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PARALLEL SURFACES IN THREE-DIMENSIONAL
LORENTZIAN LIE GROUPS

Giovanni Calvaruso and Joeri Van der Veken

Abstract. A three-dimensional homogeneous Lorentzian manifold is either
symmetric or locally isometric to a Lie group equipped with a left-invariant
Lorentzian metric [4]. We completely classify surfaces with parallel sec-
ond fundamental form in all non-symmetric homogeneous Lorentzian three-
manifolds. Interesting differences arise with respect to the Riemannian case
studied in [11, 12].

1. INTRODUCTION

Let (N, g) be a pseudo-Riemannian manifold. A submanifold M of (N, g) is
said to be parallel if its second fundamental form is covariantly constant and so,
the extrinsic invariants of M do not vary with the point. The study of parallel sub-
manifolds of a given pseudo-Riemannian manifold (N, g), is an interesting problem
which enriches our knowledge and understanding of its geometry. Note that parallel
submanifolds are a natural extension of totally geodesic submanifolds, for which
the second fundamental form vanishes identically.

In the Riemannian framework, several authors studied parallel and semi-parallel
submanifolds, see for example [9, 1, 2]. A good survey can be found in [13].
In this context, a special case arises naturally, namely, parallel surfaces of three-
dimensional homogeneous Riemannian manifolds. These spaces represent a natural
generalization of three-dimensional real space forms and were completely classified
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in [15]. Curves and surfaces of a three-dimensional homogeneous Riemannian
manifold of non-constant sectional curvature were investigated first in [10] and a
complete classification of parallel surfaces was obtained in the works [11, 12] by
the second author and J. Inoguchi.

In general, it is worthwhile to investigate whether and to what extent, results
valid in Riemannian geometry can be extended to the pseudo-Riemannian case and in
particular, to Lorentzian geometry. The study of parallel submanifolds in Lorentzian
settings is rather recent and mainly limited to the case of an ambient space of constant
sectional curvature (see for example [3, 14]). A brief description of the state of the
art is given in [13]. Moreover, the second author and B.-Y. Chen classified parallel
surfaces in three- and four-dimensional Lorentzian space forms in [8].

Recently, the first author studied homogeneous Lorentzian three-manifolds, prov-
ing that such a space is either symmetric or isometric to a three-dimensional Lie
group equipped with a left-invariant Lorentzian metric in [4], and providing a full
classification. The curvature of homogeneous Lorentzian three-manifolds was then
completely described in [5].

In this paper, we shall give the complete classification of parallel surfaces in non-
symmetric homogeneous Lorentzian three-manifolds. The case of parallel surfaces
in symmetric Lorentzian three-spaces will be treated in a forthcoming paper [6].
The paper is organized in the following way. In Section 2 we collect some basic
facts concerning parallel surfaces of a three-dimensional Lorentzian manifold, the
classification of homogeneous Lorentzian three-spaces and algebraic restrictions to
the existence of a parallel surface. In Section 3 we provide the classification of
parallel surfaces of three-dimensional Lorentzian Lie groups and in Section 4 we
formulate some remarks and our conclusions.

2. PRELIMINARIES

2.1. On parallel surfaces

Let (N, g) be a three-dimensional homogeneous Lorentzian manifold and M a
surface in N . Throughout the paper, we assume that M is non-degenerate, that is,
the induced metric on M is non-degenerate. We will denote by ξ a fixed normal
vector field on the surface, with 〈ξ, ξ〉 = ε. Here, either ε = −1 or ε = 1, according
to the surface being either Riemannian or Lorentzian, respectively. We shall call ξ

a ε-unit normal (vector field).
Denote by ∇M and ∇ the Levi Civita connections of M and N , respectively.

Let X and Y denote vector fields tangent to M . The formula of Gauss gives a
decomposition of the vector field ∇XY into a tangent and a normal component
([7, 17]):

(2.1) ∇XY = ∇M
X Y + h(X, Y )ξ.
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This formula defines h, which is called the second fundamental form. If we define
the shape operator S associated to ξ by

(2.2) SX = −∇Xξ,

then at every point p ∈ M , S is a symmetric endomorphism of the tangent plane
TpM and

(2.3) 〈SX, Y 〉 = εh(X, Y ).

The well-known equations of Gauss and Codazzi are respectively given by

(2.4) 〈R(X, Y )Z, W 〉=〈RM(X, Y )Z, W
〉−ε(h(X, Z)h(Y, W )−h(Y, Z)h(X,W )),

(2.5) 〈R(X, Y )Z, ξ〉=ε((∇Mh)(Y, X, Z)−(∇Mh)(X, Y, Z)),

for X, Y, Z,W tangent to M , were R is the curvature tensor of the ambient space
N , taken with the sign convention

(2.6) R(X, Y ) = ∇[X,Y ] − [∇X ,∇Y ],

RM is the curvature tensor of the surface M and ∇Mh is defined by

(2.7) (∇Mh)(X, Y, Z) = X(h(Y, Z))− h(∇M
X Y, Z)− h(Y,∇M

X Z).

The surface M is said to be totally geodesic in N if h = 0 holds identically, parallel
if ∇Mh = 0 and semi-parallel if RM · h = 0, where

(2.8) (RM · h)(X, Y, Z,W ) = −h(RM (X, Y )Z, W )− h(Z, RM(X, Y )W ).

Finally, we say that M is totally umbilical in N if S is a scalar multiple of the
identity at every point. The following results can be easily obtained.

Lemma 1. Any parallel surface in a Lorentzian manifold is semi-parallel. A
surface in a three-dimensional Lorentzian manifold is semi-parallel if and only if
it is either flat or totally umbilical.

Proof. The fact that parallelism implies semi-parallelism can be proven as in
the Riemannian case. In fact, the condition of semi-parallelism is an integrability
condition for the condition of parallelism.

Now let M be a surface in a three-dimensional Lorentzian manifold N . Let
ξ be an ε-unit normal to M with associated shape operator S. Let {E1, E2} be
a pseudo-orthonormal basis for the tangent distribution to M , with 〈E1, E1〉 = 1,
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〈E1, E2〉 = 0 and 〈E2, E2〉 = −ε. Then, with respect to this basis, S takes the
form

S =

(
S11 S12

−εS12 S22

)
.

A straightforward computation shows that RM · h = 0 if and only if
S12

〈
RM (E1, E2)E1, E2

〉
= (S11 − S22)

〈
RM(E1, E2)E1, E2

〉
= 0. Hence we

obtain that either RM = 0 or S12 = S11 − S22 = 0. In the first case M is a flat
surface, in the second case the immersion is totally umbilical.

