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VISCOSITY METHOD FOR HIERARCHICAL FIXED POINT

APPROACH TO VARIATIONAL INEQUALITIES

Hong-Kun Xu

Abstract. A viscosity method for a hierarchical fixed point approach to

variational inequality problems is presented. This method is used to solve

variational inequalities where the involving operators are complements of non-

expansive mappigs and the solutions are sought in the set of the fixed points of

another nonexpansive mapping. Such variational inequalities include mono-

tone inclusions and convex optimization problems to be solved over the fixed

point sets of nonexpansive mappings.

1. INTRODUCTION

A fairly common method in solving some nonlinear problems is to replace the

original problem by a family of regularized (perturbed) problems and each of these

regularized problems has a unique solution. A particular (viscosity) solution of

the original problem will be obtained as a limit of these unique solutions of the

regularized problems. We will use this idea to provide a viscosity method for the

hierarchical fixed point approach to solving variational inequality problems.

Let C be a closed convex subset of a real Hilbert space H and F : C → H be

a nonlinear mapping. Consider the variational inequality problem (VIP) of finding

a point x∗ with the property

(1.1) x∗ ∈ C such that 〈Fx∗, x− x∗〉 ≥ 0, x ∈ C.

The VIP (1.1) is equivalent to the fixed point equation

(1.2) x∗ = PC(I − γF )x∗
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where γ > 0 and PC is the metric projection of H onto C which assigns to each

x ∈ H the only point in C, denoted PCx, such that

‖x− PCx‖ = inf{‖x− y‖ : y ∈ C}.

It is well-known that if F is Lipschitzian and strongly monotone (i.e., 〈Fx −
Fy, x− y〉 ≥ α‖x− y‖2 for x, y ∈ C and for some α > 0), then for small enough
γ > 0, the mapping PC(I − γF ) is a contraction on C and so the sequence {xn}
of Picard iterates, given by xn = PC(I − γF )xn−1 (n ≥ 1), converges strongly to
the unique solution of the VIP (1.1).

It is also known that if F is inversely strongly monotone (i.e., there is a constant
µ > 0 such that 〈Fx − Fy, x − y〉 ≥ µ‖Fx − Fy‖2 for x, y ∈ C), then the

mapping PC(I − γF ) is an averaged mapping (namely, there are β ∈ (0, 1) and
a nonexpansive mapping T such that PC(I − γF ) = (1 − β)I + βT ), then the

sequence of Picard iterates, {(PC(I − γF ))nx0}, converges weakly to a solution
of the VIP (1.1) (if such solutions exist). (Recall that a mapping T : C → C is

nonexpansive if ‖Tx− Ty‖ ≤ ‖x− y‖ for x, y ∈ C.)
In this paper we are concerned with the VIP (1.1) in the case where C is the

set Fix(T ) of the fixed points of a nonexpansive self-mapping T of C and F is of
the form F = I − V , with V another nonexpansive self-mapping of C. In other

words, our VIP is of the form

(1.3) Find x∗ ∈ Fix(T ) such that 〈x∗ − V x∗, x− x∗〉 ≥ 0, x ∈ Fix(T ).

Equivalently, x∗ is a fixed point of PFix(T )V , x
∗ = PFix(T )V x

∗. Let S denote the

solution set of the VIP (1.3) (i.e., the set of fixed points of PFix(T )V ) and assume
that S 6= ∅. (More general variational inequalities and other methods (e.g. hybrid
extragradient and steepest-descent) can be found in [3, 13, 22, 23].)

The following two special choices of the mapping V in the VIP (1.3) have been

studied in the literature:

(a) V is a constant mapping on C: V x ≡ u for some u ∈ C and all x ∈ C.
(b) V is a contraction with coefficient ρ ∈ [0, 1); that is,

‖V x− V y‖ ≤ ρ‖x− y‖, x, y ∈ C.

