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SINGULAR INTEGRAL EQUATIONS AND

APPLICATIONS TO NONLINEAR CONJUGATE PROBLEMS

Jifeng Chu and Donal O’Regan

Abstract. In this paper, we establish the existence of multiple positive solu-

tions for singular integral equations. The proof is based on a general existence

principle established using a nonlinear alternative principle of Leray–Schauder

type and a well-known fixed point theorem in cones. As an application, we

consider higher order nonlinear singular conjugate boundary value problems.

Some recent results in the literature are generalized and improved.

1. INTRODUCTION

The pioneering paper of Taliaferro [18] for Dirichlet problems, and the paper of

Lazer and Solimini [13] for periodic problems, motivated the study of singular dif-

ferential equations. These equations has attracted the attention of many researchers

over the last few decades [5, 6, 8, 10, 17]. Usually, in the literature, the proof is

based on variational methods [3], or topological methods. In particular, the method

of upper and lower solutions, degree theory, some fixed point theorems in cones for

completely continuous operators and Schauder’s fixed point theorem are the most

relevant tools [4, 5, 9, 14, 19, 20].

The following integral equation

(1.1) x(t) =
∫ 1

0

G(t, s)f(s, x(s) + γ(s))ds,
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arises in the study of singular periodic problems [6], here f : [0, 1] × (0,∞) →
[0,∞) is continuous and γ ∈ C[0, 1]. As a result, the nonlinear term f may be
singular as its second variable tends to zero. When γ ≡ 0, we have

(1.2) x(t) =
∫ 1

0
G(t, s)f(s, x(s))ds.

We refer the reader to [7, 12, 15] for some related works for (1.2). In this paper, we

establish the existence of multiple positive solutions for singular integral equations

(1.1). The proof is based on a general existence principle established using a

nonlinear alternative principle of Leray–Schauder type and a well-known fixed point

theorem in cones.

The paper is organized as follows. In Section 2, we state some known results.

In Section 3, we state and prove the main results of this paper. As an application,

in Section 4, we consider the higher order singular conjugate problem

(1.3)





(−1)n−px(n)(t) = f(t, x(t)) + e(t), 0 < t < 1,

x(i)(0) = 0, 0 ≤ i ≤ p− 1,

x(i)(1) = 0, 0 ≤ i ≤ n− p− 1,

with n ≥ 2, 1 ≤ p ≤ n− 1. In the new results e does not need to be positive, and
therefore we generalize and improve some results contained in [1, 2].

In this paper, let us denote by ω∗ and ω∗ the essential supremum and infimum
of a given function ω ∈ L1[0, 1], if they exist. Given ψ ∈ C[0, 1], we write ψ � 0
if ψ(t) ≥ 0 for all t ∈ [0, 1] and it is positive in a set of positive measure.

2. PRELIMINARIES

Consider the integral equation

(2.1) x(t) =
∫ 1

0
k(t, s)g(s, x(s) + γ(s))ds+ u(t),

where g : [0, 1]× R → R is a Lq− Carathéodory function, by this we mean: (i)

the map x → g(t, x) is continuous for a.e. t ∈ [0, 1], (ii) the map t → g(t, x) is
measurable for all x ∈ R, (iii) for any r > 0, there exists hr ∈ Lq[0, 1] such that
|x| ≤ r implies |g(t, x)| ≤ hr(t) for a.e. t ∈ [0, 1].

Theorem 2.1. [16]. Let 1 ≤ p ≤ ∞ be a constant and q be such that 1
p+ 1

q = 1.
Suppose that u, γ ∈ C[0, 1] and

(1) kt(s) = k(t, s) ∈ Lp[0, 1] for each t ∈ [0, 1], and the map t → kt is

continuous from [0, 1] to Lp[0, 1],
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(2) g : [0, 1]× R → R is a Lq− Carathéodory function.

(I) Assume that there is a constantM > 0, independent of λ, with

‖x‖ = sup
0≤t≤1

|x(t)| 6= M

for any solution x ∈ C[0, 1] to

x(t) = λ

∫ 1

0
k(t, s)g(s, x(s) + γ(s))ds+ u(t),

for each λ ∈ (0, 1]. Then (2.1) has at least one solution x ∈ C[0, 1]
with ‖x‖ ≤M.