Lemma 2. Let M be a surface in a three-dimensional Lorentzian manifold,
ξ an ε-unit normal to M and {E1, E2} a pseudo-orthonormal frame field with
〈E1, E1〉 = 1, 〈E1, E2〉 = 0 and 〈E2, E2〉 = −ε, such that the shape operator
associated to ξ takes the form

S =

(
S11 S12

−εS12 S22

)
,

with respect to {E1, E2}. Then M is parallel if and only if

(2.9)




X(S11) = −2εS12

〈∇M
X E1, E2

〉
,

X(S12) = (S22 − S11)
〈∇M

X E1, E2

〉
,

X(S22) = 2εS12

〈∇M
X E1, E2

〉
,

for every tangent vector X .

As concerns the Gaussian curvature of a surface in a Lorentzian three-manifold,
using (2.3) and (2.4) we easily obtain the following.

Lemma 3. Let M be a surface in a Lorentzian manifold, ξ a ε-unit normal
to M with shape operator S and {E 1, E2} a pseudo-orthonormal tangent frame to
M . Then, the Gaussian curvature of M is given by

(2.10) K = ε(detS − 〈R(E1, E2)E1, E2〉).

2.2. On Lorentzian homogeneous three-manifolds

Homogeneous Lorentzian three-spaces (N, g) where classified by the first author
in [4]. Unless they are symmetric, they are Lie groups equipped with left-invariant
Lorentzian metrics and are classified in the following theorem.

Theorem 1. [4] Let (N, g) be a three-dimensional connected, simply connected,
complete homogeneous Lorentzian manifold. If (N, g) is not symmetric, then N =
G is a three-dimensional Lie group and g is left-invariant. Moreover,



Parallel Surfaces in Three-dimensional Lorentzian Lie Groups 227

there exists a pseudo-orthonormal frame field {e 1, e2, e3}, with e3 timelike, such
that the Lie algebra of G is one of the following.

• Type g1:

[e1, e2] = αe1 − βe3,

[e1, e3] = −αe1 − βe2,(2.11)

[e2, e3] = βe1 + αe2 + αe3, α �= 0.

In this case, G = O(1, 2) or G = SL(2, R) if β �= 0, while G = E(1, 1) if
β = 0.

• Type g2:

[e1, e2] = γe2 − βe3,

[e1, e3] = −βe2 + γe3,(2.12)

[e2, e3] = αe1, γ �= 0.

In this case, G = O(1, 2) or G = SL(2, R) if α �= 0, while G = E(1, 1) if
α = 0.

• Type g3:

[e1, e2] = −γe3,

[e1, e3] = −βe2,(2.13)

[e2, e3] = αe1.

The following Table 1 lists all the Lie groups G which admit a Lie algebra
g3, taking into account the different possibilities for α, β and γ:

Table 1.

G α β γ
O(1, 2) or SL(2, R) + + +
O(1, 2) or SL(2, R) + − −
SO(3) or SU(2) + + −

E(2) + + 0
E(2) + 0 −

E(1, 1) + − 0
E(1, 1) + 0 +

H3 + 0 0
H3 0 0 −

R ⊕ R ⊕ R 0 0 0
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• Type g4:

[e1, e2] = −e2 + (2η − β)e3,

[e1, e3] = −βe2 + e3,(2.14)

[e2, e3] = αe1, η = ±1.

The following Table 2 describes all Lie groups G admitting a Lie algebra g 4:

Table 2.

G α β

O(1, 2) or SL(2, R) �= 0 �= η

E(1, 1) 0 �= η

E(1, 1) < 0 η

E(2) > 0 η

H3 0 η

• Type g5:

[e1, e2] = 0,

[e1, e3] = αe1 + βe2,(2.15)

[e2, e3] = γe1 + δe2, α + δ �= 0, αγ + βδ = 0.

• Type g6:

[e1, e2] = αe2 + βe3,

[e1, e3] = γe2 + δe3,(2.16)

[e2, e3] = 0, α + δ �= 0, αγ − βδ = 0.

• Type g7:

[e1, e2] = −αe1 − βe2 − βe3,

[e1, e3] = αe1 + βe2 + βe3,(2.17)

[e2, e3] = γe1 + δe2 + δe3, α + δ �= 0, αγ = 0.

Lie algebras of types g1, g2, g3 and g4 correspond to unimodular groups,
whereas Lie algebras of types g5, g6 and g7 correspond to non-unimodular groups.
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Remark 1. In the list given in Theorem 1, we did not include the case when
there exists a linear mapping l from g to R, such that

(2.18) [x, y] = l(x)y − l(y)x,

for all x, y ∈ g. This case was already investigated by Nomizu [16], who proved
that any Lorentzian metric on a Lie group G, whose Lie algebra satisfies (2.18),
has constant sectional curvature, and this constant can be any real number (see
Theorem 1 of [16]). In particular, G is symmetric. So, this possibility is included
in the symmetric case.

We shall focus here our attention on proper homogeneous Lorentzian three-
manifolds. So, we shall drop the cases corresponding to Lorentzian space forms
and, more in general, to symmetric Lorentzian three-spaces. In [5], where the cur-
vature of homogeneous Lorentzian three-manifolds has been completely described,
the following classification results were proved.

Theorem 2. [5] Let (G, g) be a connected, simply connected three-dimensional
Lorentzian Lie group and g its Lie algebra. (G, g) has constant sectional curvature
if and only if one of the following cases occurs:

• g is described by (2.18),
• g is one of the following unimodular Lie algebras:

(a) g = g3 and either G = E(1, 1) with α− γ = β = 0, or G = E(2) with
α − β = γ = 0;

(b) g = g3 and G = O(1, 2) or SL(2, R) with α = β = γ �= 0;
(c) g = g4 and G = H3 with α = β − η = 0;

• g is one of the following non-unimodular Lie algebras:

(d) g = g5 with β + γ = 0 �= α = δ;
(e) g = g6 with either β −γ = 0 �= α = δ, or β − εα = 0 = γ− εδ (where

ε = ±1);
(f) g = g7 with either α = γ = 0 �= δ, or γ = 0 �= α = δ.

In particular, manifolds in the first case can have any constant sectional curvature,
we have flat spaces in cases (a), (c) and (f), positive sectional curvature in case
(d) and negative sectional curvature in cases (b) and (e).

Theorem 3. [5] Let (G, g) be a three-dimensional connected, simply connected
Lorentzian Lie group and g its Lie algebra. (G, g) is symmetric if and only if one
of the following occurs.
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• (G, g) is a Lorentzian Lie group of constant sectional curvature (see Theorem
2).

• g = g5 and either α = β = γ = 0 �= δ, or β = γ = δ = 0 �= α. In both
cases, G is isometric to R × S 2

1 .

• g = g6 and either α = β = γ = 0 �= δ, or β = γ = δ = 0 �= α. In these
cases, G is isometric to R × H

2
1 and H

2 × R, respectively.

• g = g7 and γ = δ = 0 �= α. In this case, (M, g) has a parallel null vector
field.