The first case is equivalent to the VIP:

(1.4) Find x∗ ∈ Fix(T ) such that 〈x∗ − u, x− x∗〉 ≥ 0, x ∈ Fix(T )

or equivalent to finding the fixed point of T closest to u; that is,

x∗ = PFix(T )u = argminx∈Fix(T )
1
2
‖u− x‖2.
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This problem has widely been investigated; see [2, 5, 6, 14, 16, 18, 19]. There are

two ways to solve it: one implicit and one explicit.

The implicit method, initiated in [2], defines, for each fixed element u ∈ C, a

curve: z : (0, 1) → C satisfying the fixed point equation

(1.5) zt = tu+ (1− t)Tzt.

(This equation has a unique solution because the mapping z 7→ tu+ (1− t)Tz is a
contraction on C.)

The explicit method, initiated in [5], generates a sequence {xn} by the recursive
formula:

(1.6) xn+1 = αnu + (1 − αn)Txn, n ≥ 0,

where u, x0 ∈ C and {αn} ⊂ [0, 1].
The following results are commonly known.

Theorem 1.1. [2]. Assume Fix(T ) is nonempty. Then zt → PFix(T )u in norm.

Theorem 1.2. [5, 6, 15, 11, 12, 17, 16]. Assume Fix(T ) is nonempty. Suppose
that the sequence {αn} satisfies the conditions (C1) and (C2):

(C1) limn→∞ αn = 0.
(C2)

∑∞
n=0 αn = ∞.

Suppose, in addition, that {αn} satisfies one of the following conditions:
(C3)

∑∞
n=0 |αn+1 − αn| <∞.

(C4) limn→∞ |αn+1 − αn|/αn+1 = 0.

Then the sequence {xn} generated by the algorithm (1.6) converges in norm to
PFix(T )u.

The VIP (1.3) covers several topics recently investigated in literature. Some of

them are listed below.

(i) (Monotone inclusions.) Yamada [21] studied the VIP (1.1) by assuming that

C = Fix(T ) for some nonexpansive mapping T in H , where the operator
F is Lipschitzian and strongly monotone. This corresponds to the VIP (1.3)

where V = I − γF , with γ > 0 sufficiently small.
(ii) (Convex optimization.) Let ϕ be a proper lower semicontinuous convex func-

tion on H and let ψ be a convex function on H so that ∇ψ is strongly

monotone. Take

V = proxλϕ := argmin
{
ϕ(z) +

1
2λ

‖ · −z‖2

}
.
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Then the VIP (1.3) is reduced to the hierarchical minimization problem

min
x∈argminϕ

ψ(x).

(iii) (Quadratic minimization over fixed point sets [8].) Consider the minimization

problem

(1.7) min
x∈Fix(T )

1
2
〈Ax, x〉 − h(x),

where A is a linear bounded strongly positive operator on H , h is a potential

for γf (i.e., h′(x) = γf(x)), where γ > 0 is a constant and f is a contraction
on H . The optimality condition for the minimization (1.7) is the VIP of
finding a fixed point of T so that

(1.8) 〈(A− γf)x∗, x− x∗〉 ≥ 0, x ∈ Fix(T ).

Taking V = I − γ̃(A− γf), where γ > 0 is appropriately chosen so that V
is nonexpansive, we find that the VIP (1.8) is reduced to the VIP (1.3).

The viscosity extension of the above results was first studied by Moudafi [9]

and further developed by the author [20]. In the viscosity approximation method,

the implicit and explicit schemes (1.5) and (1.6) are replaced respectively by the

following schemes:

(1.9) xt = tf(xt) + (1 − t)Txt

and

(1.10) xn+1 = λnf(xn) + (1 − λn)Txn

where f is a contraction on C, t ∈ (0, 1) and {λn} is a sequence in [0, 1].

Theorem 1.3. [9, 20]. Assume Fix(T ) is nonempty and let xt be given by

(1.9). Then s− limt→0 xt =: x∗ exists and x∗ solves the variational inequality

(1.11) 〈(I − f)x∗, x− x∗〉 ≥ 0, x ∈ Fix(T ).