(II) Assume that there exists h ∈ Lq[0, 1] such that |f(t, x)| ≤ h(t) for a.e.
t ∈ (0, 1) and x ∈ R. Then (2.1) has a solution.

The following well-known fixed point theorem in cones can be found in [11].

Theorem 2.2. Let X be a Banach space and K (⊂ X) be a cone. Assume
that Ω1, Ω2 are open bounded subsets of X with 0 ∈ Ω1 and Ω1 ⊂ Ω2. Let

T : K ∩ (Ω2\Ω1) → K be a continuous and compact operator such that either

(i) ‖Tx‖ ≥ ‖x‖, x ∈ K ∩ ∂Ω1 and ‖Tx‖ ≤ ‖x‖, x ∈ K ∩ ∂Ω2, or

(ii) ‖Tx‖ ≤ ‖x‖, x ∈ K ∩ ∂Ω1 and ‖Tx‖ ≥ ‖x‖, x ∈ K ∩ ∂Ω2.

Then T has a fixed point in K ∩ (Ω2\Ω1).

Theorem 2.3. Let X be a Banach space and K a cone in X . Assume Ω1, Ω2

are open bounded subsets of X with Ω1
K 6= ∅, Ω1

K ⊂ Ω2
K . Let

S : Ω2
K → K

be a continuous and completely continuous operator such that

(i) x 6= λSx for λ ∈ [0, 1) and x ∈ ∂KΩ1, and

(ii) there exists υ ∈ K\{0} such that x 6= Sx + λυ for all x ∈ ∂KΩ2 and all

λ > 0.

Then S has a fixed point in Ω2
K \ Ω1

K .

3. MAIN RESULTS

In this section we always assume that f : [0, 1]×(0,∞)→ [0,∞) is continuous
and G(t, s) is measurable for each t ∈ [0, 1].
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Theorem 3.1. Suppose that γ ∈ C[0, 1] with γ∗ ≥ 0. Furthermore, assume that

(H1) there exists κ ∈ L1[0, 1], M0 ≥ 1, a ∈ C[0, 1] such that κ(s) ≥ 0 for a.e.
s ∈ [0, 1], a(t) > 0 for a.e. t ∈ [0, 1], and

a(t)κ(s) ≤ G(t, s) ≤M0κ(s), for all t ∈ [0, 1] and a.e s ∈ [0, 1],

(H2) for each constant L > 0, there exists a continuous function φL � 0 such that
f(t, x) ≥ φL(t) for all t ∈ [0, 1] and x ∈ [−L, L],

(H3) there exist continuous, non-negative functions g(x) and h(x) such that

0 ≤ f(t, x) ≤ g(x) + h(x) for all (t, x) ∈ [0, 1]× (0,∞),

and g(x) > 0 is non-increasing and h(x)/g(x) is non-decreasing in x,
(H4) there exists a positive number r such that

{
1 +

h(r + γ∗)
g(r+ γ∗)

}
A∗ < r, where A(t) =

∫ 1

0
G(t, s)g

(
a(s)
M0

r + γ∗

)
ds,

(H5)
∫ 1

0
κ(s)g

(
a(s)

∫ 1

0
κ(τ)φr+γ∗(τ)dτ + γ∗

)
ds <∞ and the map t→ ψ1

t is

continuous from [0, 1] to L1[0, 1], here

ψ1
t (s) = G(t, s)g

(
a(s)

∫ 1

0
κ(τ)φr+γ∗(τ)dτ + γ∗

)
.

Then (1.1) has at least one positive solution x with 0 < ‖x‖ < r.

The existence is proved using Theorem 2.1, together with a truncation technique.

Since (H4) holds, we can choose n0 ∈ {1, 2, · · ·} such that
{

1 +
h(r + γ∗)
g(r + γ∗)

}
A∗ +

1
n0

< r.

