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ON A NON-COMPACT GENERALIZATION OF

FAN’S MINIMAX THEOREM

Won Kyu Kim and Sangho Kum

Abstract. In this paper, we first introduce the weak convexlike condition

which generalizes the convexlike concept due to Fan. Next, using the separa-

tion theorem for convex sets, we will prove a non-compact generalization of

Fan’s minimax theorem by relaxing the concavelike assumption to the weak

concavelike condition. Also we give some examples which show that the

convex and concave assumptions on Kneser’s minimax theorem can not be

relaxed with the quasi-convex and quasi-concave conditions simultaneously,

and the previous minimax theorems can not be available.

1. INTRODUCTION

In 1928, von Neumann found his celebrated minimax theorem [15] and, in 1937,

intersection lemma [16], which was intended to establish his minimax theorem

and theorem on optimal balanced growth paths. Since then, several extensions

of von Neumann’s minimax theorem were established. Among them, in 1952,

Kneser proved the following generalization of von Neumann’s minimax theorem by

weakening the compactness, linearity and continuity assumptions, and it has been

very useful in many applications in convex analysis and the theory of games:

Theorem A. [10]. Let X be a non-empty compact convex subset of a locally

convex topological vector space E and Y be a non-empty convex subset of a a

locally convex topological vector space F . Let the function f : X × Y → R with

the properties

(1) for each y ∈ Y , the function x 7→ f(x, y) is upper semicontinuous and
concave;
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(2) for each x ∈ X , the function y 7→ f(x, y) is convex.

Then we have

sup
x∈X

inf
y∈Y

f(x, y) = inf
y∈Y

max
x∈X

f(x, y).

And it has been an interesting question whether the convex and concave as-

sumptions on f can be further relaxed in Theorem A. On this question, in 1953,
Fan proved the abstract minimax theorem using general convexity assumptions on

f without assuming the linear structures on X and Y as follows:

Theorem B. [4]. Let X be a non-empty compact topological space, Y a

non-empty (discrete) set, and a function f : X × Y → R with the properties

(1) for any x1, x2 ∈ X and λ ∈ [0, 1], there exists an x0 ∈ X such that

f(x0, y) ≥ λf(x1, y) + (1 − λ)f(x2, y) for all y ∈ Y ;

(2) for any y1, y2 ∈ Y and λ ∈ [0, 1], there exists an y0 ∈ Y such that

f(x, y0) ≤ λf(x, y1) + (1 − λ)f(x, y2) for all x ∈ X ;

(3) for each y ∈ Y , the function x 7→ f(x, y) is upper semicontinuous.

Then we have

sup
x∈X

inf
y∈Y

f(x, y) = inf
y∈Y

max
x∈X

f(x, y).

When X and Y are non-empty convex sets, if x 7→ f(x, y) is concave for
each y ∈ Y , and y 7→ f(x, y) is convex for each x ∈ X , then the assumptions
(1) and (2) of Theorem B are clearly satisfied so that Theorem B is an abstract

generalization of Theorem A. As is well-known, there have been numerous minimax

theorems in abstract settings which generalize von Neumann’s minimax theorem,

e.g., see [1-9,11,12,14]. Nevertheless, Theorem B can be considered as the basic

minimax theorem among numerous generalizations of Kneser’s minimax theorem

and Fan’s minimax theorem. The proofs of Kneser type minimax theorems and Fan

type minimax theorems often require arguments involving various kind of equivalent

theorems, e.g., Brouwer’s fixed point theorem, von Neumann’s minimax theorem,

the KKM theorem, a separation theorem, or Helly’s theorem as shown in [1-12, 14,

15].

In this paper, we first introduce the weak convexlike condition which generalizes

the convexlike concept due to Fan [4], and using this concept, we will give a non-

compact generalization of Fan’s minimax theorem with a Gordan type alternative
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theorem by applying the separation theorem for convex sets. Next we give some

examples which shows that the convexity and concavity assumptions on Kneser’s

minimax theorem can not be relaxed with the quasi-convex and quasi-concave con-

ditions, and also is suitable for our theorem.