Theorem 1.4. [9, 20]. Assume Fix(T ) is nonempty and let {xn} be the se-
quence generated by the algorithm (1.10). Assume conditions (C1) and (C2), and
in addition, either (C3) or (C4), hold. Then xn → x∗ in norm, where x∗ is the

unique solution of the variational inequality (1.11).
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Recently, Moudafi and Mainge [10] considered the viscosity method for hierar-

chical fixed point problems of nonexpansive mappings as follows.

Given on C a contraction f and two nonexpansive mappings V and T . Then

for s, t ∈ (0, 1), the mapping

x 7→ sf(x) + (1 − s)[tV x+ (1 − t)Tx]

is a contraction on C. So it has a unique fixed point, denoted xs,t ∈ C; thus,

(1.12) xs,t = sf(xs,t) + (1− s)[tV xs,t + (1− t)Txs,t].

In [10], Moudafi and Mainge studied the convergence of the hierarchical scheme

(1.12) under certain assumptions.

It is the purpose of the present article to further study the convergence of the

implicit hierarchical scheme (1.12). We will show in section 3 that {xs,t}, defined
by the implicit scheme (1.12), converges, for each fixed t ∈ (0, 1), strongly as
s→ 0 to a point xt which in turns converges in norm as t→ 0 to a solution of the
variational inequality (1.11).

2. PRELIMINARIES

In this section we assume that C is a closed convex subset of a real Hilbert

space H . Recall that f is a contraction on C with coefficient ρ ∈ [0, 1) if f is a
self-mapping of C and satisfy the property:

‖f(x)− f(x′)‖ ≤ ρ‖x− x′‖, x, x′ ∈ C.

Recall also that a mapping T : C → C is nonexpansive provided

‖Tx− Tx′‖ ≤ ‖x− x′‖, x, x′ ∈ C.

Lemma 2.1. [16]. Assume {an} is a sequence of nonnegative real numbers
such that

an+1 ≤ (1− γn)an + γnδn + βn, n ≥ 0,

where {γn} and {βn} are sequences in (0,1) and {δn} is a sequence in R such that

(i)
∑∞

n=1 γn = ∞;

(ii) either lim supn→∞ δn ≤ 0 or
∑∞

n=1 γn|δn| <∞;

(iii)
∑∞

n=1 βn <∞.

Then limn→∞ an = 0.
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Lemma 2.2. (cf. [20]). Let f : C → C be a contraction with coefficient

ρ ∈ [0, 1) and T : C → C be a nonexpansive mapping.

(i) I − f is strongly monotone with coefficient 1 − ρ; that is,

〈x− y, (I − f)x− (I − f)y〉 ≥ (1 − ρ)‖x− y‖2, x, y ∈ C.

(ii) I − T is monotone; that is,

〈x− y, (I − T )x− (I − T )y〉 ≥ 0, x, y ∈ C.

Lemma 2.3. (Demiclosedness Principle) (cf. [4]). Let T : C → C a nonex-

pansive mapping with Fix(T ) 6= ∅. If {xn} is a sequence in C weakly converging
to x and if {(I − T )xn} converges strongly to y, then (I − T )x = y.

Recall that if K is a closed convex subset of real Hilbert space H , then we can
define the (nearest point) projection from H onto K by assigning to each x ∈ H

the unique point in K, denoted PKx, in such a way that

‖x− PKx‖ = inf{‖x− z‖ : z ∈ K}.

Lemma 2.4. Given x ∈ H and z ∈ K. Then z = PKx if and only if there
holds the relation:

〈x− z, y − z〉 ≤ 0 for all y ∈ K.

The following straightforward inequality will be used.

Lemma 2.5. There holds the following inequality in an inner product space X:

‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉, x, y ∈ X.

Notation. Let {xn} be a sequence and x be a point in a normed space X .
Then we use xn → x and xn ⇀ x to denote strong and weak convergence to x of

the sequence {xn}, respectively.

