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EXISTENCE THEOREM ON VARIATIONAL INEQUALITY PROBLEM
WITH LOCAL INTERSECTION PROPERTY

Hemant Kumar Nashine

Abstract. Existence theorem for a variational inequality problem with local
intersection property has been obtained in topological space by relaxing the
property of open inverse values from the result of Vetrivel and Nanda [7].

1. INTRODUCTION

Interesting and valuable results as application of fixed point theorem are studied
extensively in the field of variational inequality.

In this direction, an existence theorem for a variational inequality problem was
discussed by Gwinner [2], which is, an infinite dimensional version of Walras excess
demand theorem (see also Zeidler [9]), as follows:

Theorem 1.1. Let A and B be nonempty compact convex subsets of Hausdorff
locally convex topological vector spaces X and Y , respectively. Let f : A×B → R

be continuous. Let T : A → B be a multifunction. Suppose that

(i) for each y ∈ B, {x ∈ A : f(x, y) < t} is convex for all t ∈ R,
(ii) T is an upper semicontinuous multifunction with nonempty compact convex

values. Then there exists x0 ∈ A and y0 ∈ T (x0) such that f(x0, y0) ≤
f(x, y0) for all x ∈ A.

Later, in 2000, Vetrivel and Nanda [7] proved the same result for multifunc-
tion with open inverse values in the setting of same space in the line of Trafdar
and Yuan [6]. To prove the result, they used results due to Lassonde [4] and
Horwarth [3].
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Recently, Ding [1] proved a result in which he used local intersection property
in place of property of open inverse values.

Inspired from the results of Ding [1], Vetrivel and Nanda [7], and others, an
existence theorem for a variational inequality without open inverse values in topo-
logical space and the result of Lassonde [4], for Kakutani factorizable multifunction
has been established. The main tool which here used to prove the result are due to
Horvath [3] and Shioji [5].

2. PRELIMINARIES

In the material to be presented here, the following definitions have been used:
Let X and Y be non-empty sets. The collection of all non-empty subsets of X

is denoted by 2X .
A multifunction or set-valued function from X to Y is defined to be a function

that assigns to each elements of X a non-empty subset of Y .
If T is a multifunction from X to Y , then it is designated as T : X → 2Y , and

for every x ∈ X , T x is called a value of T .
For A ⊆ X , the image of A under T , denoted by T (A), is defined as

T (A) =
⋃
x∈A

T x

For B ⊆ Y , the preimage or inverse image of B under T , denoted by T−1(B), is
defined as

T −1 = {x ∈ X : T x ∩ B �= ∅}

If y ∈ Y , then T −1(y) is called a inverse value of T . If it is open, then it called
open inverse value.

A multivalued function T : X → 2Y is upper semicontinuous (usc)(lower
semicontinuous(lsc)) if T −1(B) = {x ∈ X : T x ∩ B �= ∅} is closed(open) for each
closed (open) subset B of Y . If T is both usc and lsc, then it is continuous .

A multifunction T : X → 2Y is said to be a compact multifunction, if T (X ) is
contained in a compact subset of Y .

It is known that if T : X → 2Y is an upper semicontinuous multifunction with
compact values, then T (K) is compact in Y whenever K is compact subset of X .

Let ∆n be the standard n−dimensional simplex with vertices e0, e1, e2, ...en.
If Jn = {0, 1, 2, ..., n}. We denote by ∆J = Co{ej : j ∈ J } for any non −
empty subset J of Jn.

A topological space X is said to be contractible, if the identity mapping IX
of X is homotopic to a constant function. A topological space is said to be an
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acyclic space if all of its reduced Cech homology groups over the rationals vanish.
In particular, any contractible space is acyclic, and hence, any convex or star-shaped
set in a topological vector space is acyclic. For a topological space X , we shall
denote by ka(X ), the family of all compact acyclic subsets of X.

Following results due to Horvath [3] and Shioji [5, Lemma 1] are needed in the
sequel:

Theorem 2.1. [3]. Let X be a topological space. For any nonempty subset J
of {0, 1, ..., n}, let ΓJ be a nonempty contractible subset of X . If ∅ �= J ⊂ J ′ ⊂
{0, 1, .., n} implies ΓJ ⊂ ΓJ ′ , then there exists a single valued continuous function
f : ∆n → X such that g[∆J ] ⊆ ΓJ for all nonempty subset J of {0, 1, .., n}.

Theorem 2.2. [5]. Let ∆n be an n−dimensional simplex with the Euclidean
topology and X a compact topological space. Let φ : X → ∆ n be a single-valued
continuous mapping and T : ∆n → ka(X ) be a upper semicontinuous set-valued
mapping. Then there exists a point x0 ∈ ∆n such that x0 ∈ φ(T (x0)).

Besides Theorem 2.1 and Theorem 2.2, the following local intersection property
Theorem 2.2 due to Ding [1, Lemma 1] will also be used. Before starting it, the
following notations have been recalled [1].

Let X and Y be two topological spaces and T : X → 2Y ∪ {∅} a set-valued
mapping. T is said to have local intersection property, if for each x ∈ X with
T (x) �= ∅, there exists an open neighborhood N (x) of x such that

⋂
z∈N (x) T (z) �=

∅. It is not hard to see that each map with open inverse property has the local
intersection property but the example given in [8, p. 63], shows that the converse
is not true.