2. PRELIMINARIES

Now we recall some concepts which generalize the convexity as follows: Let

X be a non-empty convex subset of a vector space E and let f : X → R. We say
that f is quasi-convex if for each t ∈ R, {x ∈ X | f(x) ≤ t} is convex; and that f
is quasi-concave if −f is quasi-convex. It is easy to see that if f is quasi-concave,
then

f(λx1 + (1 − λ)x2) ≥ min{f(x1), f(x2)},

holds for every x1, x2 ∈ X and every λ ∈ [0, 1]. It should be noted that if f and
g are quasi-concave, then f + g is not quasi-concave in general.

When X and Y are any non-empty sets without linear structures, recall that

f : X × Y → R is convexlike [4] on X if for any x1, x2 ∈ X and λ ∈ [0, 1],
there exists an x0 ∈ X such that

f(x0, y) ≤ λf(x1, y) + (1 − λ)f(x2, y) for all y ∈ Y ;

and that f is concavelike if −f is convexlike.
It should be noted here that in the convexlike definition, the inequality

f(x0, y) ≤ λf(x1, y) + (1− λ)f(x2, y)

must hold for all y ∈ Y . This means that f(x0, y) is always less than or equal to
the values λf(x1, y) + (1− λ)f(x2, y) for every y ∈ Y . In some sense, this is
a rather strong requirement for x0 so that we relax this condition into a finite subset

of Y as follows:

Definition 1. Let X and Y be any non-empty sets and f : X × Y → R be a

real-valued function on X × Y . Then f is called weak convexlike on X if for

any x1, x2 ∈ X , λ ∈ [0, 1] and for any finite subset {y1, · · · , ym} of Y , there exists
an x0 ∈ X such that

f(x0, y) ≤ λf(x1, y) + (1− λ)f(x2, y) for all y ∈ {y1, · · · , ym};

and that f is weak concavelike on X if −f is weak convexlike on X .

It is clear that the convexlike condition implies the weak convexlike condition

but the converse may not be true. In the Definition 1, if Y is a finite set, then the
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weak convexlike condition is actually the same as the convexlike condition due to

Fan.

Note that there is no implication between ‘x 7→ f(x, y) being quasi-convex for
each y ∈ Y ’ and ‘f(x, y) being convexlike on X’ as follows:

Example 1. Let X = Y = [−1, 1] be convex sets and the function f :
X × Y → R is defined by

f(x, y) := x2y3 for each (x, y) ∈ X × Y.

Then, for each y ∈ (0, 1], the function x 7→ f(x, y) is clearly convex but
for each y ∈ [−1, 0), the function x 7→ f(x, y) is not quasi-convex. Next,

we shall show that the function x 7→ f(x, y) is convexlike on X . In fact, let
x1, x2 ∈ X and λ ∈ (0, 1) be arbitrarily given. We want to show there exists an
x0 ∈ X such that f(x0, y) ≤ λf(x1, y) + (1 − λ)f(x2, y) for all y ∈ Y, that is,

x2
0 y

3 ≤ λ x2
1 y

3 + (1 − λ) x2
2 y

3 for all y ∈ Y so that

0 ≤ y3
[
λ x2

1 + (1− λ) x2
2 − x2

0

]
for all y ∈ [−1, 1].

Whenever y ∈ (0, 1], we have 0 ≤ λ x2
1 + (1 − λ) x2

2 − x2
0; and whenever

y ∈ [−1, 0), we have 0 ≥ λ x2
1 + (1 − λ) x2

2 − x2
0, which can hold simultaneously

only when λ x2
1 + (1− λ) x2

2 = x2
0. Therefore, we can find an x0 ∈ X satisfying

the convexlike condition. Hence, x 7→ f(x, y) is convexlike on X .
On the other hand, as shown in [12], if we let

g(x, y) :=
−x2

(x− y)2 + 1
for each (x, y) ∈ X × Y,

then the function y 7→ g(x, y) is quasi-convex but not convexlike on Y . There-

fore, there is no implication between the quasi-convexity and the (weak) convexlike

condition.

