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LINEAR 2-ARBORICITY OF THE COMPLETE GRAPH

Chih-Hung Yen and Hung-Lin Fu

Abstract. A linear k-forest is a graph whose components are paths with lengths

at most k. The minimum number of linear k-forests needed to decompose a
graph G is the linear k-arboricity of G and denoted by lak(G). In this paper,
we settle the cases left in determining the linear 2-arboricity of the complete
graph Kn. Mainly, we prove that la2(K12t+10) = la2(K12t+11) = 9t + 8 for
any t ≥ 0.

1. INTRODUCTION

Throughout this paper, all graphs considered are finite, undirected, loopless, and

without multiple edges.

A decomposition of a graph is a list of subgraphs such that each edge appears

in exactly one subgraph in the list. If a graph G has a decomposition G1, . . . , Gd,

thenwe say thatG can be decomposed intoG1, . . . , Gd orG1, . . . , Gd decompose G.

A complete graph is a graph whose vertices are pairwise adjacent; the complete

graph with n vertices is denoted by Kn. A linear k-forest is a graph whose com-

ponents are paths with lengths at most k. The linear k-arboricity of a graph G,
denoted by lak(G), is the minimum number of linear k-forests needed to decompose
G.

The notion of linear k-arboricity was defined by Habib and Peroche in [9]. It
is a natural generalization of edge coloring. Clearly, a linear 1-forest is induced by
a matching and la1(G) = χ′(G) which is the chromatic index of a graph G. It is
also a refinement of the concept of linear arboricity, introduced earlier by Harary

in [11], in which the paths have no length constraints.

In 1982, Habib and Peroche [10] made the following conjecture:
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Conjecture 1.1. If G is a graph with maximum degree ∆(G) and k ≥ 2, then

lak(G) ≤







∆(G) · |V (G)|
2

⌊
k·|V (G)|

k+1

⌋

 if ∆(G) = |V (G)| − 1 and




∆(G) · |V (G)|+ 1

2
⌊

k·|V (G)|
k+1

⌋

 if ∆(G) < |V (G)| − 1.

So far, quite a few results on the verification of this conjecture have been

obtained in the literature, especially for some graphs with particular properties, see

[1, 2, 3, 4, 5, 8, 12, 13]. Among them, Bermond et al. [1] determined the linear

2-arboricity of the complete graph Kn almost completely. They had the following

result:

Theorem 1.2. For n �≡ 10, 11 (mod 12), la2(Kn) =
⌈

n(n−1)

2� 2n
3 �

⌉
.

Later, Chen et al. [4] derived a similar result by using the ideas from latin

squares. They claimed that the following theorem is proved.

Theorem 1.3. la2(K3u) =
⌈

3(3u−1)
4

⌉
, la2(K3u+1) =

⌈
3(3u+1)

4

⌉
, and la2

(K3u+2) =
⌈

(3u+2)(3u+1)
2(2u+1)

⌉
except possibly if 3u + 1 ∈ {49, 52, 58}.

Unfortunately, their result mentioned in Corollary 4.7 of [4] that la2(K12t+11) =
9t + 9 is not coherent to the theorem they proved, the expected linear 2-arboricity
of K12t+11 is 9t + 8.

In this paper, we will prove that la2(K12t+10) = la2(K12t+11) = 9t+8 for any
t ≥ 0. Thus, the exact value of la2(Kn) is completely determined. Furthermore,
the results obtained are coherent with the corresponding cases of Conjecture 1.1.

2. PRELIMINARIES

First, we need some definitions. A graph G is m-partite if V (G) can be
partitioned into m independent sets called partite sets of G. When m = 2, we also
say that G is bipartite. A complete m-partite graph is an m-partite graph G such

that the edge uv ∈ E(G) if and only if u and v are in different partite sets. When

m ≥ 2, we write Kn1 ,n2,...,nm for the complete m-partite graph with partite sets of
sizes n1, n2, . . . , nm.

Let S = {1, 2, . . . , ν} be a set of ν elements. A latin square of order ν is a

ν × ν array in which each cell contains a single element from S, such that each
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element occurs exactly once in each row and exactly once in each column. A latin

square L = [�ij ] is idempotent if �ii = i for all 1 ≤ i ≤ ν, and commutative if
�ij = �ji for all 1 ≤ i, j ≤ ν. In [6], the following result has been mentioned.