From now on, we always assume that G is not a symmetric space (in particular,
not a space form) and so, G is not one of Lie groups listed in either Theorem 2 or
3.

2.3. Algebraic conditions

Using the results of [5], it can be easily seen that, with respect to pseudo-
orthonormal frame fields {e1, e2, e3} for which (2.11)-(2.17) hold, the curvature
components always satisfy R1323 = −R1223. Here, RABCD is defined as 〈R(eA, eB)
eC , eD〉. Thus, with respect to these frame fields, the curvature tensor of the corre-
sponding Lorentzian Lie group is completely determined by

(2.19)
D = −R1213, E = R1323 = −R1223, I = K12 − K13,

J = K12 − K23, K = K13 − K23,

where Kij denotes the sectional curvature of the plane spanned by ei and ej . We
then obtain the following algebraic restrictions for the existence of a parallel surface.

Lemma 4. Let (G, g) be a connected, simply connected three-dimensional
Lorentzian Lie group and {e1, e2, e3} the pseudo-orthonormal frame field used in
Theorem 1. If M is a parallel surface in G with ε-unit normal ξ = ae 1 +be2 +ce3,
then the following equations hold on M :

(2.20)




ac(b2I + a2J) − ab(a2 + b2 + c2)D + a2(a2 + (b − c)2)E = 0,

ab(c2I + a2K) + ac(a2 − b2 − c2)D + a2(a2 − (b − c)2)E = 0,

bc(b2I + a2J) − b2(a2 + b2 + c2)D + ab(a2 + (b − c)2)E = 0,

ab(c2J − b2K) − 2ab2cD − b(b− c)(a2 − b2 + c2)E = 0,

bc(c2I + a2K) + c2(a2 − b2 − c2)D + ac(a2 − (b − c)2)E = 0,

ac(c2J − b2K)− 2abc2D − c(b − c)(a2 − b2 + c2)E = 0.
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Proof. We only include the proof of the first equation of system (2.20), because
the others can be deduced analogously. Since ξ = ae1 + be2 + ce3 is normal to
M , the vector fields X = ae2 − be1 and Y = ae3 + ce1 are tangent to M . By the
definitions of D and E , we then obtain

R(X, Y )X = R(ae2 − be1, ae3 + ce1)(ae2 − be1)

= (a3E + a2cK12 − a2bD)e1 + (a2bE + abcK12 − ab2D)e2

+(a3K23 + a2bE − a2cE + abcD + a2bE + ab2K13)e3.

Since M is parallel, the equation of Codazzi gives 〈R(X, Y )X, ξ〉 = 0 and this
proves the result.

The following result can now be verified by a straightforward calculation.

Lemma 5. The solutions of (2.20) are the following:

1. if D = E = 0:

(a) a = b = 0,
(b) b = c = 0,
(c) a = c = 0,
(d) a = I = 0,
(e) b = J = 0,
(f) c = K = 0,
(g) I = J = K = 0;

2. if D �= 0 and E = 0:

(a) a = 0, bc �= 0, bcI − (b2 + c2)D = 0,
(b) b = c = 0,
(c) abc �= 0, c2J − b2K − 2bcD = 0,

2b2c2I + c2(a2 − b2 − c2)J + b2(a2 + b2 + c2)K = 0;

3. if D �= 0 and E �= 0:

(a) b = 0, ac �= 0, cD + aE = 0, acJ + (a2 + c2)E = 0,
(b) c = 0, ab �= 0, bD − aE = 0, abK + (a2 − b2)E = 0,
(c) abc �= 0,

b2cI + a2cJ − b(a2 + b2 + c2)D + a(a2 + (b − c)2)E = 0,
bc2I + a2bK + c(a2 + b2 − c2)D + a(a2 − (b − c)2)E .
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Hence, in order to classify parallel surfaces of a homogeneous Lorentzian three-
manifold (N, g), one has to check different possibilities listed in Lemma 5, restrict-
ing to the ones compatible with the form of the curvature tensor of the ambient
space (N, g).

3. CLASSIFICATION OF PARALLEL SURFACES

In the sequel, by “a three-dimensional Lorentzian Lie group Gi” we shall mean
a connected, simply connected three-dimensional Lie group G, equipped with a
left-invariant Lorentzian metric g and having Lie algebra gi.

3.1. Parallel surfaces of G1

We start by recalling the following result on the Levi Civita connection and the
curvature of a three-dimensional Lorentzian Lie group G1.

Lemma 6. [5] Let {e1, e2, e3} be the pseudo-orthonormal basis used in (2.11).
Then

(3.1)

∇e1e1 = −αe2 − αe3, ∇e2e1 = β
2 e3, ∇e3e1 = β

2 e2,

∇e1e2 = αe1 − β
2 e3, ∇e2e2 = αe3, ∇e3e2 = −β

2 e1 − αe3,

∇e1e3 = −αe1 − β
2 e2, ∇e2e3 = β

2 e1 + αe2, ∇e3e3 = −αe2,

and

(3.2)
R1212 = −2α2 − β2

4 , R1313 = β2

4 − 2α2, R2323 = β2

4 ,

R1213 = 2α2, R1223 = −αβ, R1323 = αβ.

By Lemmas 5 and 6, we now obtain the following.

Lemma 7. Let M be a parallel surface of a three-dimensional Lorentzian Lie
group G1. Then, the structure constant β satisfies β = 0 and the ε-unit normal of
M takes the form ξ = e1 + be2 + be3.

Proof. Using (3.2) and the notations introduced in the previous section, we
have for G1 that I = −4α2, J = −2α2, K = 2α2, D = −2α2 and E = αβ, with
α �= 0.

We first assume that E �= 0 and so, αβ �= 0. Cases (3a) and (3b) of Lemma
5 imply that α = β = 0, which gives a contradiction. In case (3c), the system
becomes{

(−4b2c− 2a2c + 2b(a2 + b2 + c2))α + a(a2 + (b − c)2)β = 0,

(−4bc2 − 2a2b − 2c(a2 − b2 − c2))α + a(a2 − (b − c)2)β = 0.
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Since αβ �= 0, the determinant of this system of linear equations in α and β

must vanish. A straightforward computation yields that this determinant equals
−2εa(b− c)3, from which it follows b = c. Substituting this in the system we have
a3β = 0 and hence β = 0, which is again a contradiction with our assumption.

We now assume that E = 0. Since α �= 0, this implies that β = 0. Case
(2a) of Lemma 5 cannot occur since it would imply that a = 0 and b = c, which
would make ξ a null vector field. Cases (2b) and (2c) both reduce to b = c. Now
〈ξ, ξ〉 = ε yields ε = 1 and a = ±1. By changing the orientation if necessary, we
may assume that a = 1.

Theorems 2 and 3 imply that G1 is never symmetric. We now prove the fol-
lowing.