Next, we shall need the following equivalent to the weak convexlike definition:

Lemma 1. Let X and Y be any non-empty sets, and f : X×Y → R be a real-
valued function onX×Y . Then f : X×Y → R is weak convexlike on X , if and
only if, for every n ≥ 2, whenever {x1, · · · , xn} ⊆ X is given and for any finite

subset {y1, · · · , ym} of Y and any λi ∈ [0, 1], i = 1, . . . , n, with
∑n

i=1 λi = 1,
there exists a point x0 ∈ X such that

(∗) f(x0, y) ≤ λ1f(x1, y) + · · ·+ λnf(xn, y) for all y ∈ {y1, . . . , ym}.

Proof. The sufficiency is clear. For the necessity, we shall use the induction

argument on n. When n = 2, the condition (∗) is exactly the same as the definition
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of convexlike condition. Assume that the condition (∗) holds for all k ≤ n−1 (n ≥
3). Let {x1, · · · , xn} ⊆ X and a finite subset {y1, · · · , ym} of Y be given, and

λi ∈ [0, 1], i = 1, . . . , n, with
∑n

i=1 λi = 1 be arbitrarily given. Without loss of
generality, we may assume

∑n−1
i=1 λi > 0 by reindexing i. Denote

µj :=
λj

n−1∑

i=1

λi

for all j = 1, · · · , n− 1;

then each µj ≥ 0 and
∑n−1

j=1 µj = 1. Then, for the given sets {x1, · · · , xn−1}
and {y1, · · · , ym}, the induction assumption assures that there exists a point x̄ ∈ X
such that

f(x̄, y) ≤ µ1f(x1, y) + · · ·+ µn−1f(xn−1, y) for all y ∈ {y1, . . . , ym}.

Then, by the induction assumption again on two points x̄, xn with (
∑n−1

i=1 λi), λn,

and the given set {y1, · · · , ym}, there exists a point x0 ∈ X such that

f(x0, y) ≤

(
n−1∑

i=1

λi

)
f(x̄, y) + λnf(xn, y) for all y ∈ {y1, . . . , ym}.

Therefore, we finally have

f(x0, y) ≤

(
n−1∑

i=1

λi

)
f(x̄, y) + λnf(xn, y)

≤

(
n−1∑

i=1

λi

)
(µ1f(x1, y) + · · ·+ µn−1f(xn−1, y)) + λnf(xn, y)

= λ1f(x1, y) + . . .+ λnf(xn, y),

for all y ∈ {y1, . . . , ym}. Therefore, by the induction, for every n ≥ 2, we can
obtain the desired conclusion.

3. A NON-COMPACT GENERALIZATION OF FAN’S MINIMAX THEOREM

Using the separation theorem for convex sets, we will prove a non-compact

generalization of Fan’s minimax theorem by relaxing the concavelike condition.

First, we begin with the following which is a Gordan type nonlinear alternative

theorem in a non-compact setting:

Theorem 1. Let X be a topological space, D a non-empty compact subset

of X , and Y be a non-empty (discrete) set, and c be a given real number. Let

f : X × Y → R be a function satisfying the following:
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(1) for each y ∈ Y , the function x 7→ f(x, y) is upper semicontinuous and weak
concavelike on X;

(2) for each x ∈ X , the function y 7→ f(x, y) is convexlike on Y ;
(3) there exists yo ∈ Y such that f(x, yo) < c for all x ∈ X \D.

Then, either (A) or (B) holds:

(A) there exists x̄ ∈ D such that

f(x̄, y) ≥ c for all y ∈ Y ;

(B) there exists ȳ ∈ Y such that

f(x, ȳ) ≤ c for all x ∈ X.

