dt = — / / (ugru + vygv) dxdt—i—/ / (Augu + Avgw) dzdt.
t1 Q t1 Q

t1
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Integrating by parts on the first term of the right hand side of (4.24) and then using
Divergence theorem and Lemma 2.1, we obtain

/t * ra

2
< ES (IVuta)ll |Vuts) I + Vet [90()],)
(4.25) i=1
5 [ 2 2
e [ (IVudl + 1V erl3) @
ty
to
+ [ UVl 1Vul, + 19ul, [90],) .
1

To proceed further estimation, we note that from (4.15)-(4.16) and (4.22),

to
/t (IVuelly IVully + [IVoelly [[Volly) de
1

(4.26) e1D(t) sup E(s)2, if mg > 0,
< t1<s<t2 )
| «D(t) sup E(s)20+D, if mg = 0.
t1<s<t2

And by (4.23) , we have

IVue(ta)ll [V ulto)lly + [1Vorta) Vot

(4.27) 2¢1D(t) sup E(s)%, if mgp > 0,
t1<s<to )
2coD(t) sup E(s)20+D, if mg =0,
t1<s<to
1 1
where ¢; = 2 (2(%”) > and ¢y = 2 (2(7’;%)2(3”%) AR
Thus, from (4.20) and by (4.26) — (4.27), (4.22) , we deduce that if mg > 0, then
to 1
(4.28) / I(t)dt < c3D(t) sup FE(s)2 + c2D(t)?,
t1 t1<s<t>

and if mg = 0, then

to 1
(4.29) / [(0)dt < esD(t) sup E(s)T0 4+ 2D(1)2,
t1 t1<s<t>



On Coupled Nonlinear Wave Equations of Kirchhoff Type with Damping and Source Terms 601

where c3 = 4c2c; + c1 and ¢4 = 4c2cy + co.
On the other hand, from (4.8) and Poincar¢ inequality, we note that if mg > 0, then
using (4.19) and (4.17),

E(t)
2
Cx 2 2 1 Y 2 2
< =
<< (HvutHﬁvat!b)+2(7+1)I(t)+2(7 5 (Iali3-+1v0l3)
TR Y [ o N k4 N [
(4.30) 2+ ) pt2) 2T g 1)( 2) "t
< IVl + 1902 + T 2) + co (all2 + Iol22)
) tll2 t 5 6 p+2 q+2
2
< = (IVudl3 + I90l3) + eI (1),

and if mg = 0, then using (4.20) and (4.18),

2
Gy 2 2 b—q 42
E(t <—(vu +|Vo )—i—clt—i—— P
(1) < 5 (IVuela +1Verlly ) +esl (0 + 50y Tl
431) .
C*
< S (IVully + 1Vul3) + el (1),
1 2y 2
where ¢; = (W + m) “% = max{2(w+1)(p+2)’ 2(711)(3#2)}’ =%
6 0 -2 b(p—q)
A 8 = s T q+2 and co = cs + 2(qof1)&+q2)n2

Hence, by integrating (4.30) over (¢1,t2) and using (4.22) and (4.28), we obtain

to
(4.32) E(t)dt < c10D(t)> 4 c11D(t) sup E(s)?,
ty t1<s<to

N

2
where c¢19 = %* + 6367 and c11 = c3cr.
Moreover, integrating (4.8) over (¢, t2), we get

t2
B0 = Bt + [ (19wl +1V0i13) 0

Since to — t1 > %, it follows that

B <2 [ B

ty
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Then, thanks to (4.22), we arrive at

2 2 2 2
B <2 [ EB@at [ (IVuli+ 1vels) ds
t t
ltg
=2 [ E(@t)dt+ D)%
t1

Thus, by using (4.32) and Lemma 4.1, we see that
E(t) < c1aD(t)2 + c13D(#)E(t)2, t > 0,

where ¢11 = 2¢9 + 1 and c¢19 = 2¢qp.
Hence, by Young’s inequality, we deduce

E(t) S 614D(t)2,
(4.33)

< as[E() - E(+1)].

where ¢35 is some positive constant greater than max(1, ¢14) . Therefore, by Lemma
2.2, we have the decay estimate for mg > 0 :

E(t) < E(0)e ™, on [0,7),

where 71 = In cfsli 7- Similarly, when mo = 0, following the arguments as in

(4.32) — (4.33), we arrive at

E(t)

IN

2(y+1) 2(y+1)
c16 (1 4+ D()> T ) D(t)

IN

2(y+1) 2(y+1)
c16 (1 + B(0)2 5 ) D(t) & .