Theorem 4. Let M be a parallel surface in a three-dimensional Lorentzian
Lie group G1. Then β = 0, ξ = e1 + be2 + be3 and the vector fields

E1 = (be1 − e2)/
√

1 + b2, E2 = (be1 + b2e2 + (1 + b2)e3)/
√

1 + b2

form a pseudo-orthonormal basis for the tangent plane at every point. Moreover,
the function b satisfies

E1(b) = E2(b)

and

(3.3)

E1

(
E1(b)√
1 + b2

− 2b

1 + b2
α

)

+2
(

E1(b)√
1 + b2

− 2b

1 + b2
α

)
(

b√
1 + b2

E1(b)− α√
1 + b2

)
= 0.

The surface is flat and parallel. Moreover, it is totally geodesic in the special case
that

E1(b) = E2(b) =
2b√

1 + b2
α.

Proof. Let M be a parallel surface with ε-unit normal ξ in G1. According to
Lemma 7, the unit normal takes the form ξ = e1 + be2 + be3 and β = 0. Then the
vector fields E1 = (be1−e2)/

√
1 + b2 and E2 = (be1+b2e2+(1+b2)e3)/

√
1 + b2

form a pseudo-orthonormal basis for the tangent plane to M at every point. The
integrability condition for the distribution spanned by E1 and E2 is

(3.4) E1(b) = E2(b).
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Remark that in this case,

(3.5) [E1, E2] =
(

b

1 + b2
E1(b)− α√

1 + b2

)
(E2 − E1).

From SX = −∇Xξ, we obtain that the shape operator S is given by

(3.6) S =
(

E1(b)√
1 + b2

− 2b

1 + b2
α

)
·
(

1 1
−1 −1

)

with respect to the basis {E1, E2}. If M is parallel, then it is either flat or totally
umbilical, due to Lemma 1.

Case (i). M is totally umbilical. It follow from (3.6) that this only occurs if
M is totally geodesic. This gives the special case mentioned in the theorem.

Case (ii). M is flat. From (3.6) and Lemma 3, we obtain that M is always
flat. Lemma 2 yields that M is parallel if and only if

(3.7)

Ei

(
Ei(b)√
1 + b2

− 2b

1 + b2
α

)

+2
(

Ei(b)√
1 + b2

− 2b

1 + b2
α

)
(

b√
1 + b2

Ei(b)− α√
1 + b2

)
= 0

for i = 1, 2. By using (3.4) and (3.5), we see that it is sufficient to require that b
satisfies (3.3).

Remark 2. The second order equation (3.3) stated in Theorem 4 admits solu-
tions, due to the existence and uniqueness theorem for ordinary differential equations.

The proof of Theorem 4 also implies at once the following.

Remark 3. Consider a Lie group G1 with structure constant β = 0. Integral
surfaces of a distribution spanned by E1 and E2 as given in Theorem 4, where
b only satisfies E1(b) = E2(b), are always flat and hence semi-parallel, but not
necessarily parallel.

3.2. Parallel surfaces of G2

We start with the following.
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Lemma 8. [5]. Let {e1, e2, e3} be the pseudo-orthonormal basis used in (2.12).
Then

(3.8)

∇e1e1 = 0, ∇e2e1 = γe2 + α
2 e3, ∇e3e1 = α

2 e2 − γe3,

∇e1e2 = (α
2 − β)e3, ∇e2e2 = −γe1, ∇e3e2 = −α

2 e1,

∇e1e3 = (α
2 − β)e2, ∇e2e3 = α

2 e1, ∇e3e3 = −γe1,

and

(3.9)
R1212 = −α2

4 − γ2, R1313 = α2

4 + γ2, R2323 = −3α2

4 + αβ − γ2,

R1213 = γ(α− 2β), R1223 = 0, R1323 = 0.

By using Lemmas 5 and 8 and proceeding as in the proof of Lemma 7, standard
calculations give the following.

Lemma 9. Let M be a parallel surface of a three-dimensional Lorentzian Lie
group G2. Then, there are two possibilities for the structure constants α, β and γ
and the ε-unit normal ξ = ae1 + be2 + ce3:

(i) b = c = 0,

(ii) a = 0 and α = 2β.

Theorems 2 and 3 yield that a Lorentzian Lie group G2 is never symmetric. We
are now ready to prove the following.

Theorem 5. Let M be a parallel surface in a three-dimensional Lorentzian Lie
group G2. Then, one of the following statements holds.

(a) M is an integral surface of the distribution spanned by {e 2, e3}. This case
only occurs if α = 0 and M is parallel, flat and minimal, but not totally
geodesic.

(b) M is an integral surface of the distribution spanned by {e 1, ce2+be3}, where
b and c are real constants satisfying

b2 − c2 = ε = ±1, bc = −εβ

2γ
.

This case only occurs if α = 2β and M is totally geodesic.
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Proof. Let M be a parallel surface with ε-unit normal ξ = ae1 + be2 + ce3

in G2. According to Lemma 9, there are two cases to consider.

Case (i). In this case, after a change of orientation if necessary, we have
ξ = e1. Hence, the vector fields e2 and e3 span the tangent plane at every point
of the surface. By (3.8), this distribution is only integrable if α = 0. The shape
operator is then given by

S =
( −γ 0

0 γ

)

with respect to the pseudo-orthonormal basis {e2, e3}. A straightforward compu-
tation yields that ∇eiej is parallel to ξ for i, j ∈ {2, 3}. Together with the fact
that the entries of S are constant, this implies that the surface is parallel. Since
γ �= 0, the surface is minimal but not totally geodesic, and has Gaussian curvature
K = detS − R2323 = 0, that is, M is flat.

Case (ii). We have ξ = be2 + ce3 and the vector fields E1 = e1 and E2 =
ce2 + be3 form a (pseudo-)orthonormal basis for the tangent plane at every point.
The integrability condition for this distribution is

(3.10) bE1(c)− cE1(b) = 2bcγ + εβ

and the shape operator with respect to the basis {E1, E2} is given by

(3.11) S =


 0 2bcγ + ε

α

2
−2εbcγ − α

2
−ε(bE2(c)− cE2(b))


 .

We know from Lemma 1 that M must be either flat or totally umbilical.

Case (ii.1). M is totally umbilical. From (3.11), we see that this only occurs
if M is totally geodesic. Now (3.10), (3.11) and the equality b2 − c2 = ε yield
that b and c are constants satisfying bc = −(εα)/(4γ). This gives case (b) of the
theorem.