Proof. Suppose (A) were false. Then for each x ∈ D, there exists y ∈ Y such
that f(x, y) < c. Since x 7→ f(x, y) is upper semicontinuous, for each y ∈ Y , the

set

Oy := {x ∈ X | f(x, y) < c}
is open and we see that D ⊆ ∪y∈Y Oy. Since D is compact, there exists a finite

subset {y1, · · · , yn} ⊂ Y such that D ⊆ ∪n
i=1Oyi . By the assumption (3), X \D ⊆

Oyo so that we have X ⊆ ∪n
i=0Oyi . Therefore, for each x ∈ X , there exists

j ∈ {0, · · · , n} with x ∈ Oyj . Hence, we have that for each x ∈ X ,

min
0≤i≤n

f(x, yi) < c.

Here we note that yo may coincide with one of {y1, · · · , yn}. Now, we let

K1 := co{
(
f(x, y0), · · · , f(x, yn)

)
∈ Rn+1 | x ∈ X};

K2 := {(z0, · · · , zn) ∈ Rn+1 | zi ≤ c, i = 0, · · · , n}.

Then, it is clear that K1 is a non-empty convex subset of Rn+1 and K2 is a non-

empty closed convex subset of Rn+1 with non-empty interior. Now we claim that

K1 ∩ K2 = ∅. Indeed, suppose that there exists (z0, · · · , zn) ∈ K1 ∩ K2. Then,

there exist {x1, · · · , xk} ⊂ X and λi ∈ (0, 1), i = 1, . . . , k, with
∑k

i=1 λi = 1
such that

(z0, · · · , zn) =
k∑

j=1

λj (f(xj , y1), · · · , f(xj, yn))

=




k∑

j=1

λjf(xj , y1), · · · ,
k∑

j=1

λjf(xj , yn)


 .



On a Non-compact Generalization of Fan’s Minimax Theorem 353

Since x 7→ f(x, y) is weak concavelike, for the given sets {x1, · · · , xk} and
{y1, · · · , yn}, and given λj ∈ (0, 1), j = 1, . . . , k, with

∑k
j=1 λj = 1, there

exists x0 ∈ X such that

k∑

j=1

λjf(xj , y) ≤ f(x0, y) for all y ∈ {y1, · · · , yn}.

Therefore, for each i ∈ {0, . . . , n}, we have

c ≤ zi =
k∑

j=1

λjf(xj , yi) ≤ f(x0, yi).

Since x0 ∈ Oyj for some j ∈ {0, · · · , n}, we must have f(x0, yj) < c which is a

contradiction. Therefore, K1 ∩K2 = ∅. By the separation theorem for convex sets
(e.g., Theorem 3.4 in [13]), there exists (u0, · · · , un) ∈ Rn+1 \ {O} such that for
all x ∈ X and for all (z0, · · · , zn) ∈ K2,

n∑

i=0

ui · f(x, yi) ≤
n∑

i=0

ui · zi.

If we let zi → ∞, we have ui ≥ 0 for each i ∈ {0, · · · , n}. Therefore, by letting
u′i := ui∑n

i=0 ui
, we may assume that ui ∈ [0, 1], i = 0, . . . , n, with

∑n
i=0 ui = 1.

If we choose (z0, · · · , zn) = (c, · · · , c) ∈ K2, then we have
∑n

i=0 ui · f(x, yi) ≤ c
for all x ∈ X . By the assumption (2) of Theorem 1, the function y 7→ f(x, y) is
convexlike on Y so that there exists a point y0 ∈ Y such that

f(x, y0) ≤
n∑

i=0

ui · f(x, yi) ≤ c for all x ∈ X,

which proves (B).

Remark. When X is a compact topological space in Theorem 1, the coercive

condition (3) is automatically satisfied by letting D = X .

Next, using Theorem 1, we can prove a non-compact generalization of Fan’s

minimax theorem by relaxing the concavelike condition as follow:

Theorem 2. Let X be a topological space, D a non-empty compact subset

of X , and Y be a non-empty (discrete) set. Let f : X × Y → R be a function

satisfying the following

(1) for each y ∈ Y , the function x 7→ f(x, y) is upper semicontinuous and weak
concavelike on X;
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(2) for each x ∈ X , the function y 7→ f(x, y) is convexlike on Y ;

(3) the inequality infy∈Y supx∈X\D f(x, y) < infy∈Y supx∈X f(x, y) holds.
Then we have

sup
x∈X

inf
y∈Y

f(x, y) = inf
y∈Y

sup
x∈X

f(x, y).