Theorem 2.3. [1]. Let X and Y be topological spaces and T : X → 2Y a
set-valued mapping. Then the following conditions are equivalent:

(i) T has the local intersection property,
(ii) for each y ∈ Y , T −1(y) contain a open set Oy ⊂ X (which may be empty)

such that X =
⋃

y∈Y Oy,

3. MAIN RESULT

Theorem 3.1. Let A as in Theorem 1.1 and B be an arbitrary subset of
topological spaces Y . Let f : A× B → R be continuous. Let T : A → B be a
multifunction. Suppose that

(i) for each y ∈ B, {x ∈ A : f(x, y) < t} is convex for all t ∈ R;
(ii) T has local intersection property;
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(iii) for every open set U ⊂ A, the set ∩{T u : u ∈ U} is empty or contractible;
(iv) T (A) is compact and contractible.

Then there exist x0 ∈ A and y0 ∈ T (x0) such that f(x0, y0) ≤ f(x, y0) for all
x ∈ A.

Proof. By (ii) and Theorem 2.3, for each y ∈ T (A), there exists an
open set Oy ∈ T (A) (which may be empty) such that O† ∈ T −∞(†) and A =⋃

†∈T (A) O† =
⋃

†∈T (A) T −∞(†). Since A is compact, these exists a finite set

{y0, y1, y2, ...., yn} ⊂ T (A) such that A =
⋃\

〉=′O†〉 . Now, for each nonempty
subset J of N = {′,∞,∈, ....\}, define

ΓJ =

{
∩{T (x) : x ∈

⋂
j∈J Oyj}, if

⋂
j∈J Oyj �= ∅,

T (A) , otherwise

Evidently, if x ∈
⋂

j∈J Oyj ⊂
⋂

j∈J T −1(yj), then {yj : j ∈ J } ⊂ T (x). By
(iii), each ΓJ is nonempty contractible and it is clear that ΓJ ⊆ ΓJ ′ , whenever
∅ �= J ⊂ J ′ ⊂ N .

By Theorem 2.1, there exists a single valued continuous function f : ∆n →
T (A) such that f [∆J ] ⊆ ΓJ , for all φ �= J ⊂ N .

Let {φ0, φ1, ..., φn} be a continuous partition of unity subordinated to the open
covering {Oyi}i∈N i.e., for each i ∈ N , φi : A → [0, 1] is continuous; {x ∈ A :
φi(x) �= 0} ⊂ Oyi ⊂ T −1(yi) such that

∑n
i=0 φi(x) = 1 for all x ∈ A.

Define φ : A → ∆n by

φ(x) = (φ0(x), φ1(x), φ2(x), ..., φn(x)) for all x ∈ A.

Then, φ is continuous. Then, φ(x) ⊂ ∆J (x) for all x ∈ A, where J (x) : {j ∈ N :
φj(x) �= 0}. Therefore, we have

(3.1) f(φ(x)) ∈ f(∆J (x)) ⊆ ΓJ (x) ⊆ T (x), for all x ∈ A.

Consider G : T (A) → A defined by G(y) = {z ∈ A : f(z, y) ≤ f(w, y) for all
w ∈ A}. For each y ∈ T (A), G(y)is nonempty since f assumes its minimum on
the compact set A. Also, it is closed and hence compact. Further, G(y) is convex.
Indeed, let z1 and z2 ∈ A be such that f(zi, y) ≤ f(w, y) for all w ∈ A and i = 1, 2.
Since any convex or star-shaped set in a topological vector space is acyclic. So, G(y)
is acyclic. By the assumption on f, f(λz1 +(1−λ)z2, y) ≤ f(w, y) for all w ∈ A.
Since f is continuous, the graph of G, Gr(G) = {(y, z) : y ∈ T (A), z ∈ G(y)}
is a closed subset of the compact set T (A) ×A. Then it follows that G is upper
semicontinuous.
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Thus, by the above discussion G is upper semicontinuous with nonempty com-
pact acyclic values and f : ∆n → T (A) is continuous, it follows that the composi-
tion mapping G ◦ f : ∆ → A is also upper semicontinuous with nonempty compact
acyclic values. Since φ : A → ∆n is continuous and hence, Theorem 2.2 guarantees
the existence of a point x0 ∈ ∆n such that x0 ∈ φ(G ◦ f(x0)). Let y0 ∈ f(x0),
then we have

y0 = f(x0) ∈ f(φ(A ◦ f(x0))) = f(φ(G(y0))),

so that there exists x0 ∈ G(y0) such that y0 = f(φ(x0)) ⊂ T (x0). This completes
the proof.

Next, recall the following remark given by Ding [1]:

Remark 3.2. [1]. If F−1(y) is open in A for each x ∈ A with F (x) �= ∅, we
take y ∈ F(x) and let N (x) = F−1(y). Then N (x) is a open neighbourhood of x
and y ∈

⋂
z∈N (x) F (z). Hence, F has the local intersection property.

With the Remark 3.2 and the fact that any nonempty convex or star-shaped
subset of a topological space is contractible [1], Theorem 3.1, in turn, generalizes
the result of Vetrivel and Nanda [7].
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