Case (ii.2). M is flat. This is equivalent to requiring that 〈R(E 1, E2)E1, E2〉−
det S = 0, which gives

(3.12) 4γ(bc)2 + 2εα(bc)− γ = 0,

By (3.12) it follows that bc is constant, which, together with b2 − c2 = ε, implies
that both b and c are constant. But then, (3.10) gives bc = −(εβ)/(2γ), which
contradicts (3.12).
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3.3. Parallel surfaces of G3

The description of the Levi Civita connection and the curvature of a three-
dimensional Lorentzian Lie group G3 is resumed in the following

Lemma 10. [5] Let {e1, e2, e3} be the pseudo-orthonormal basis used in (2.13).
Then

(3.13)

∇e1e1 = 0, ∇e2e1 = a2e3, ∇e3e1 = a3e2,

∇e1e2 = a1e3, ∇e2e2 = 0, ∇e3e2 = −a3e1,

∇e1e3 = a1e2, ∇e2e3 = a2e1, ∇e3e3 = 0,

where we put

(3.14) a1 =
1
2
(α − β − γ), a2 =

1
2
(α − β + γ), a3 =

1
2
(α + β − γ),

and

(3.15) R1212=−(a1a2 + γa3), R1313=a1a3 + βa2, R2323=−(a2a3 + αa3),
R1213=0, R1223=0, R1323=0.

By Lemmas 5 and 10 we easily get the following.

Lemma 11. Let M be a parallel surface in a non-symmetric Lorentzian Lie
group G3. Then, the possibilities for the structure constants α, β and γ and the
ε-unit normal ξ = ae1 + be2 + ce3 are the following:

(i) a = b = 0,
(ii) b = c = 0,
(iii) a = c = 0,
(iv) a = 0 and (β − γ)(−α + β + γ) = 0,
(v) b = 0 and (α − γ)(α− β + γ) = 0,
(vi) c = 0 and (α − β)(α + β − γ) = 0.

We now prove the following classification result.

Theorem 6. Let M be a parallel surface in a non-symmetric three-dimensional
Lorentzian Lie group G3. Then, one of the following statements holds.

(a) M is an integral surface of the distribution spanned by {e 2, e3}. This case
only occurs if γ = 0 and M is flat and minimal, but not totally geodesic.
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(b) M is an integral surface of the distribution spanned by {e 2, e3}. This case
only occurs if α = 0 and M is flat and minimal, but not totally geodesic.

(c) M is an integral surface of the distribution spanned by {e 1, e3}. This case
only occurs if β = 0 and M is flat and minimal, but not totally geodesic.

(d) M is an integral surface of the distribution spanned by {E 1 = e1, E2 =
ce2 + be3}, where b and c are functions on M satisfying b 2 − c2 = ε and

E1(b) = βc, E1(c) = βb, E2(b) = k1εc, E2(c) = k1εb,

for some real constant k1. This case only occurs if β = γ and M is flat.
(e) M is an integral surface of the distribution spanned by {ce 2+be3, e1}. Here,

b and c are real constants satisfying

b2 =
γε

γ − β
, c2 =

βε

γ − β
.

This case only occurs if α = β + γ and β �= γ and M is totally geodesic.
(f) M is an integral surface of the distribution spanned by {E 1 = ce1+ae3, E2 =

e2}, where a and c are functions on the surface satisfying a 2 − c2 = ε and

E1(a) = k2εc, E1(c) = k2εa, E2(a) = −αc, E2(c) = −αa,

for some real constant k2. This case only occurs if α = γ and M is flat.
(g) M is an integral surface of the distribution spanned by {ce 1+ae3, e2}. Here,

a and c are real constants satisfying

a2 = − γε

α − γ
, c2 = − αε

α − γ
.

This case only occurs if β = α + γ and α �= γ and M is totally geodesic.
(h) M is an integral surface of the distribution spanned by {E 1 = be1−ae2, E2 =

e3}, where a and b are functions satisfying a 2 + b2 = 1 and

E1(a) =
k3b

b2 − a2
, E1(b) = − k3a

b2 − a2
,

E2(a) =
bα

b2 − a2
, E2(b) = − aα

b2 − a2
,

for some real constant k3. This case only occurs if α = β and M is flat.
(i) M is an integral surface of the distribution spanned by {be 1−ae2, e3}, where

a and b are constants satisfying

a2 = − β

α − β
, b2 =

α

α − β
.

This case only occurs if γ = α + β and α �= β and M is totally geodesic.
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Proof. According to Lemma 11, there are six different cases to consider.

Cases (i), (ii), (iii). Proceeding as in the first case in the proof of Theorem 5,
we obtain cases (a), (b), (c), respectively.

Cases (iv). In this case ξ = be2 + ce3, with b2 − c2 = ε and hence the vector
fields E1 = e1 and E2 = ce2+be3 form a (pseudo-)orthonormal tangent frame field.
Using (3.13), we find that the integrability condition for the distribution spanned by
{E1, E2} is given by

(3.16) bE1(c)− cE1(b) = −εa1 − c2a2 + b2a3

and the shape operator S takes the form

(3.17) S =

(
0 εα/2

−α/2 −ε(bE2(c)− cE2(b))

)

with respect to the basis {E1, E2}. It follows from Lemma 11 that there are two
cases to consider, namely β = γ and α = β + γ .

Case (iv.1): β = γ . In this case, (3.16) and (3.17) reduce to

(3.18) S =

(
0 εα/2

−α/2 −ε(bE2(c)− cE2(b))

)
, bE1(c)− cE1(b) = εβ.

Since b2 − c2 = ε we then obtain E1(b) = βc and E1(c) = βb. It follows from
Lemma 3 that M is flat. A straightforward computation shows that ∇EiEj is
parallel to ξ for i, j ∈ {1, 2}. Hence, (3.18) and Lemma 2 imply that M is parallel
if and only if bE2(c)− cE2(b) = k1 is constant. Combining this with b2 − c2 = ε

gives E2(b) = k1εc and E2(c) = k1εb. This gives case (d).

Cases (iv.2). α = β + γ . Now (3.16),(3.17) respectively reduce to

(3.19) S=

(
0 b2β−c2γ

−ε(b2β − c2γ) −ε(bE2(c)−cE2(b))

)
, bE1(c)−cE1(b)=b2β−c2γ.

Since M is parallel in G, M must be totally umbilical or flat. M is totally umbilical
if and only if b2β − c2γ and bE2(c)− cE2(b) = 0, which gives case (e).

By Lemma 3, M is flat if and only if (b2β − c2γ)2 = βγ . This implies that b

and c are constant and hence S = 0. Hence, this reduces to the totally umbilical
case treated above.

Cases (v), (vi). These cases can be treated in a similar way as case (iv).

The following remark is a direct consequence of the proof of Theorem 6
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Remark 4. Consider a Lorentzian Lie group G3 with structure constants β = γ .
If we omit the equations for E2(b) and E2(c) in case (d) of Theorem 6, we have more
examples of flat, and hence semi-parallel, surfaces. Similarly, case (f), respectively
(h), allows us to construct examples of semi-parallel, non-parallel surfaces in G3

with α = γ , respectively α = β.