Theorem 2.1. An idempotent commutative latin square of order ν exists if and

only if ν is odd.

An incomplete latin square of order ν, denoted by ILS(ν; b1, b2, . . . , bk), is a
ν × ν array A with entries from a set B of size ν, where Bi ⊆ B for 1 ≤ i ≤ k

with |Bi| = bi, and Bi ∩ Bj = ∅ for 1 ≤ i �= j ≤ k. Moreover,

1. each cell of A is empty or contains an element of B;

2. the subarrays indexed by Bi × Bi are empty (and called holes); and

3. the elements in row or column b are exactly those of B − Bi if b ∈ Bi, and

of B otherwise.

A partitioned incomplete latin square PILS(ν; b1, b2, . . . , bk) is an incomplete
latin square of order ν with b1+b2+· · ·+bk =ν. Figure 1 is an example of a com-
mutative PILS(8; 2, 2, 2, 2). It is worthy of noting that, Fu and Fu [7] proved that:

Theorem 2.2. For any k ≥ 3, a commutative partitioned incomplete latin
square PILS(2k; 2, 2, . . . , 2) exists.

Next, we state some properties of lak(G).

Fig. 1. A commutative PILS(8; 2, 2, 2, 2).

Lemma 2.3. If H is a subgraph of G, then lak(H) ≤ lak(G).

Lemma 2.4. If a graph G is the edge-disjoint union of two subgraphs G1 and

G2, then lak(G) ≤ lak(G1) + lak(G2).
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Lemma 2.5. lak(G) ≥ max

{⌈
∆(G)

2

⌉
,

⌈
|E(G)|⌊
k|V (G)|

k+1

⌋
⌉}
.

Lemmas 2.3 and 2.4 are evident by the definition of linear k-arboricity. Since
any vertex of a linear k-forest in a graph G has degree at most 2 and a linear k-forest
in G has at most

⌊
k|V (G)|

k+1

⌋
edges, we have Lemma 2.5.

3. MAIN RESULTS

In what follows, for convenience, we use an n × n array to represent a linear

k-forest decomposition of Kf ig.3n, n or Kn, which also shows an upper bound of

lak(Kn,n) or lak(Kn). Figure 2 is an example of K12,12 with la2(K12,12) ≤ 9.
The entry wij in row i and column j means that the edge uivj belongs to the linear

2-forest labelled bywij . In fact, la2(K12,12) = 9 since la2(K12,12) ≥
⌈

144

� 2·24
3 �

⌉
= 9

by Lemma 2.5.

Fig. 2. The array shows that la2(K12,12) ≤ 9.

As we have seen inW = [wij ], a number occurs in each row and each column at
most twice and furthermore if wij = wi′j′ where i �= i′ and j �= j ′, then wij′ �= wij

and wi′j �= wij . The condition on Kn is similar except the array W = [wij ] is
symmetric, i.e., wij = wji for all i �= j, and wii is empty for each i ∈ {1, 2, . . . , n}.

Now, we are ready to obtain the main results.
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Proposition 3.1. la2(K11) = 8.

Proof. We construct the array in Figure 3 to show that la2(K11) ≤ 8. On the

other hand, by Lemma 2.5, la2(K11) ≥
⌈

55

� 2·11
3 �

⌉
= 8.

Fig. 3. The array shows that la2(K11) ≤ 8.

Proposition 3.2. la2(K23) = 17.

Proof. It is clear that K23 is an edge-disjoint union of K12 ∪ K11 and K12,11.

First, we decompose (K12∪K11)−M into 8 linear 2-forests whereM is a matching

of size 3 inK12. Then, from the result la2(K12,12) = 9, we find a way to decompose
K12,11 ∪ G[M ] into 9 linear 2-forests where G[M ] is a subgraph of K23 induced

by M .

Hence, we obtain the array in Figure 4 which shows that la2(K23) ≤ 8+9 = 17

by Lemma 2.4. On the other hand, by Lemma 2.5, la2(K23) ≥
⌈

253

� 2·23
3 �

⌉
= 17.