This implies that

2v+1

E(t)"H < (ern(E(0))) 7 [B(t) — E(t+ 1),

2(y+1)
where ¢17(E(0)) = c16 [1+E(0)2_ e ] with lim ciz(B(0)) = e15 > 0.
2(y+1)
Setting 72 = (c17(E(0)))” S , then applying Lemma 2.2 yields

1

E(t) < (E(O)—# + %[t - 1]+>_ " on [0,T).
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Theorem 4.5. (Global existence and Decay property) Suppose that ug, vy €
W N HE(Q) and uy,v1 € L3(Q) with ay < 1, for mg > 0 or az < 1 and p > q,
for mo = 0. Then the problem (4.1) — (4.5) admits a global solution

u(t), v(t) € C([0, 00); H*(Q) N Hg (%)),
and
W (1), 0/ (1) € C([0,00); LA(Q)) N L2((0, 00); H(Q)).
Furthermore, we have the following decay estimates :
(i) if mg > 0, then
E(t) < E(0)e™ ™", on [0, c0).
(it) If mo = 0, then
v+l

E(t) < (E(O)‘w% + 77121 [t — 1]+> T on [0, 00).

Proof. Multiplying (4.1) by —2Awu and (4.2) by —2Av and integrating them
over () and combining them together, we obtain

4 {HAqu +||Av]f3 -2 (/ ug Audz +/ vtAvdx>}
dt 9 9
(434 +2M (| Vuld + [Vo]3) (I aul} + Av]3)
<2 (HVutH% + HVU,:H%) — 2/ |ul? uAudz — 2/ [v|TvAvdz.
Q Q

Multiplying (4.34) by &, 0 < ¢ < 1, and multiplying (4.8) by 2 and adding them
together, we get

d .
B + 20 - o) [IVuil3 + |Ver)3]
(4.35) +2=M (| Vull3 + [ 9ol3) (Iaul}+ |Av]3)

< —25/ \u\puAudx—Qg/ [v|?vAvdz,
Q Q

B0 =280) - 22 ([ wuae + [ vvar) e (2wl + a0lR).
Q Q



604 Shun-Tang Wu

By Lemma 4.2 and noting that |2¢ [, usAudz| < 2¢ e |3 + 5 | Aul|3, we see that
* 2 2 2 2
E*(t) = (1= 2¢) (Jlull3 + lell3) +e (1 aul + 1a0]3)

Choosing ¢ = %, we have

E*(t) > %e(u,v).
Moreover, we note that
2 /\u\puAudx = 2p/ ulP [Vul? dz
Q Q
< 2p Jlullpg, IIVull3, ,
and
2| [ Joftvcos| < 2ol 191

Where%—i—é =1, so that, we put 0y = 1l and 0 = o0, if N =1, 01 = 1+ ¢
(for arbitrary small &1 > 0), if N = 2; and 6, = &, 6 = &5, if N > 3. Thus, if
mg > 0, using (4.15), we have

2| [ (o uu o vy ds| < 2 (2 [ull | a4t |70l 0l3)
Q
< c1sE(1),
and if mg = 0, by (4.16), we get
) '/ (Jul? uAu + \v\qvAv)dm' < 1B (1),
Q

P

p 9
where ¢1g = 10 max <pc§+2 (ME(O)> L qett? (ME(O)> 2) and cjg =

il il
+2 (2(y+1)(q+2) 2v+1) +2 (2(7+1)(q+2) 2+ D)
10 max <pczz (%E(O)) gl (%E(O)) )