Proof. If infy∈Y supx∈X f(x, y) = −∞, there is nothing to prove since

sup
x∈X

inf
y∈Y

f(x, y) ≥ inf
y∈Y

sup
x∈X

f(x, y) = −∞

is always holds.

For any constant c with infy∈Y supx∈X\D f(x, y) < c < infy∈Y supx∈X f(x, y),
if (A) of Theorem 1 holds, then there exists x̄ ∈ D such that

φ(x̄) := inf
y∈Y

f(x̄, y) ≥ c;

hence we have

(†) sup
x∈X

φ(x) = sup
x∈X

inf
y∈Y

f(x, y) ≥ c.

On the other hand, if (B) of Theorem 1 holds, then there exists ȳ ∈ Y such

that

ψ(ȳ) := sup
x∈X

f(x, ȳ) ≤ c;

so that we have

inf
y∈Y

ψ(y) = inf
y∈Y

sup
x∈X

f(x, y) ≤ c,

which can not be true since c < infy∈Y supx∈X f(x, y).
If infy∈Y supx∈X f(x, y) = ∞, then for any c ∈ R with infy∈Y supx∈X\D f(x, y) <

c, from the inequality (†), we have supx∈X infy∈Y f(x, y) ≥ c. Therefore, we have
supx∈X infy∈Y f(x, y) = ∞, and hence we can obtain the conclusion.

Suppose that infy∈Y supx∈X f(x, y) <∞. Then, for any ε > 0, if we take
c = infy∈Y supx∈X f(x, y)− ε, from the inequality (†) again, we can obtain that

sup
x∈X

inf
y∈Y

f(x, y) ≥ inf
y∈Y

sup
x∈X

f(x, y)− ε.

Since ε > 0 is arbitrary, we have

sup
x∈X

inf
y∈Y

f(x, y) ≥ inf
y∈Y

sup
x∈X

f(x, y);

and the reverse inequality is clear so that we can obtain the conclusion.
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WhenX is a compact topological space in Theorem 2, the coercive condition (3)

is automatically satisfied since infy∈Y supx∈X\D f(x, y) = −∞ by letting D = X
so that we can obtain a generalization of Fan’s minimax theorem as follow:

Theorem 3. Let X be a compact topological space and Y be a non-empty

(discrete) set. Let f : X × Y → R be a function satisfying the following:

(1) for each y ∈ Y , the function x 7→ f(x, y) is upper semicontinuous and weak
concavelike on X;

(2) for each x ∈ X , the function y 7→ f(x, y) is convexlike on Y .

Then we have

sup
x∈X

inf
y∈Y

f(x, y) = inf
y∈Y

max
x∈X

f(x, y).

We now give an example where Theorem A can not be generalized by relax-

ing the convex and concave assumptions with the quasi-convex and quasi-concave

conditions as follow:

Example 2. Let X := [0, 1] and Y := [0, 1] be compact convex sets in R,
and the function f : X × Y → R be defined by

f(x, y) :=

{
1, if (x, y) ∈ {(0, 1)} ∪ {(1, y) | 0 ≤ y < 1};

0, otherwise.

Then, for each y ∈ Y , the function x 7→ f(x, y) is clearly upper semicontinuous
and quasi-concave but not weak concavelike on X . Indeed, let x1 = 0, x2 = 1, λ ∈
(0, 1) be given. For a subset {1

2 , 1} of Y , x0 in the weak concavelike definition

must satisfy the following

f

(
x0,

1
2

)
≥ λf

(
0,

1
2

)
+ (1− λ)f

(
1,

1
2

)
= (1− λ) > 0

f(x0, 1) ≥ λf(0, 1)+ (1− λ)f(1, 1) = λ > 0

so that we have f(x0,
1
2) = f(x0, 1) = 1 which is a contradiction. Therefore, the

function x 7→ f(x, y) is not concavelike nor weak concavelike. Similarly, we

can see that for each x ∈ X , the function y 7→ f(x, y) is quasi-convex but not
convexlike nor weak convexlike on Y . Therefore, Theorems A and B can not be
applied for f(x, y). Indeed, it is easy to see that