Let N0 = {n0, n0 + 1, · · ·}. Fix n ∈ N0 and consider the family of integral

equations

(3.1) x(t) = λ

∫ 1

0
G(t, s)fn(s, x(s) + γ(s))ds+

1
n
,

where λ ∈ [0, 1] and

fn(t, x) =





f(t, x) if x ≥ 1
n
,

f(t, 1
n) if x ≤ 1

n
.
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We claim that any solution x of (3.1) for any λ ∈ [0, 1] must satisfy ‖x‖ 6= r.

Otherwise, assume that x is a solution of (3.1) for some λ ∈ [0, 1] such that ‖x‖ = r.
Then x(t) ≥ 1

n for t ∈ [0, 1]. Note that

(3.2) ‖x‖ ≤ 1
n

+ λM0

∫ 1

0
κ(s)fn(s, x(s) + γ(s))ds.

Hence, for all t ∈ [0, 1], we have

x(t) ≥ 1
n

+ λa(t)
∫ 1

0
κ(s)fn(s, x(s) + γ(s))ds

≥ 1
n

+
a(t)
M0

{
‖x‖ − 1

n

}

≥ a(t)
M0

‖x‖ =
a(t)
M0

r;

here we have used the fact that a(t) ≤M0 for all t ∈ [0, 1].
Thus we have from condition (H3), for all t ∈ [0, 1],

(3.3)

x(t) = λ

∫ 1

0
G(t, s)fn(s, x(s) + γ(s))ds+

1
n

= λ

∫ 1

0
G(t, s)f(s, x(s) + γ(s))ds+

1
n

≤
∫ 1

0
G(t, s)f(s, x(s) + γ(s))ds+

1
n

≤
∫ 1

0

G(t, s)g(x(s)+ γ(s))
{

1 +
h(x(s) + γ(s))
g(x(s) + γ(s))

}
ds+

1
n

≤
{

1 +
h(r + γ∗)
g(r + γ∗)

}∫ 1

0

G(t, s)g
(
a(s)
M0

r + γ∗

)
ds+

1
n

≤
{

1 +
h(r + γ∗)
g(r + γ∗)

}
A∗ +

1
n0
.

Therefore,

r = ‖x‖ ≤
{

1 +
h(r+ γ∗)
g(r+ γ∗)

}
A∗ +

1
n0
.

This is a contradiction and the claim is proved.

Now Theorem 2.1 guarantees that the integral equation

x(t) =
∫ 1

0
G(t, s)fn(s, x(s) + γ(s))ds+

1
n

(3.4)
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has a solution, denoted by xn, in Br = {x ∈ C[0, 1] : ‖x‖ ≤ r}. To see this, we
only need to apply Theorem 2.1 with p = 1, and note that for t, x ∈ [0, 1],

∫ 1

0
|G(t, s)−G(x, s)|ds

≤

∫ 1

0
|G(t, s)−G(x, s)|g

(
a(s)

∫ 1

0
κ(τ)φr+γ∗(τ)dτ + γ∗

)
ds

g
(
a∗
∫ 1
0 κ(τ)φr+γ∗(τ)dτ + γ∗

) .

Since xn(t) ≥ 1
n
> 0 for all t ∈ [0, 1], we have that xn is a positive solution of

x(t) =
∫ 1

0
G(t, s)f(s, x(s) + γ(s))ds+

1
n
.(3.5)

Next we claim that xn(t)+γ(t) have a uniform sharper lower bound, i.e., there
exists a function δ ∈ C[0, 1], independent of n, such that δ(t) > 0 for a.e. t ∈ [0, 1]
and,

(3.6) xn(t) + γ(t) ≥ δ(t), t ∈ [0, 1]

for all n ∈ N0. Since (H2) holds, there exists a continuous function φr+γ∗ � 0 such
that f(t, x) ≥ φr+γ∗(t) for all t ∈ [0, 1] and |x| ≤ r + γ∗. Since xn(t) + γ(t) ≤
r + γ∗, we have

xn(t) + γ(t) =
∫ 1

0

G(t, s)fn(s, xn(s) + γ(s))ds+ γ(t) +
1
n

=
∫ 1

0

G(t, s)f(s, xn(s) + γ(s))ds+ γ(t) +
1
n

≥
∫ 1

0
G(t, s)φr+γ∗(s)ds+ γ(t)

≥ a(t)
∫ 1

0
κ(s)φr+γ∗(s)ds+ γ∗

Then (3.6) holds with

δ(t) = a(t)
∫ 1

0

κ(s)φr+γ∗(s)ds+ γ∗.