3. HIERARCHICAL FIXED POINT APPROACH

In solving nonlinear problems which are not well-posed, a quite common method

is to consider a family of perturbed (regularized) problems such that each of these

regularized problems is well-posed. Then viscosity approximation method is applied



Viscosity Method for Variational Inequalities 469

to seek a particular solution of the original problem as a limit of the solutions of

the regularized problems. In this section we will use this idea to provide a viscosity

method for the hierarchical fixed point approach to solving variational inequality

problems.

Now let C be a closed convex subset of a real Hilbert space H . Consider two

nonexpansive mappings T, V : C → C with Fix(T ) 6= ∅ and the associated the
variational inequality problem (VIP)

(3.1) find x̃ ∈ Fix(T ) such that 〈(I − V )x̃, x− x̃〉 ≥ 0, x ∈ Fix(T ).

We use S to denote the solution set of (3.1). It is known that S is also the fixed point

set of the nonexpansive mapping PFix(T )V , S = Fix(PFix(T )V ), where PFix(T ) is

the metric projection onto Fix(T ). [We will always assume that S is nonempty.]
Next let f : C → C be a contraction with contraction coefficient ρ ∈ [0, 1).

For each s, t ∈ (0, 1), define two mappings Wt and fs,t by

Wt = tV + (1− t)T, fs,t = sf + (1− s)Wt.

It is easily seen that Wt is nonexpansive and fs,t is a contraction with coefficient

1 − (1− ρ)s; that is,

‖fs,t(x)− fs,t(y)‖ ≤ [1 − (1 − ρ)s]‖x− y‖, x, y ∈ C.

Let xs,t be the unique fixed point of fs,t in C. Namely, xs,t is the unique solution

in C to the equation

(3.2) xs,t = sf(xs,t)+ (1− s)Wtxs,t = sf(xs,t)+ (1− s)[tV xs,t +(1− t)Txs,t].

It is interesting to know the behavior of {xs,t} when s, t tend to 0 separately or
jointly. In [10], Moudafi and Mainge initiated the investigation of the behavior of

{xs,t} as s→0 first and then as t→0. They employed the following assumptions:

(A1) For each t ∈ (0, 1), the fixed point set of Wt, Fix(Wt), is nonempty and the
set {Fix(Wt) : 0 < t < 1} is bounded;

(A2) The solution set S of the variational inequality (3.1) is nonempty; and

(A3) ∅ 6= S ⊂ ‖·‖− lim inft→0 Fix(Wt) := {z : ∃zt ∈ Fix(Wt) such that zt → z
in norm as t→ 0}.

Under these assumptions, Moudafi and Mainge [10] proved that, as s goes to 0,

{xs,t} converges strongly to a point xt, and as t goes to 0, {xt} converges weakly
to a point x∞ which solve the variational inequality

(3.3) 〈x∞ − f(x∞), x− x∞〉 ≥ 0, x ∈ S.
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(Note that the strong convergence as s → 0 to xt of {xs,t} has actually also been
proved in [20].)

Before stating the main theorem, we discuss the behavior as t → 0 of zt of
fixed points of Wt.

Proposition 3.1. Let t ∈ (0, 1) and let zt be a fixed point of the mapping
Wt = tV + (1 − t)T ; namely, zt = tV zt + (1 − t)Tzt. Assume {zt} remains
bounded as t→ 0.

(i) The solution set S of the variational inequality (3.1) is nonempty and each
weak limit point (as t→ 0) of {zt} solves the VI (3.1).

(ii) If I − V is strictly monotone, then the net {zt} converges weakly to the
solution of the VI (3.1).

(iii) If I − V is strongly monotone (e.g., V is a contraction), then the net {zt}
converges strongly to the solution of the VI (3.1).

Proof. (Part (i) was proved in [7] under the additional assumption that S 6= ∅
and by the graph convergence theory [1]. Here we give an alternative (elementary)

proof.)