0 = sup
x∈X

inf
y∈Y

f(x, y) � inf
y∈Y

max
x∈X

f(x, y) = 1;



356 Won Kyu Kim and Sangho Kum

thus the convex and concave assumptions on Kneser’s minimax theorem (Theorem

A) can not be relaxed with the quasi-convex and quasi-concave conditions simulta-

neously.

Next, we will give an example where Theorem 2 can be applied but the previous

minimax theorems due to von Neumann, Kneser are not available.

Example 3. Let X := [0, 3) and Y := (0, 3] be convex sets and the function
f : X × Y → R be defined by

f(x, y) :=





1, if x ≤ y ≤ 2, (x, y) ∈ [0, 2]× Y ;

−1, if y = 3, (x, y) ∈ (2, 3)× Y ;

0, otherwise.

Then, for each y ∈ Y , it is easy to see that x 7→ f(x, y) is upper semicontinuous
and quasi-concave and concavelike on X . Indeed, for any x1, x2 ∈ X and each

λ ∈ [0, 1], there exists an x0 = 0 ∈ X such that

f(0, y) ≥ λf(x1, y) + (1 − λ)f(x2, y) for each y ∈ Y

(here, f(0, y) is 0 or 1). Therefore, x 7→ f(x, y) is concavelike on X so that weak

concavelike on X . And, for each x ∈ X , y 7→ f(x, y) is convexlike but not
quasi-convex on Y . Indeed, we can see that for any y1, y2 ∈ Y and each λ ∈ [0, 1],
there exists an y0 = 3 ∈ Y such that

f(x, 3) ≤ λf(x, y1) + (1− λ)f(x, y2) for each x ∈ X

(here, f(x, 3) is -1 or 0). Therefore, y 7→ f(x, y) is convexlike on X so that weak

convexlike on X . And the set {y ∈ Y | f(1
2 , y) ≤

1
2} = (0, 1

2)∪(2, 3] is not convex
in Y so that y 7→ f(x, y) is not quasi-convex on Y .

For the compact set D = [0, 2], since

−1 = inf
y∈Y

sup
x∈X\D

f(x, y) < inf
y∈Y

sup
x∈X

f(x, y) = 0,

we know that the assumption (3) of Theorem 2 is satisfied for the compact set D.
Therefore, all the hypotheses of Theorem 2 are satisfied so that we have

sup
x∈X

inf
y∈Y

f(x, y) = inf
y∈Y

sup
x∈X

f(x, y) = 0.

Note that since the domain of f is not compact and the map y 7→ f(x, y) is not
quasi-convex on Y , the previous minimax theorems in [4,6,10,12,14,15] can not be

applied for this function f .
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From the Examples 2 and 3, we finally propose the following question

Question.

(i) In the assumption (2) of Theorem 2 (and Theorem B), can the convexlike

assumption on “y 7→ f(x, y)” be relaxed to the weak convexlike condition

on Y ?

(ii) In TheoremA, can the concave assumption (1) on “x 7→ f(x, y)” be relaxed to
the quasi-concave condition, and the convex assumption (2) on “y 7→ f(x, y)”
be relaxed to the (weak) convexlike condition?
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1. A. Borgmér, M. Horváth and I. Joó, Minimax theorem and convexity, Mathematikai

Lapok, 34 (1987), 149-170.

2. J. M. Borwein and D. Zhuang, On Fan’s minimax theorem, Math. Prog., 34 (1986),

232-234.

3. K. Fan, Fixed point and minimax theorems in locally convex topological linear spaces,

Proc. Nat. Acad. Sci. U.S.A., 38 (1952), 121-126.

4. K. Fan, Minimax theorems, Proc. Nat. Acad. Sci. U.S.A., 39 (1953), 42-47.
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