In order to pass the solutions xn of the truncation equations (3.5) to that of the

original equation (1.1), we need the following fact

(3.7) {xn}n∈N0 is an equicontinuous family on [0, 1].
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In fact, for t, τ ∈ [0, 1], we have

|xn(t)− xn(τ)|

=
∫ 1

0
|G(t, s)−G(τ, s)|f(s, xn(s) + γ(s))ds

≤
{

1 +
h(r + γ∗)
g(r+ γ∗)

}∫ 1

0
|G(t, s)−G(τ, s)|g

(
a(s)

∫ 1

0
κ(τ)φr+γ∗(τ)dτ+γ∗

)
ds.

Now (H5) guarantees that (3.7) holds.

Now the Arzela-Ascoli Theorem guarantees the existence of a subsequence N1

of N0 and a function x ∈ C[0, 1] such that {xn}n∈N1 , converges uniformly on [0, 1]
to x. Moreover, x satisfies δ(t) ≤ x(t) + γ(t) ≤ r + γ∗ for all t ∈ [0, 1]. Let
n→ ∞ through N1 in

xn(t) =
∫ 1

0
G(t, s)f(s, xn(s) + γ(s))ds+

1
n

and use the Lebesgue dominated convergence theorem to deduce that

x(t) =
∫ 1

0
G(t, s)f(s, x(s) + γ(s))ds.

Therefore, x is a positive solution of (1.1) and satisfies 0 < ‖x‖ ≤ r. Finally it
is easy to see that |x| < r. In fact, if |x| = r, then following essentially the same

argument from (3.2)-(3.3) will yield a contradiction.

Remark 3.2. From the proof of Theorem 3.1, it is easy to see that we do not

need condition (H2) if γ∗ > 0, because we can choose δ ≡ γ∗ in (3.6). Moreover,
in this case (H5) can be replaced by

(H̃5)

∫ 1

0

κ(s)ds < ∞ and the map t → Gt = G(t, s) is continuous from [0, 1] to

L1[0, 1].

Corollary 3.3. Assume that (H1) and γ∗ ≥ 0. Suppose further that there exist
α > 0, 0 ≤ β < 1 such that

(G1) 0 ≤ 1
xα

≤ f(t, x) ≤ 1
xα

+ xβ, for all t ∈ [0, 1].

(G2)

∫ 1

0
κ(s)a−α(s)ds < ∞, and the map t → ψ̃t is continuous from [0, 1] to

L1[0, 1], here ψ̃t(s) = G(t, s)a−α(s).
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Then (1.1) has at least one positive solution.

Proof. We will apply Theorem 3.1. Let

φL(t) =
1
Lα

, g(x) =
1
xα
, h(x) = xβ .

Then (H2) and (H3) are immediately satisfied. Moreover, conditions (H4) and (H5)

become

(3.8)
(
1 + (r+ γ∗)α+β

)
max
t∈[0,1]

∫ 1

0
G(t, s)

(
a(s)
M0

r + γ∗

)−α

ds < r

and

(3.9)

∫ 1

0
κ(s)

(
a(s)

(r+γ∗)α

∫ 1

0
κ(τ)dτ+γ∗

)−α

ds <∞

for some r > 0. Notice (3.9) is clearly satisfied since (G2) holds and γ∗ ≥ 0.
Moreover, the map ψ1

t in (H5) is continuous from [0,1] to L
1[0, 1] since, for t, x ∈

[0, 1], we have

∫ 1

0
|ψ1

t (s)−ψ1
x(s)|ds ≤

∫ 1

0
|G(t, s)−G(x, s)|

(
a(s)

(r+γ∗)α

∫ 1

0
κ(τ)dτ+γ∗

)−α

ds

≤

(
(r+ γ∗)α

∫ 1
0 κ(τ)dτ

)α ∫ 1

0
|G(t, s)−G(x, s)|a−α(s)ds,

here we use the fact that the map t→ ψ̃t is continuous from [0, 1] to L1[0, 1].
On the other hand, one may easily verify that (3.8) is satisfied if

(3.10)
(
1 + (r + γ∗)α+β

)
max
t∈[0,1]

∫ 1

0
G(t, s)a−α(s)ds <

rα+1

Mα
0

since γ∗ ≥ 0. Now since α > 0, 0 ≤ β < 1, we can choose r > 0 large enough
such that (3.10) is satisfied.