Proposition 3.3. la2(Kn,n,n) =
⌈

3n
2

⌉
for any n ≥ 0.

Proof. Assume that the partite sets of Kn,n,n are V1 = {v1[1], v1[2], . . . , v1[n]},
V2 = {v2[1], v2[2], . . . , v2[n]}, and V3 = {v3[1], v3[2], . . . , v3[n]}. First, for all 1 ≤
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α �= β ≤ 3, we use the notation G(Vα, Vβ) to denote the subgraph of Kn,n,n

induced by Vα and Vβ. Then G(Vα, Vβ) is a complete bipartite graph Kn,n and it

is well-known that the edges of Kn,n can be partitioned into n perfect matchings.

Fig. 4. The array shows that la2(K23) ≤ 17.

Next, we find that the edges of a union of any two perfect matchings in

G(V1, V2), G(V2, V3), and G(V3, V1) respectively can produce 3 linear 2-forests
of Kn,n,n. Figure 5 shows an example of K7,7,7. Hence, la2(Kn,n,n) ≤ ⌈

n
2 · 3⌉

=⌈
3n
2

⌉
. On the other hand, by Lemma 2.5, la2(Kn,n,n) ≥ ⌈

3n
2

⌉
.

Proposition 3.4. la2(K35) = 26.

Proof. It is clear that K35 is an edge-disjoint union of K12 ∪ K12 ∪ K11 and

K12,12,11. First, we decompose (K12 ∪ K12 ∪ K11) − (M1 ∪ M2) into 8 linear
2-forests where M1 and M2 are matchings of size 3 in different K12’s. Then, from

the result la2(Kn,n,n) =
⌈

3n
2

⌉
in Proposition 3.3, we find a way to decompose
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K12,12,11 ∪ (G[M1]∪ G[M2]) into 18 linear 2-forests where G[M1] and G[M2] are
subgraphs of K35 induced by M1 and M2. Hence, we obtain the array in Figure 6

which shows that la2(K35) ≤ 8 + 18 = 26 by Lemma 2.4. On the other hand, by

Lemma 2.5, la2(K35) ≥
⌈

595

� 2·35
3 �

⌉
= 26.

Fig. 5. Three linear 2-forests in K7,7,7.

Proposition 3.5. la2(K59) = 44.

Proof. Since K59 is an edge-disjoint union of K20 ∪K19 ∪K20 and K20,19,20,

we first decompose (K20 ∪ K19 ∪ K20) − (E1 ∪ E2 ∪ E3) into 14 linear 2-forests
where E1, E3 are edge subsets of size 8 in different K20’s and E2 is an edge subset

of size 3 in K19.

Then, from the result la2(Kn,n,n) =
⌈

3n
2

⌉
in Proposition 3.3, we find a way to

decomposeK20,19,20∪(G[E1]∪G[E2]∪G[E3]) into 30 linear 2-forests whereG[E1],
G[E2], and G[E3] are subgraphs of K59 induced by E1, E2, and E3 respectively.

Hence, we obtain the array in Figure 7 which shows that la2(K59) ≤ 14+30 =
44 by Lemma 2.4, where B1, B2 are the arrays in Figure 8 and C, D1, D2, D3

are the arrays in Figure 9. Moreover, the arrays D1
T , D2

T , and D3
T are the

transposes of D1, D2, and D3 respectively. On the other hand, by Lemma 2.5,

la2(K59) ≥
⌈

1711

� 2·59
3 �

⌉
= 44.
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Fig. 6. The array shows that la2(K35) ≤ 26.

Fig. 7. A partition of a 59 × 59 array into nine subarrays.
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Fig. 8. Two subarrays B1 and B2 of the array in Figure 7.
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Fig. 9. Four subarrays C, D1, D2 and D3 of the array in Figure 7.



Linear 2-arboricity of the Complete Graph 283

Proposition 3.6. la2(K12t+11) = 9t + 8 for any t ≥ 3 and t �= 4.

Proof. We prove this proposition by using the techniques from latin squares

proposed by Chen et al. [4]. First, assume that t is odd. Then let the 23× 23 array
in Figure 4 be partitioned into four subarrays P, Q, QT , R as shown in Figure 10,

where P, Q, R are 12 × 12, 12 × 11, 11 × 11 arrays respectively, and QT is the

transpose of Q. Moreover, let the 12× 12 array in Figure 2 be denoted by W .