Let W be the set of all weak accumulation points of {zt} as t → 0; that is,
W = {z : ztn ⇀ z for some sequence {tn} in (0, 1) such that tn → 0}.

To prove (i), we notice that the boundedness of {zt} implies that W 6= ∅ and

‖zt − Tzt‖ = t‖V zt − Tzt‖ → 0 as t→ 0.

It thus follows from Lemma 2.3 that W ⊂ Fix(T ).
Using Lemma 2.5, we derive that, for any x̂ ∈ Fix(T ),

‖zt − x̂‖2 = ‖(1− t)(Tzt − x̂) + t(V zt − x̂)‖2

≤ (1− t)2‖Tzt − x̂‖2 + 2t〈V zt − x̂, zt − x̂〉

≤ (1− t)2‖zt − x̂‖2 + 2t(〈V zt − zt, zt − x̂〉 + ‖zt − x̂‖2)

= (1 + t2)‖zt − x̂‖2 + 2t〈V zt − zt, zt − x̂〉.

It follows that

(3.4) 〈zt − V zt, zt − x̂〉 ≤ t

2
‖zt − x̂‖2.

Since I − V is monotone, we have

〈(I − V )zt, zt − x̂〉 ≥ 〈(I − V )x̂, zt − x̂〉.
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This together with (3.4) implies that

(3.5) 〈(I − V )x̂, zt − x̂〉 ≤ t

2
‖zt − x̂‖2.

Now if x̃ ∈ W ⊂ Fix(T ) and if tn → 0 is such that xtn ⇀ x̃, then we obtain from

(3.5) that

(3.6) 〈(I − V )x̂, x̃− x̂〉 ≤ 0, x̂ ∈ Fix(T ).

Replacing the x̂ in (3.6) with x̃ + λ(x − x̃) ∈ Fix(T ), where λ ∈ (0, 1) and
x ∈ Fix(T ), we get

〈(I − V )(x̃+ λ(x− x̃)), x̃− x〉 ≤ 0.

Letting λ→ 0 yields

(3.7) 〈(I − V )x̃, x̃− x〉 ≤ 0

for all x ∈ Fix(T ). Hence, x̂ ∈ S.
To see (ii), we assume that {t′n} is another null sequence in (0,1) such that

xt′n ⇀ x̂. Then x̂ ∈ Fix(T ) and by replacing the x in (3.7) with x̂, we get

(3.8) 〈(I − V )x̃, x̃− x̂〉 ≤ 0.

We can interchange x̃ and x̂ to get

(3.9) 〈(I − V )x̂, x̂− x̃〉 ≤ 0.

Adding up (3.8) and (3.9) yields

〈(I − V )x̃− (I − V )x̂, x̃− x̂〉 ≤ 0.

So the strict monotonicity of I − V implies that x̃ = x̂ and {zt} converges weakly.
Finally to prove (iii), we observe that the strong monotonicity of I−V and (3.4)

imply that

(3.10) α‖zt − x̂‖2 + 〈(I − V )x̂, zt − x̂〉 ≤ t

2
‖zt − x̂‖2

where α > 0 is the strong monotonicity coefficient of I − V ; that is,

〈(I − V )x− (I − V )y, x− y〉 ≥ α‖x− y‖2, x, y ∈ C.

A straightforward consequence of (3.10) is that if x̂ ∈W and if ztn ⇀ x̂ for some

null sequence {tn} in (0, 1), then we must have ztn → x̂. This shows that {zt} is
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relatively compact in the norm topology, and each of its limit points solves the VI

(3.1). Finally repeating the argument in the weak convergence case of (ii), we see

that {zt} can have exactly one limit point; hence {zt} converges in norm.

The following is the main result of the present paper in which we improve

the result of Moudafi and Mainge [10] by proving that {xt} actually converges
strongly and also by removing the boundedness of the set {Fix(Wt) : 0 < t < 1}
in assumption (A1). Our proof presented below is different from that of [10].