Theorem 3.4. Suppose that (H1), (H3), (H4) are satisfied and γ ∈ C[0, 1] with
γ∗ ≥ 0. Furthermore, assume that
(H6) there exist continuous, non-negative functions g1(x) and h1(x) such that

f(t, x) ≥ g1(x) + h1(x) for all (t, x) ∈ [0, 1]× (0,∞),

and g1(x) > 0 is non-increasing and h1(x)/g1(x) is non-decreasing in x;
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(H7) there exists a positive number r̃ > r and t0 ∈ [0, 1] such that a(t0) > 0 and

a(t0)g1(r̃+ γ∗)
∫ 1

0

κ(s)





1 +
h1

(
a(s)
M0

r̃ + γ∗

)

g1

(
a(s)
M0

r̃ + γ∗

)




ds ≥ r̃;

(H8)

∫ 1

0
κ(s)g

(
a(s)
M0

r+ γ∗

)
ds < ∞ and the map t → ψ2

t is continuous from

[0, 1] to L1[0, 1]; here ψ2
t (s) = G(t, s)g

(
a(s)
M0

r+ γ∗

)
.

Then (1.1) has a solution x̃ with r < ‖x̃‖ ≤ r̃.

Proof. To show the existence of x̃, we will use Theorem 2.3. Define

(3.11) K =
{
x ∈ C[0, 1] : x(t) ≥ a(t)

M0
‖x‖ for t ∈ [0, 1]

}
.

Clearly K is a cone of C[0, 1]. Let

Ω1 = {x ∈ C[0, 1] : ‖x‖ < r}, Ω2 = {x ∈ C[0, 1] : ‖x‖ < r̃}.

Next let T : K ∩ (Ω2\Ω1) → C[0, 1] be defined by

(3.12) Tx(t) =
∫ 1

0
G(t, s)f(s, x(s) + γ(s))ds.

First we show that T is well defined. To see this note that if x ∈ K ∩ (Ω2\Ω1),
then r ≤ ‖x‖ ≤ r̃ and x(t) ≥ a(t)

M0
‖x‖ ≥ a(t)

M0
r. Therefore,

f(t, x(t) + γ(t)) ≤ g(x(t) + γ(t)) + h(x(t) + γ(t))

≤ g

(
a(t)
M0

r + γ∗

){
1 +

h(r̃+ γ∗)
g(r̃+ γ∗)

}
.

This inequality together with condition (H8) guarantees that T : K ∩ (Ω2\Ω1) →
C[0, 1].

Next we show that T maps K ∩ (Ω2\Ω1) into K. If x ∈ K ∩ (Ω2\Ω1), then
for t ∈ [0, 1] we have

Tx(t) ≤M0

∫ 1

0

κ(s)f(s, x(s) + γ(s))ds

and

Tx(t) ≥ a(t)
∫ 1

0
κ(s)f(s, x(s) + γ(s))ds.
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This implies that Tx(t) ≥ a(t)
M0

‖Tx‖, i.e., Tx ∈ K.
Now we show T : K∩(Ω2\Ω1) → K is continuous. Let xn, x ∈ K∩(Ω2\Ω1)

with ‖xn − x‖ → 0 as n → ∞. Of course r ≤ ‖xn‖ ≤ r̃, r ≤ ‖x‖ ≤ r̃, xn(t) ≥
a(t)
M0
r, x(t) ≥ a(t)

M0
r and so

xn(t) + γ(t) ∈
[
a(t)
M0

r + γ∗, r̃ + γ∗
]
, n ∈ {1, 2, . . .}, t ∈ [0, 1], and

x(t) + γ(t) ∈
[
a(t)
M0

r + γ∗, r̃ + γ∗
]
, t ∈ [0, 1].