Hence, by integrating (4.35) over (0, ¢), we obtain
. E*(0)+ fot c1sE*(s)ds, if mg >0,
B= { E*(0) + [3 c19E*(s)ds, if mg = 0.
Then by Gronwall Lemma, we deduce
B*(t) < E*(0) explcit),

1 = 18,19, for any ¢t > 0. Therefore by Theorem 3.2, whether mg > 0 or mg =0,
we have T' = oo.
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5. BLOW-UP PROPERTY

In this section, we will study blow-up phenomena of solutions for a kind of
system (1.1) — (1.5) :
ue — M ([Vul3 + |Vv]13) Au— Aug = fi(u),
v — M ([Vull3 +1[Vv]3) Av — Ave = fo(v),
(5.1) u(z,0) =ug(x), u (z,0) =uy (), z €,
v(x,0) =12 (), v (z,0) =0y (x), z€Q,
u(z,t) =v(x,t) =0, z €I, t>0.

In order to state our results, we make further assumptions on f; and M:
(A2) there exists a positive constant § such that

ufi(u) +vfa(v) > (24 49) (Fi(u) + Fa(v)), for all u,v € R,

and o
(20 +1)M(s) > M (s)s, forall s >0,

/f1 )dr, Fy(v /f2 drandM /M

Remark. (1) In this case, we define the energy function of the solution (u,v)
of (5.1) by

where

652 B(O)= (Il + I3 +5 7T ul+1V01)- | (Fatw-+Fa(w)) o,

for t > 0. Then we have
t
(53) E()=E©)~ [ (IVul3+ Vo) dt

0
(2) It is clear that fi(u) = |ul u, fa(v) = |[v|Tv, p,g >0 andM( ) = mg+bs? for

mg >0,b>0,mog+b>0,v>0,s >0 satisfies (A2) with 3 < ¢ < min(f, 7).

Definition. A solution w(t) = (u(t),v(t)) of (5.1) is called blow-up if there

exists a finite time 7™ such that

lim (\Vu\2 + \Vv\2> dz = oo.
t—=T*= JQ
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Now, let

t
a(t) = HUH%HUH%/ (IVull3 + [[Voll3) dt + 1(t + 7)?
5.4) 0
(T — 1) ([Vuoll3 + | Vwoll3)

for £ > 0, here [ > 0, 7 > 0 and 77 > 0 are certain constants to be determined
later.

Lemma 5.1. Suppose that (A1) and (42) hold, then the function a(t) satisfies
a" (t) =4 (8 +1) [1+ [[uell3 + [[oell3]

5.5 t
©-3) > (=2 — 46) (2E(0)+l)+(4+85)/0 (V)3 + ([ Vve||3) dt.

Proof. Form (5.4), we have

a (t) = 2/ (uug + vvg) d + || Vull3 + | Voll3 + 20(t + 7)
(5.6) Q
— ([IVuoll3 + [ Vvoll3) -

By (5.1) and Divergence theorem, we get

o (1) = z/g (u+0?) de—20 (| Vul3 + [ Vo]3) ([VulZ+] Vo))
(5.7)
+2/ (wfr(w) + v fo(v)) dz + 2.
Q

Then, by (5.1) — (5.3), we have
a" (1) = 48+ 1) [1+ [[uel3 + erl}3]
> (=2 —40) (2E (0) + 1) + (4 + 89) /Ot (V)3 + | Ve ||3) ds
+ @ +48) M (IIVull3+19l3) ~2M (IVul; + [90]3) (IFull3+1Vol3)
+2/Q[uf1(u)—|—vf2(v)—(2+45) (Fi(u) + Fo(v))] da.

Therefore, from (A2), we obtain (5.5).
Now, we will find the estimate for the life span of a () . Let

(5.8) J(@)=a(t)™°, fortel0,T.
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Then we have )
J () =—=6J ()5 d (t),

and

(5.9) J"(t) = —5J ()T V (¢),
where

(5.10) V(t)=d" (t)a(t)— (1+6)d (t)°.