Theorem 3.2. Let the above assumptions (A2) and (A3) hold. Assume also

that, for each t ∈ (0, 1), Fix(Wt) is nonempty (but not necessarily bounded).
Then the strong lims→0 xs,t =: xt exists for each t ∈ (0, 1). Moreover the strong
limt→0 xt =: x∞ exists and solves the variational inequality (3.3). Hence, for any

null sequence {sn} in (0,1), there is another null sequence (tn) in (0, 1) such that
xsn,tn → x∞ in norm, as n→ ∞.

Proof. Since, for each fixed t ∈ (0, 1), the fixed point set Fix(Wt) of Wt is

nonempty, we can apply Theorem 1.3 to get that

xt := ‖ · ‖ − lim
s→0

xs,t

exists in Fix(Wt) and solves the following variational inequality

(3.11) 〈(I − f)xt, x− xt〉 ≥ 0, x ∈ Fix(Wt).

Equivalently, xt = (PFix(Wt)f)xt, where PFix(Wt) is the metric projection from H
onto Fix(Wt).

It follows from (3.11) that, for z ∈ Fix(Wt),

‖xt − z‖2 ≤ 〈f(xt) − z, xt − z〉

= 〈f(xt) − f(z), xt − z〉 + 〈f(z)− z, xt − z〉

≤ ρ‖xt − z‖2 + 〈f(z) − z, xt − z〉.

Hence,

(3.12) ‖xt − z‖2 ≤ 1
1 − ρ

〈f(z)− z, xt − z〉, z ∈ Fix(Wt).

This particularly implies that

(3.13) ‖xt − z‖ ≤ 1
1 − ρ

‖f(z)− z‖, z ∈ Fix(Wt).
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(3.13) is yet to imply the boundedness of {xt} since z may depend on t. However,
since the solution set S of the VIP (3.1) is nonempty, we can take (an arbitrary)
v ∈ S, and use assumption (A3) to find zt ∈ Fix(Wt) such that zt → v in norm

as t→ 0. Hence (zt) must be bounded (as t→ 0). Now (3.13) implies

‖xt‖ ≤ ‖xt − zt‖ + ‖zt − v‖ + ‖v‖

≤ 1
1 − ρ

‖f(zt) − zt‖ + ‖zt − v‖+ ‖v‖

and this is sufficient to ensure that {xt} is bounded (as t close 0).
Now the boundedness of {xt} allows us to apply Proposition 3.1(i) to conclude

that every weak limit point x̃ of {xt} belongs to the solution set S of the VIP
(3.1). Then (3.12) guarantees that every such weak limit point x̃ of {xt} is also
a strong limit point of {xt}. Indeed, if {tn} is a null sequence in (0, 1) and if
xtn → x̃ weakly, then x̃ ∈ S. Use assumption (A3) to get a sequence {zn} such
that zn ∈ Fix(Wtn) for all n and zn → x̃ in norm. From (3.12) we get

(3.14)

‖xtn − x̃‖2 = ‖(xtn − zn) + (zn − x̃)‖2

≤ 2(‖xtn − zn‖2 + ‖zn − x̃‖2)

≤ 2
1 − ρ

〈f(zn) − zn, xtn − zn〉+ 2‖zn − x̃‖2.

However, 〈f(zn) − zn, xtn − zn〉 → 0 since f(zn) − zn → f(x̃) − x̃ in norm and
xtn − zn → 0 weakly, and we find that the right-hand side of (3.14) tends to zero.
Hence, xtn → x̃ in norm.

So to prove the strong convergence of the entire net {xt}, it remains to prove
that {xt} can have only one strong limit point. Let x̃ and x̃′ be two strong limit
points of {xt} and assume that xtn → x̃ and xt′n → x̃′ both in norm, where {tn}
and {t′n} are null sequences in (0, 1). It remains to verify that x̃ = x̃′.

Since x̃′ ∈ S, by assumption (A3), we can find zt ∈ Fix(Wt) such that zt → x̃′

in norm as t→ 0. The variational inequality (3.11) implies

〈(I − f)xtn, ztn − xtn〉 ≥ 0.