Notice also that

ρn(s) = |f(s, xn(s) + γ(s))− f(s, x(s) + γ(s))| → 0 as n→ ∞ for s ∈ [0, 1]

and

ρn(s) ≤ 2g
(
a(s)
M0

r + γ∗

){
1 +

h(r̃ + γ∗)
g(r̃+ γ∗)

}
for s ∈ [0, 1].

Now these together with the Lebesgue dominated convergence theorem guarantee

that

‖Txn − Tx‖ ≤M0

∫ 1

0
κ(s)ρn(s)ds→ 0 as n→ ∞.

Hence T : K ∩ (Ω2\Ω1) → K is continuous. Finally we prove that T : K ∩
(Ω2\Ω1) → K is compact. In fact, for x ∈ K ∩ (Ω2\Ω1),

‖Tx‖ ≤M0

{
1 +

h(r̃ + γ∗)
g(r̃ + γ∗)

}∫ 1

0
κ(s)g

(
a(s)
M0

r + γ∗

)
ds

and for t, t′ ∈ [0, 1], we have

‖Tx(t)− Tx(t′)‖ ≤
{

1 +
h(r̃ + γ∗)
g(r̃ + γ∗)

}∫ 1

0
|G(t, s)−G(t′, s)|g

(
a(s)
M0

r + γ∗

)
ds.

Using condition (H8), the Arzela-Ascoli Theorem guarantees that T : K∩(Ω2\Ω1) →
K is compact.

Now we prove that

(3.13) ‖Tx‖ ≤ ‖x‖, ∀ x ∈ K ∩ ∂Ω1.
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In fact, for any x ∈ K ∩ ∂Ω1, we have for t ∈ [0, 1],

Tx(t) =
∫ 1

0
G(t, s)f(s, x(s) + γ(s))ds

≤
∫ 1

0
G(t, s)g(x(s) + γ(s))

{
1 +

h(x(s) + γ(s))
g(x(s) + γ(s))

}
ds

≤
{

1 +
h(r + γ∗)
g(r + γ∗)

}
sup

0≤t≤1

∫ 1

0
G(t, s)g

(
a(s)
M0

r + γ∗

)
ds

< r = ‖x‖.

Therefore, ‖Tx‖ ≤ ‖x‖, i.e., (3.13) holds.
Finally we prove that

(3.14) ‖Tx‖ ≥ ‖x‖, ∀ x ∈ K ∩ ∂Ω2.

In fact, for any x ∈ K ∩ ∂Ω2, we have

Tx(t0) =
∫ 1

0
G(t0, s)f(s, x(s) + γ(s))ds

≥ a(t0)
∫ 1

0
κ(s)g1(x(s) + γ(s))

{
1 +

h1(x(s) + γ(s))
g1(x(s) + γ(s))

}
ds

≥ a(t0)g1(r̃+ γ∗)
∫ 1

0
κ(s)





1 +
h1

(
a(s)
M0

+ γ∗

)

g1

(
a(s)
M0

+ γ∗

)




ds

≥ r̃ = ‖x‖.

This implies (3.14) holds.

It follows from Theorem 2.3, (3.13) and (3.14) that T has a fixed point K ∩
(Ω2\Ω1). Clearly, this fixed point is a positive solution of (1.1) satisfying r <
‖x‖ ≤ r̃.

Theorem 3.5. Suppose that (H1)-(H8) are satisfied and γ ∈ C[0, 1]with γ∗ ≥ 0.
Then (1.1) has two positive solution x, x̃ with 0 < ‖x‖ < r < ‖x̃‖ ≤ r̃.

4. APPLICATIONS

In this Section, we study the existence of positive solutions of the higher order

singular conjugate boundary value problems (1.3) using the new existence results

obtained in Section 3. As usual, by a positive solution, we mean a function x(t) ∈
C[0, 1] satisfying (1.3) and such that x(t) > 0 for all t ∈ (0, 1). Throughout this
section, we assume that
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(F) f : (0, 1)× (0,∞) → [0,∞) is continuous, e ∈ C(0, 1)∩ L1[0, 1].