3.4. Parallel surfaces of G4

The Levi Civita connection and curvature tensor of a three-dimensional Lorentzian
Lie group G4 are described in the following

Lemma 12. [5] Let {e1, e2, e3} be the pseudo-orthonormal basis used in (2.14).
Then

(3.20)

∇e1e1 = 0, ∇e2e1 = e2 + b2e3, ∇e3e1 = b3e2 − e3,

∇e1e2 = b1e3, ∇e2e2 = −e1, ∇e3e2 = −b3e1,

∇e1e3 = b1e2, ∇e2e3 = b2e1, ∇e3e3 = −e1,

where we put

(3.21) b1 =
α

2
+ η − β, b2 =

α

2
− η, b3 =

α

2
+ η

and

(3.22)
R1212 =(2η−β)b3−b1b2−1, R1313 =b1b3+βb2+1, R2323 =−(b2b3+αb1+1),

R1213 =2η−β+b1+b2, R1223 =0, R1323 = 0.

As a consequence of Lemmas 5 and 12, we get the following algebraic restric-
tions for a parallel surface of G4.

Lemma 13. Let M be a parallel surface in a non-symmetric three-dimensional
Lorentzian Lie group G4. Then there are the following possibilities for the structure
constants α, β and η and the unit normal ξ = ae 1 + be2 + ce3:

(i) b = c = 0,
(ii) a = 0 and α − 2β + 2η = 0,
(iii) a = 1, c = −ηb �= 0 and α = 0, β �= η,
(iv) a = 1, c = −ηb �= 0 and α �= 0, α − β + η = 0.

We now prove the following.
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Theorem 7. Let M be a parallel surface in a non-symmetric three-dimensional
Lorentzian Lie group G4. Then one of the following statements holds.

(a) M is an integral surface of the distribution spanned by {e 2, e3}. This case
only occurs if α = 0. M is parallel, flat and minimal, but not totally
geodesic.

(b) M is an integral surface of the distribution spanned by {e 1, ce2+be3}, where
b and c are constants satisfying b 2− c2 = ε and βb2 +2bc+(β−2η)c2 = 0.
M is totally geodesic and has constant Gaussian curvature K = −ε(β − η).

Proof. We treat separately the four cases listed in Lemma 13.

Case (i). In this case, ξ = e1 and the tangent plane to M is at every point
spanned by e2 and e3. The distribution spanned by {e2, e3} is only integrable if
α = 0. The shape operator S of the surface is given by

S =
( −1 −η

η 1

)

with respect to {e2, e3}. It is easy to verify that M is parallel, flat and minimal,
but not totally geodesic. This gives case (a).

Case (ii). In this case, ξ = be2 + ce3, with b2 − c2 = ε. Hence, the tangent
plane to M is at every point spanned by E1 = e1 and E2 = ce2 + be3. Remark
that 〈E1, E1〉 = 1, 〈E1, E2〉 = 0 and 〈E2, E2〉 = −ε. The integrability condition
for the distribution spanned by {E1, E2} is

(3.23) bE1(c)− cE1(b) = b2β + 2bc + c2(β − 2η)

and the shape operator with respect to {E1, E2} is

(3.24) S =

(
0 b2β + 2bc + c2(β − 2η)

−ε(b2β + 2bc + c2(β − 2η)) −ε(bE2(c) − cE2(b))

)
.

Since M is either totally umbilical or flat, we distinguish two cases.

Case (ii.1). M is totally umbilical. It follows from (3.24) that this occurs only
if M is totally geodesic. Together with (3.23), this implies that b and c are constants
satisfying b2β + 2bc + c2(β − 2η) = 0 and b2 − c2 = ε. This gives case (b).

Case (ii.2). M is flat. Using Lemma 3 and (3.24), the condition of flatness can
be expressed as a polynomial equation in b and c which, together with b2 − c2 = ε,
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implies that b and c are constant. Then it follows from (3.23) and (3.24) that M is
totally geodesic. This case was already treated above.

Case (iii). In this case ξ = e1 + be2 − ηbe3. Hence, the tangent plane to M

is spanned by the pseudo-orthonormal vector fields E1 = (be1 − e2)/
√

1 + b2 and
E2 = (ηbe1 + ηb2e2 + (1 + b2)e3)/

√
1 + b2. The integrability condition for the

distribution spanned by E1 and E2 is

(3.25) (1 + 2b2)E1(b) + ηE2(b) =
2b2(1− b2)(1− βη)√

1 + b2

and the shape operator with respect to {E1, E2} is given by

(3.26) S=


 −1+b2−βηb2

1+b2
+

E1(b)√
1+b2

η(1+2b2)
(

1+b2−βηb2

1+b2
− E1(b)√

1+b2

)

−η(1+2b2)
(

1+b2−βηb2

1+b2
− E1(b)√

1+b2

)
−(1+2b2)

(
1+b2+βηb2

1+b2
+η

E2(b)√
1+b2

)

.

Case (iii.1). M is totally umbilical. From S11 = S22 and S12 = 0, it follows
that

(3.27) E1(b) =
1 + b2−βηb2

√
1 + b2

, E2(b) = −η
1 + b2 + βηb2

√
1 + b2

.

Substituting this in (3.25) gives a non-trivial polynomial equation for b, so that b is
constant. But this gives a contradiction with (3.27).

Case (iii.2). M is flat. From Lemma 3 and the expression for S above, we
see that M is flat if and only if

(3.28)

(
1 + b2 − βηb2

1 + b2
− E1(b)√

1 + b2

)(
2 + η

E2(b)√
1 + b2

− E1(b)√
1 + b2

)

=
4b2(1 + b2)(1 − β)(1 + η)

1 + 2b2
.

Moreover, since we assume that M is parallel, its mean curvature must be constant,
i.e.,

(3.29) −1+b2−βηb2

1+b2
+

E1(b)√
1+b2

−(1+2b2)
(

1+b2 + βηb2

1+b2
+η

E2(b)√
1+b2

)
= C

for some real constant C. Taking into account (3.25) and (3.29), we can write
E1(b)/

√
1 + b2 and E2(b)/

√
1 + b2 as rational functions of b. If we substitute

these in (3.28), we obtain that b satisfies a non-trivial polynomial equation and
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hence is constant. From (3.25) we obtain 2b2(1 − b2)(1 − βη). Since we are in
case (iii) of Lemma 13, the only possibility is that b2 = 1. It follows now from
(3.26) that the entries of S are constant. From Lemma 2 and the non-existence of
totally umbilical surfaces in this case (cfr. case (iii.1)), we obtain that ∇M

X E1 = 0
for all tangent vectors X . By putting X equal to E1 and E2 respectively and
straightforward computations, we obtain contradictory equations.

Case (iv). This case can be treated by similar methods as those used in case
(iii).

3.5. Parallel surfaces of G5

We start with the following.