Taking the limit as n→ ∞ yields

(3.15) 〈(I − f)x̃, x̃′ − x̃〉 ≥ 0.

Similarly we have

(3.16) 〈(I − f)x̃′, x̃− x̃′〉 ≥ 0.
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Adding up (3.15) and (3.17) gives

(3.17) 〈(I − f)x̃− (I − f)x̃′, x̃− x̃′〉 ≤ 0.

By Lemma 2.2(i), we obtain x̃ = x̃′ and so {xt} converges in norm to (say) x∞.
Now for any v ∈ S, since by assumption (A3), we can find zt ∈ Fix(Wt) such

that zt → v in norm, (3.11) then implies

〈(I − f)xt, v − xt〉 ≥ 〈(I − f)xt, v − zt〉 → 0

which in turns implies

(3.18) 〈(I − f)x∞, v− x∞〉 ≥ 0, v ∈ S.

That is, x∞=(PSf)x∞, the unique fixed point of the contraction PSf . Finally, for
any null sequence{sn} in (0,1), using a diagonalization argument (cf. [1]), we can
find another null sequence (tn) in (0, 1) such thatxsn,tn→x∞ in norm, as n→∞.

Remark 3.3. Theorem 3.2 shows that for any null sequence {sn} in (0,1), there
is another null sequence (tn) in (0, 1) such that xsn,tn → x∞ in norm, as n→ ∞,
and x∞ is a solution to the VIP (3.18). Below we present a general result. We

can show that as long as ts is taken so that ts = o(s) (i.e., lims→0 ts/s = 0), then
xs,ts → z∞ in norm, and moreover, z∞ solves the variational inequality (3.18) on

the larger set Fix(T ) (i.e., z∞ is the unique fixed point in Fix(T ) of the contraction
PFix(T )f ), without the assumptions (A2) and (A3). However, for such a general
choice of {ts}, this solution z∞ may differ from the solution x∞ of the VIP (3.18)

on the smaller set S (i.e., x∞ is the unique fixed point in S of the contraction PSf ).
We will verify this by taking ts = s2 for simplicity (the argument however works
for any net (ts) in (0,1) such that lims→0 ts/s = 0).

Theorem 3.4. Let, for each s ∈ (0, 1), xs be the unique solution in C to the

equation

(3.19) xs = sf(xs) + (1− s)(s2V xs + (1 − s2)Txs).

Then, as s→ 0, xs converges in norm to the solution of the VIP

z∞ ∈ Fix(T ), 〈(I − f)z∞, z − z∞〉 ≥ 0, z ∈ Fix(T );

equivalently, z∞ = (PFix(T )f)z∞.

Proof. Write Ws (instead of Ws2) for s2V + (1 − s2)T ; then

xs = sf(xs) + (1− s)Wsxs.
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Take a fixed point z of T to derive that

‖xs − z‖2 = s〈f(xs)− z, xs − z〉 + (1 − s)〈Wsxs − z, xs − z〉

= s〈f(xs)− f(z), xs − z〉+ s〈f(z) − z, xs − z〉

+(1 − s)〈Wsxs −Wsz, xs − z〉 + (1− s)〈Wsz − z, xs − z〉

≤ sρ‖xs − z‖2 + s〈f(z) − z, xs − z〉

+(1 − s)‖xs − z‖2 + (1 − s)s2〈V z − z, xs − z〉.

It follows that, for z ∈ Fix(T ),

(3.20) ‖xs − z‖2 ≤ 1
1 − ρ

(〈f(z)− z, xs − z〉 + s〈V z − z, xs − z〉).

This implies that

‖xs − z‖ ≤ 1
1 − ρ

(‖f(z)− z‖+ ‖V z − z‖).

In particular, {xs} is bounded, and from (3.19), we further get

(3.21) ‖xs−Txs‖ = s‖f(xs)+s(1−s)V xs− (1+s−s2)Txs‖ → 0 as s→ 0.