Since e ∈ C(0, 1)∩ L1[0, 1], the linear problem

(4.1)





(−1)n−px(n)(t) = e(t), 0 < t < 1,

x(i)(0) = 0, 0 ≤ i ≤ p− 1,

x(i)(1) = 0, 0 ≤ i ≤ n− p− 1,

has a unique solution γ. In fact, γ : R → R can be written as

γ(t) =
∫ 1

0
(−1)n−pK(t, s)e(s)ds,

where K(t, s) is the Green’s function for





x(n)(t) = 0, 0 < t < 1,

x(i)(0) = 0, 0 ≤ i ≤ p− 1,

x(i)(1) = 0, 0 ≤ i ≤ n − p− 1.

The explicit formula for K(t, s) is

K(t, s) =
p−1∑

j=0

{
p−1−j∑

i=0

(
n − p+ i− 1

i

)
ti

}
tj(−s)n−j−1

j!(n− j − 1)!
(1− t)n−p

if 0 ≤ s ≤ t ≤ 1, whereas

K(t, s) = −
n−p−1∑

j=0

{
n−p−1−j∑

i=0

(
p+ i− 1

i

)
(1 − t)i

}
(t− 1)j(1− s)n−j−1

j!(n− j − 1)!
tp

if 0 ≤ t ≤ s ≤ 1. It is well known [1] that

(4.2) (−1)n−pK(t, s) ≥ 0, for (t, s) ∈ [0, 1]× [0, 1].

Using (4.2), an easy observation shows that γ∗ ≤ 0. Throughout this section,
we only consider the case γ∗ = 0. Suppose

(4.3)





(−1)n−px(n)(t) = f(t, x(t) + γ(t)), 0 < t < 1,

x(i)(0) = 0, 0 ≤ i ≤ p− 1,

x(i)(1) = 0, 0 ≤ i ≤ n − p− 1,
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has a nonnegative solution x satisfying x(t) + γ(t) > 0 for t ∈ (0, 1) and 0 <

|x| < r. Then y(t) = x(t) + γ(t) will be a nonnegative solution of (1.3) with
0 < |y − γ| < r since

(−1)n−py(n)(t) = (−1)n−px(n)(t) + (−1)n−pγ(n)(t)

= f(t, x(t) + γ(t)) + e(t)

= f(t, y(t)) + e(t).

For this reason, we only consider (4.3). One may readily verify that finding a

solution of (4.3) is equivalent to finding a solution of the integral equation

(4.4) x(t) =
∫ 1

0
(−1)n−pK(t, s)f(s, x(s) + γ(s))ds.

Lemma 4.1. [2] Suppose x ∈ Cn−1[0, 1]∩ Cn(0, 1) satisfies




(−1)n−px(n)(t) > 0, 0 < t < 1,

x(i)(0) = 0, 0 ≤ i ≤ p− 1,

x(i)(1) = 0, 0 ≤ i ≤ n− p− 1.

Then

x(t) ≥ tp(1 − t)p‖x‖, t ∈ [0, 1].

Theorem 4.2. Suppose that (H2), (H3), (H6), (F) are satisfied and γ∗ = 0.
Furthermore, assume that

(F1) there exists a constant K0>0 such that g(ab)≤K0g(a)g(b) for all a, b≥0,

(F2)

∫ 1

0
g(sp(1− s)n−p)ds <∞,

(F3) there exists a positive number r such that K0g(r)
{
1 + h(r+γ∗)

g(r+γ∗)

}
ν∗1 < r,

here ν1(t) =
∫ 1
0 (−1)n−pK(t, s)g(sp(1− s)n−p)ds,

(F4) there exists a positive number r̃ > r and t0 ∈ (0, 1) such that

tp0(1−t0)
n−pg1(r̃+γ∗)

∫ 1

0
(−1)n−pK(s, s)

{
1+

h1 (sp(1−s)n−pr̃+γ∗)
g1 (sp(1−s)n−pr̃+γ∗)

}
ds≥ r̃.