Fig. 10. Four subarrays of the array in Figure 4 or Figure 6.

From Theorem 2.1, we can find an idempotent commutative latin square of order

t. By using L = [�ij ] to denote this idempotent commutative latin square, we can
construct a (12t+11)× (12t+11) symmetric array as shown in Figure 11 to show
that la2(K12t+11) ≤ 9t + 8, where, for 1 ≤ x ≤ t,

Fig. 11. A (12t + 11)× (12t + 11) symmetric array.
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1. Bx is a 12 × 12 array;

2. the entry Bx(r, s) in Bx equals P (r, s) in P if P (r, s) ∈ {1, 2, . . . , 8};
3. Bx(r, s) = P (r, s) + (x − 1) · 9 if P (r, s) �∈ {1, 2, . . . , 8};
4. the 12× 12 array Cij = W + 8 + (�ij − 1) · 9, for 1 ≤ i, j ≤ t;

5. the 12× 11 array Dx = Q + (x − 1) · 9;
6. the 11× 11 array E = R; and

7. the arrays Cij
T and Dx

T are the transposes of Cij and Dx respectively.

Next, if t is even, then let the 35 × 35 array in Figure 6 be partitioned into
four subarrays P, Q, QT , R as shown in Figure 10, where P, Q, R are 24 × 24,
24× 11, 11× 11 arrays respectively, and QT is the transpose of Q. From Theorem

2.2, then we can find a commutative PILS(2k; 2, 2, . . . , 2) such that t = 2k. By
using L = [�ij] to denote this commutative PILS(2k; 2, 2, . . . , 2), we can construct
a (12t + 11) × (12t + 11) symmetric array as shown in Figure 12 to show that
la2(K12t+11) ≤ 9t + 8, where, for 1 ≤ x ≤ k,

Fig. 12. A (12t + 11) × (12t + 11) symmetric array.

1. Bx is a 24 × 24 array;
2. the entry Bx(r, s) in Bx equals P (r, s) in P if P (r, s) ∈ {1, 2, . . . , 8};
3. Bx(r, s) = P (r, s) + (x − 1) · 18 if P (r, s) �∈ {1, 2, . . . , 8};
4. the 12× 12 array Cij = W + 8 + (�ij − 1) · 9, for 1 ≤ i, j ≤ 2k;

5. the 24× 11 array Dx = Q + (x − 1) · 18;
6. the 11× 11 array E = R; and
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7. the arrays Cij
T and Dx

T are the transposes of Cij and Dx respectively.

On the other hand, by Lemma 2.5, la2(K12t+11) ≥
⌈

(12t+11)(12t+10)

2
⌊

2(12t+11)
3

⌋
⌉

= 9t + 8.

This concludes the proof.

Corollary 3.7. la2(K12t+10) = la2(K12t+11) = 9t + 8 for any t ≥ 0.

Proof. By Propositions 3.1 ∼ 3.2 and 3.4 ∼ 3.6, la2(K12t+11) = 9t + 8
for any t ≥ 0. Moreover, from Lemmas 2.3 and 2.5, 9t + 8 = la2(K12t+11) ≥
la2(K12t+10) ≥

⌈
(12t+10)(12t+9)

2
⌊

2(12t+10)
3

⌋
⌉

= 9t + 8 for any t ≥ 0.

Finally, we conclude this paper by the following theorem, which provides the

answers of the unsolved cases in Theorem 1.2. Furthermore, the results obtained

on la2(Kn) are coherent with the corresponding cases of Conjecture 1.1.

Theorem 3.8. la2(Kn) =
⌈

n(n−1)

2� 2n
3 �

⌉
for n ≡ 10, 11 (mod 12).

Proof. We can assume that n = 12t + 10 or n = 12t + 11 for any t ≥ 0.

Since

⌈
n(n−1)

2� 2n
3 �

⌉
= 9t + 8 when n = 12t + 10 or n = 12t + 11 for any t ≥ 0, from

Corollary 3.7, then the assertion holds.
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