The demiclosedness principle for nonexpansive mappings (Lemma 2.3) then ensures

that every weak limit point, as s → 0, of {xs} is a fixed point of T . Going back
to (3.20) we find that each weak limit point of {xs} is actually a strong limit
point of {xs}. So to prove the strong convergence of {xs}, we need only to show
the uniqueness of strong limit points of {xs}. Assuming {sn} and {s′n} are null
sequences in (0,1) such that xsn → v and xs′n → v′, both in norm. Observing that
(3.19) implies

(I − f)xs = −1 − s

s
(I −Ws)xs,

we obtain by virtue of the monotonicity of I −Ws, for z ∈ Fix(T ),

〈(I − f)xs, xs − z〉 = −1 − s

s
〈(I −Ws)xs, xs − z〉

= −1 − s

s
[〈(I −Ws)xs − (I −Ws)z, xs − z〉

+〈(I −Ws)z, xs − z〉]

≤ −s(1 − s)〈(I − V )z, xs − z〉.

In particular, we have

〈(I − f)xsn , xsn − v′〉 ≤ −sn(1 − sn)〈(I − V )v′, xsn − v′〉.
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So letting n→ ∞ yields

(3.22) 〈(I − f)v, v− v′〉 ≤ 0.

Repeating the above argument obtains

(3.23) 〈(I − f)v′, v′ − v〉 ≤ 0.

Adding up (3.22) and (3.23) gives us that

(3.24) 〈(I − f)v − (I − f)v′, v − v′〉 ≤ 0.

The strong monotonicity of I − f (Lemma 2.2) then implies v = v′. Finally taking
the limit as s → 0 in (3.22) and letting z∞ = ‖ · ‖ − lims→0 xs, we find that z∞
solve the variational inequality

z∞ ∈ Fix(T ), 〈(I − f)z∞, z∞ − z〉 ≤ 0, z ∈ Fix(T ).

Equivalently, z∞ = (PFix(T )f)z∞. The proof is therefore complete.

Remark 3.5. If T and V have a common fixed point, then it is not hard to see

that Fix(Wt) = Fix(T )∩Fix(V ) for all t ∈ (0, 1). Indeed, it suffices to show the
inclusion Fix(Wt) ⊂ Fix(T ) ∩ Fix(V ).To see this, take p ∈ Fix(T ) ∩ Fix(V )
and let z ∈ Fix(Wt). It follows that

‖z − p‖2 = ‖Wtz − p‖2

= ‖t(V z − p) + (1 − t)(Tz − p)‖2

= t‖V z − p‖2 + (1 − t)‖Tz − p‖2 − t(1− t)‖V z − Tz‖2

≤ ‖z − p‖2 − t(1 − t)‖V z − Tz‖2.

This implies V z = Tz = z; that is z ∈ Fix(T )∩ Fix(V ).
Then assumption (A2) is satisfied for any common fixed point of T and V ;

hence Fix(T )∩Fix(V ) ⊂ S. While assumption (A3) is reduced to the assumption

S ⊂ Fix(T )∩Fix(V ). Therefore, (A2) and (A3) are equivalent to the assumption
S = Fix(T ) ∩ Fix(V ), and they both are superfluous, as shown in the following
result.

Corollary 3.6. Assume that T and V have a common fixed point. Then the

conclusion of Theorem 3.2 holds. Namely, the strong lims→0 xs,t =: xt exists for

each fixed t ∈ (0, 1), and moreover the strong limt→0 xt =: x∞ exists and solves

the variational inequality (3.3).
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Proof. Since Fix(Wt) = Fix(T )∩Fix(V ) is independent of t, the z in both
relations (3.12) and (3.13) does not depend on t. Hence it is immediately clear that
{xt} is bounded, which then implies via (3.12) that every weak accumulation point
of {xt} is also a strong accumulation point of {xt}. Eventually, {xt} converges in
norm as shown in the final part of the proof of Theorem 3.2.
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