Then (1.3) has at least two nonnegative solution x, x̃ with x(t), x̃(t) > 0 for all
t ∈ (0, 1) and 0 < ‖x− γ‖ < r < ‖x̃− γ‖ ≤ r̃.
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Proof. We will apply Theorem 3.5. Let a(t) = tp(1 − t)n−p,M0 = 1 and

G(t, s) = (−1)n−pK(t, s), κ(s) = (−1)n−pK(s, s).

Then (H1) is satisfied. Now for the condition (H4) to be true, we need

(4.5)

{
1 +

h(r + γ∗)
g(r+ γ∗)

}
ν∗ < r,

where

ν(t) =
∫ 1

0
(−1)n−pK(t, s)g

(
sp(1− s)n−pr

)
ds.

If we use (F1) one sees that (4.5) is true since (F3) holds. Moreover, (F4) is the just

condition (H7). Finally (H5) and (H8) are satisfied since (F1) and (F2) hold and

also note if t, x ∈ [0, 1], we have
∫ 1

0
|ψ1

t (s) − ψ1
x(s)|ds

≤ K0g

(∫ 1

0
(−1)n−pK(τ, τ)φr+γ∗(τ)dτ

)

∫ 1

0
|K(t, s)−K(x, s)|g

(
sp(1− s)n−p

)
ds.

and

∫ 1

0
|ψ2

t (s) − ψ2
x(s)|ds≤ K0g(r)

∫ 1

0
|K(t, s)−K(x, s)|g

(
sp(1 − s)n−p

)
ds.

Next we select the following example to illustrate our results. Consider

(4.6)





(−1)n−px(n)(t) = x−α + µxβ + e(t), 0 < t < 1,

x(i)(0) = 0, 0 ≤ i ≤ p− 1,

x(i)(1) = 0, 0 ≤ i ≤ n − p− 1,

here α, β > 0, e ∈ C(0, 1)∩ L1[0, 1] and µ > 0 is a given parameter.

Corollary 4.3. Assume that α > 0, β ≥ 0 and γ∗ = 0. Suppose further that

(4.7) pα < 1, (n− p)α < 1,

(i) if β < 1, then (4.6) has at least one nonnegative solution for each µ > 0,
(ii) if β ≥ 1, then (4.6) has at least one nonnegative solution for each 0 < µ <

µ1, where µ1 is some positive constant,
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(iii) if β > 1, then (4.6) has at least two nonnegative solutions for each 0 < µ <

µ1.

Proof. We will apply Theorem 4.2. Note (H2) holds with φL(t) = L−α. Let

g(x) = g1(x) = x−α, h(x) = h1(x) = µxβ , K0 = 1.

Then (H3), (H6) and (F1) are satisfied. Since (4.7) holds, condition (F2) is also

satisfied. Now for (F3) to be satisfied we need

µ <
rα+1/ν∗2 − 1
(r + γ∗)α+β

for some r > 0, where

ν2(t) =
∫ 1

0
(−1)n−pK(t, s)s−αp(1− s)−α(n−p)ds.

Therefore (4.6) has at least one nonnegative solution for

0 < µ < µ1 := sup
r>0

rα+1/ν∗2 − 1
(r+ γ∗)α+β

.

Note that µ1 = ∞ if β < 1 and µ1 <∞ if β ≥ 1. We have (i) and (ii).
If β > 1, condition (F4) becomes

(4.8) µ ≥
r̃(r̃ + γ∗)α − tp0(1 − t0)n−p

∫ 1
0 (−1)n−pK(s, s)ds

tp0(1 − t0)n−p
∫ 1
0 (−1)n−pK(s, s) {sp(1 − s)n−pr̃ + γ∗}α+β ds

for some t0 ∈ (0, 1) and r̃ > 0. Since β > 1, the right-hand side goes to 0 as
r̃ → +∞. Thus, for any given 0 < µ < µ1, it is always possible to find a r̃ � r
such that (4.8) is satisfied. Thus, (4.6) has an additional nonnegative solution x̃.

This implies that (iii) holds.
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