Lemma 14. Let {e1, e2, e3} be the pseudo-orthonormal basis used in (2.15).
Then

(3.30)

∇e1e1 = αe3, ∇e2e1 = β+γ
2 e3, ∇e3e1 = −β−γ

2 e2,

∇e1e2 = β+γ
2 e3, ∇e2e2 = δe3, ∇e3e2 = β−γ

2 e1,

∇e1e3 = αe1 + β+γ
2 e2, ∇e2e3 = β+γ

2 e1 + δe2, ∇e3e3 = 0,

and

(3.31)
R1212 =αδ−(β+γ)2

4
, R1313=−α2−β(β+γ)

2
−β2−γ2

4
, R2323 =−δ2− γ(β+γ)

2
+

β2−γ2

4
,

R1213 = 0, R1223 = 0, R1323 = 0.

Lemma 5 now implies the following.

Lemma 15. Let M be a parallel surface in a non-symmetric three-dimensional
Lorentzian Lie group G5. Then, the structure constants α, β, γ and δ and the unit
normal ξ = ae1 + be2 + ce3 satisfy one of the following conditions:

(i) a = b = 0,
(ii) b = c = 0,
(iii) a = c = 0,
(iv) a = 0 and α = β = 0,
(v) b = 0 and γ = δ = 0.

We now prove the following classification result.
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Theorem 8. Let M be a parallel surface in a non-symmetric three-dimensional
Lorentzian Lie group G5. Then M is one of the surfaces listed below.

(a) M is an integral surface of the distribution spanned by e 1 and e2. M is flat
but not totally geodesic.

(b) M is an integral surface of the distribution spanned by e 2 and e3. This case
only occurs if either β = γ = 0 or γ = δ = 0. In the first case, M is totally
geodesic and has constant Gaussian curvature K = −δ 2 ≤ 0. In the second
case, M is flat and minimal, but not necessarily totally geodesic.

(c) M is an integral surface of the distribution spanned by e 1 and e3. This case
only occurs if either α = β = 0 or β = γ = 0. In the first case, M is flat
and minimal, but not necessarily totally geodesic. In the second case, M is
totally geodesic and has constant Gaussian curvature K = α 2 ≥ 0.

(d) M is an integral surface of the distribution spanned by {E 1 = e1, E2 =
ce2 + be3}, where b and c are functions satisfying b 2 − c2 = ε and

E1(b) = E1(c) = 0, E2(b) = c(k1 − cδ), E2(c) = b(k1 − cδ),

for some real constant k1. This case only occurs if α = β = 0 and M is
flat.

(e) M is an integral surface of the distribution spanned by {E 1 = ce1+ae3, E2 =
e2}, where a and c are functions satisfying a 2 − c2 = ε and

E1(a) = −εc(a2cα−k2), E1(c) = −εa(a2cα−k2), E2(a) = E2(c) = 0,

for some real constant k2. This case only occurs if γ = δ = 0 and M is flat.

Proof. According to Lemma 15, there are five case to consider.

Cases (i), (ii), (iii). These cases can be treated as the corresponding cases in
previous theorems and they yield cases (a), (b), (c), respectively.

Case (iv). In this case, the unit normal on M is given by ξ = be2 + ce3, with
b2 − c2 = ε. Hence, the tangent plane to M is at every point spanned by E1 = e1

and E2 = ce2 + be3. The integrability condition for the distribution spanned by
{E1, E2} is bE1(c)− cE1(b) = 0, which, together with b2 − c2 = ε, gives

(3.32) E1(b) = E1(c) = 0.

The shape operator with respect to {E1, E2} is given by

(3.33) S =
(

0 εγ/2
−γ/2 −ε(bE2(c)− cE2(b) + εδc)

)
.
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Since M is parallel, it must be either totally umbilical of flat.

Case (iv.1). M is totally umbilical. By (3.33) it follows that M is totally
geodesic. But then γ = 0 and so, the ambient space G5 is symmetric (Theorem 3).

Case (iv.2). M is flat. From (3.33) and Lemma 3, M is automatically flat.
A straightforward computation shows that ∇EiEj is parallel to ξ for i, j ∈ {1, 2}.
Hence, M is parallel if and only if the entries of S are constant. This is equivalent
to requiring ε(bE2(c) − cE2(b) + cεδ) = k1, where k1 is a real constant. Together
with b2 − c2 = ε, we obtain E2(b) = c(k1 − cδ) and E2(c) = b(k1 − cδ), which
gives case (d).

Case (v). This case can be treated in a similar way as case (iv).

Remark 5. Consider G5 with structure constants α = β = 0. If we omit the
equations for E2(b) and E2(c) in case (d) of Theorem 8, we obtain more examples
of flat, and hence semi-parallel, surfaces. Similarly, from case (e) we can construct
examples of semi-parallel, non-parallel surfaces in G5 with γ = δ = 0.

3.6. Parallel surfaces of G6

The case of a three-dimensional Lie group G6 is rather similar to the one of G5.
For this reason, we shall omit proofs in this subsection.

Lemma 16. [5] Let {e1, e2, e3} be the pseudo-orthonormal basis used in (2.16).
Then

(3.34)

∇e1e1 = 0, ∇e2e1 = −αe2− β−γ
2 e3, ∇e3e1 = β−γ

2 e2 − δe3,

∇e1e2 = β+γ
2 e3, ∇e2e2 = αe1, ∇e3e2 = −β−γ

2 e1,

∇e1e3 = β+γ
2 e2, ∇e2e3 = −β−γ

2 e1, ∇e3e3 = −δe1,

and

(3.35)
R1212 =−α2+ β2−γ2

4
+ β(β−γ)

2
, R1313 =δ2+ β2−γ2

4
+ γ(β−γ)

2
, R2323 =αδ+ (β−γ)2

4
,

R1213 =0, R1223 =0, R1323 =0.

Algebraic restrictions to the existence of a parallel surface are then given by the
following.

Lemma 17. Let M be a parallel surface in a non-symmetric three-dimensional
Lorentzian Lie group G6. Then there are the following possibilities for the structure
constants α, β, γ and δ and the unit normal ξ = ae 1 + be2 + ce3:
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(i) a = b = 0,
(ii) b = c = 0,
(iii) a = c = 0,
(iv) b = 0 and α = β = 0,
(v) c = 0 and γ = δ = 0.

We then obtain the following classification result.

Theorem 9. Let M be a parallel surface in a three-dimensional Lorentzian Lie
group G6. Then, one of the following statements holds.

(a) M is an integral surface of the distribution spanned by e 1 and e2. This case
only occurs if either α = β = 0 or β = γ = 0. In the first case, M is
parallel, flat and minimal, but not necessarily totally geodesic. In the second
case, M is totally geodesic.

(b) M is an integral surface of the distribution spanned by e 2 and e3. M is
parallel and flat, but not necessarily totally geodesic.

(c) M is an integral surface of the distribution spanned by e 1 and e3. This case
only occurs if either β = γ = 0 or γ = δ = 0. In the first case, M is
totally geodesic. In the second case, M is parallel, flat and minimal, but not
necessarily totally geodesic.