For simplicity of calculation, we denote

P, :/ uw?dx, P, = / vidz,
Q Q

t t
Qu = /0 IVuldt, Q, = /0 Vo2 dt,

R, :/ uldz, R, = / vidr,
Q Q
t 2 t 2
:/ Vw2 dt, sv:/ V]2 dt.
0 0

From (5.6), and Holder inequality, we get

S

S

a/ (t)2

¢ 2
5.11) =4 </Q (uut—i—vvt)dx—i—/o /Q(VuVut—i—VvVvt) dxdt—i—l(t—i—T))

<4 <\/RuPu + vV QuSu + VRuPy +/QuSy + VIVI(t +r))2 .
By (5.5), we have
(5.12) a"(t) > —(24+46)2E(0)+1)+4(1+6)(Ry+ Su+Ry+ Sy +1).
Thus, by (5.11) and (5.12), we obtain from (5.10)
V(t) > a(t) [~ (2+46) (2E(0) + 1) + 4 (1 + 6) (Ru + Su + Ry + Sy + 1]
414 8) (VEPy + @Sy + VEPs + V@5, + VIV 7))

And by (5.4), we get

V(t) > — (24 46) 2E (0) + 1) a(t) + 4 (1 + 6) O(t)
+4 (14 0) (Ry + Sy + Ry + Sy + 1) (T1 — 1) (|| Vuol|3 + [|[Vooll3)
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where
Ot) = (Ry+ Su+ Ry + Sy +1) (Py+ Qu+ Py +Qy+1(t+7)%)
(VR +@Ss 4 VBB + @5, + VIV 7))

By Schwarz inequality, ©(¢) is nonnegative. Hence, we have
V(1) > —(2+48) (2E(0) +1)J (1), t € [0,T1].
Therefore, from (5.9), we get

(5.13) J"(t) <8 (2+48) 2E (0) +1) J (t)"F5 .

Theorem 5.2. Suppose that (A1) and (A2) hold and that either one of the
following statements is satisfied.:

(i) E(0) <0,
(13) E(0) =0 and 26 fQ (upuy +vov1) > || Vuol|3 + || Vuol|3,

then the solution (u(t),v(t)) blows up at finite time T* > 0.
Moreover, the finite time T* can be estimated as follows :
(i) if E(0) <O, then

&+ /6 — 8E(0)5? (|luoll3 + Ilvo l3)
A(—E(0))0? '

(5.14) T* <

(it) If E(0) = 0, then
[uol3 + llvoll3

— ’
where ¢ = ||Vuo|3 + || Vo3 — 26 [, (wour + vovr )dz.

(5.15) T* <

Proof. Taking | = —2E(0)(>0) in (5.13) and from (5.8), we see that
5 1
@ur) <0, t>0.

Now, we consider two different cases on the sign of the initial energy E (0) .

Case 1. E(0) < 0. First, we choose 7 so large that
a/(0) = 2 / (o1 + vov1) — AE(0)7 > 0,
Q

and select T3 such that
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(5.16)

<17,

then, we deduce

a(0)1+6 5
0= (5 —5awm)

Therefore, there exists a finite time 7™ < T such that

t
i { [ a2y [0+ 9ol ar)
(9] 0

Q.
t—T*—

By Poincaré inequality, it implies that

lim (\Vu\2 + \Vv\2> dx = o0.
t—=T*= JQ

Moreover, inequality (5.16) holds if and only if

Juol}3 + l1vol3 = 2E(0)7 .
20 (Jq (wour + vovr) dz — 2E(0)7) — [[Vuol3 — [ Vol ~

Tl(’i') =

We observe that 7' (7) take a minimum at

6+ /62 = 8B0)5 (Juoll + o]}
e 1(-B(0))9 |

Thus putting 77 = T (1), we arrive at (5.14).

Case 2. E(0) =0 and 2 [, (uou1 +vov1) > 0. Then we see

a'(O) = 2/ (upuy + vovy) >0
Q

and
a(0) = Jluoll3 + llvoll3 + 1 (IIVuol3 + [[Vvoll3) -

Thus, we get (5.15), if we choose T = % in (5.16).
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