(d) M is an integral surface of the distribution spanned by {E 1 = ce1+ae3, E2 =
e2}, where a and c are functions satisfying a 2 − c2 = ε and

E1(a) = c(k1 − δa), 1 E1(c) = a(k1 − δa), E2(a) = E2(c) = 0,

for some real constant k1. This case only occurs if α = β = 0 and M is
parallel and flat.

(e) M is an integral surface of the distribution spanned by {E 1 = be1−ae2, E2 =
e3}, where a and b are functions satisfying a 2 + b2 = 1 and

E1(a) = b(k2 + αa), E1(b) = −a(k2 + αb), E2(a) = E2(c) = 0,

for some real constant k2. This case only occurs if γ = δ = 0 and M is
parallel and flat.

Remark 6. Consider a Lorentzian Lie group G6 with α = β = 0. Omitting the
equations for E1(a) and E1(c) in case (d) of Theorem 9, we obtain more examples
of flat, and hence semi-parallel surfaces. Similarly, case (e) allows us to construct
examples of semi-parallel, non-parallel surfaces in G6 with γ = δ = 0.
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3.7. Parallel surfaces of G7

We first recall the following.

Lemma 18. [5]. Let {e1, e2, e3} be the pseudo-orthonormal basis used in
(2.17). Then

(3.36)

∇e1e1 =αe2+αe3, ∇e2e1 = βe2+
(
β+ γ

2

)
e3, ∇e3e1 =− (β− γ

2

)
e2−βe3,

∇e1e2 = −αe1 + γ
2 e3, ∇e2e2 = −βe1 + δe3, ∇e3e2 =

(
β − γ

2

)
e1 − δe3,

∇e1e3 = αe1 + γ
2
e2, ∇e2e3 =

(
β + γ

2

)
e1 + δe2, ∇e3e3 = −βe1 − δe2,

and

(3.37)
R1212 = αδ − α2 − βγ − γ2

4 , R1313 = αδ − α2 − βγ + γ2

4 , R2323 = − 3
4γ2,

R1213 = α2 − αδ + βγ, R1223 = 0, R1323 = 0.

By Lemmas 5 and 18, we easily obtain the following

Lemma 19. Let M be a parallel surface in a non-symmetric three-dimensional
Lorentzian Lie group G7. Then, the possibilities for the structure constants α, β,γ
and δ and the unit normal ξ = ae1 + be2 + ce3 are the following:

(i) b = c = 0,
(ii) a = 0 and α = β = 0,
(iii) a = 1, b = c �= 0 and γ = 0, α(α − δ) �= 0.

We now prove the following.

Theorem 10. Let M be a parallel surface in a non-symmetric three-dimensional
Lorentzian Lie group G7. Then, M is one of surfaces listed below.

(a) M is an integral surface of the distribution spanned by {e 2, e3}. This case
only occurs if either β = γ = 0 or γ = δ = 0. In the first case, M is totally
geodesic. In the second case, M is parallel and flat, but not necessarily
totally geodesic.

(b) M is an integral surface of the distribution spanned by {E 1 = e1, E2 =
ce2 + be3}, where b and c are functions satisfying b 2 − c2 = ε and

E1(b) = E1(c) = 0, E2(b) = c((b− c)δ− k1), E2(c) = b((b− c)δ− k1)

for some real constant k1. This case only occurs if α = β = 0. M is flat,
but not necessarily totally geodesic.
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(c) M is an integral surface of the distribution spanned by {E 1 = (be1 −
e2)/

√
1 + b2 and E2 = (be1 + b2e2 + (1 + b2)e3)/

√
1 + b2}, where b is

a function satisfying E 1(b) = E2(b) and

E1

(
E1(b)√
1 + b2

+
b

1 + b2
(α − δ)

)

+2
(

E1(b)√
1 + b2

+
b

1 + b2
(α − δ)

)
(

b√
1 + b2

E1(b)− δ√
1 + b2

)
= 0.

The surface is flat and parallel. Moreover, it is totally geodesic in the special
case that

E1(b) = E2(b) =
b√

1 + b2
(δ − α).

Proof. According to Lemma 19, there are three different cases to consider.

Cases (i), (ii). This cases can be treated as the corresponding ones in previous
theorems.

Case (iii). In this case, the unit normal on M is given by ξ = e1 + be2 + be3.
Hence, the tangent plane at every point is spanned by the vector fields E1 =
(be1 − e2)/

√
1 + b2 and E2 = (be1 + b2e2 + (1 + b2)e3)/

√
1 + b2. Remark that

〈E1, E1〉 = 1, 〈E1, E2〉 = 0 and 〈E2, E2〉 = −1. The integrability condition for
the distribution spanned by {E1, E2} is

(3.38) E1(b) = E2(b)

and the shape operator with respect to the basis {E1, E2} is

(3.39) S =
(

E1(b)√
1 + b2

+
b

1 + b2
(α − δ)

)
·
(

1 1
−1 −1

)
.

Since M is parallel in G7, M must be either totally umbilical or flat.

Case (iii.1). If M is totally umbilical, it follows from (3.39) that M is totally
geodesic. This gives the special case mentioned in case (c).

Case (iii.2). This case can be treated in a similar way as in the proof of
Theorem 4.
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Remark 7. Consider a Lorentzian Lie group G7 with structure constants α =
β = 0. If we omit the equations for E2(b) and E2(c) in case (b) of Theorem 10,
we obtain more flat, and hence semi-parallel but not necessarily parallel, surfaces.

4. REMARKS AND CONCLUSIONS

It is worthwhile to compare the classification results given in this paper with the
corresponding ones in the Riemannian framework, obtained by the second author
and J. Inoguchi in [11, 12]. It turns out that, also from the point of view of the
existence of parallel surfaces, homogeneous Lorentzian three-manifolds offer many
more possibilities than their Riemannian analogues.

There is an alternative, more analytic way to represent several of the parallel
surfaces of homogeneous Lorentzian three-spaces we found in theorems above. As
an example, we illustrate here case (d) of Theorem 9. Assume that ε = 1 (when
ε = −1, one can proceed in a similar way). Then, there exists a function ϕ such
that a = coshϕ and c = sinh ϕ. One can check that [E1, E2] = 0. Hence, it is
possible to introduce pseudo-Euclidean coordinates (u, v) on M , such that E1 = ∂u

and E2 = ∂v . The equations stated in Theorem 9 are then equivalent to

∂uϕ = k1 − δ cosh ϕ, ∂vϕ = 0.

One can solve the equations above by direct integration and state that M is given
by an isometric immersion f : U ⊆ E

2
1 → G : (u, v) �→ f(u, v), such that

f∗∂u = sinhϕ(u)e1 + coshϕ(u)e3 and f∗∂v = e2.
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