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ON MULTIPOINT NONLOCAL BOUNDARY VALUE PROBLEMS
FOR HYPERBOLIC DIFFERENTIAL AND DIFFERENCE EQUATIONS

Allaberen Ashyralyev and Ozgur Yildirim

Abstract. The nonlocal boundary value problem for differential equation
G Au(t) = f()  (0<t<1),

uw(0) = > aru(A) + o, u(0) = > Brug(A) + 9,
r=1 r=1

D<M << <A\, <1

in a Hilbert space H with the self-adjoint positive definite operator A is
considered. The stability estimates for the solution of the problem under the

assumption
n n n n
Z |k + Br| + Z |k | Z 1Bm| <1+ Zakﬁkl
k=1 k=1 m=1 k=1
m#k

are established. The first order of accuracy difference schemes for the approx-
imate solutions of the problem are presented. The stability estimates for the
solution of these difference schemes under the assumption

Z |k | +Z | B | +Z |ovk| Z 1Bk| < 1

k=1 k=1 k=1 k=1

are established. In practice, the nonlocal boundary value problems for one
dimensional hyperbolic equation with nonlocal boundary conditions in space
variable and multidimensional hyperbolic equation with Dirichlet condition in
space variables are considered. The stability estimates for the solutions of
difference schemes for the nonlocal boundary value hyperbolic problems are
obtained.

1. INTRODUCTION

It is known that most problems in fluid mechanics (dynamics, elasticity) and
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other areas of physics lead to partial differential equations of the hyperbolic type
(see, e.g., [1-12] and the references given therein).
In the present paper, the nonlocal boundary value problem

d?ul(t)

az .

(1.1) u(0) = Zlaju()\j) + ¢, u(0) = Zlﬁjut(%‘) +9,
j= J=

0<)\1§)\2§...§)\n§1

+Au(t) = f(t) (0<t<),

for differential equations of hyperbolic type in a Hilbert space H with self-adjoint
positive definite operator A is considered.

A function w(¢) is called a solution of the problem (1.1) if the following condi-
tions are satisfied:

(i) w(t) is twice continuously differentiable on the segment [0, 1]. The derivatives
at the endpoints of the segment are understood as the appropriate unilateral
derivatives.

(ii) The element u(¢) belongs to D(A) for all ¢ € [0, 1] and the function Aw(t)
is continuous on the segment [0, 1].

(iii) u(t) satisfies the equation and the nonlocal boundary conditions (1.1).

In the paper [6], the nonlocal boundary value problem (1.1) in the cases o;; = 0,
j=2,--nand B; =0, j=2,---,n, Ay = 1 was considered. The following
theorem on the stability was proved.

Theorem 1.1. Suppose that ¢ € D(A), ¢ € D(A%) and f(t) is continuously
differentiable function on [0, 1] and |1+ a1 51| > |1 + B1]. Then, there is a unique
solution of the problem (1.1) and the stability inequalities

< —-1/2 —-1/2
Qax [ u(t) [m <Ml e lla + | A7 g + max | A2F(@) Jla

1/2 < 1/2
g | AY2u(0) < M (1A% i+ 16 Lo+ o, 1 66) |

d?u(t) 1
<M /2
Qax || == lla + max || Au(t) [[a< M| Ap lla + || AV ||

1
+ {1 f(0) [ +/ I £(t) 1z dt]
0

hold, where M does not depend on ¢, and f(t), t € [0, 1].

Moreover, the first and second orders of accuracy difference schemes for the
approximate solutions of this problem were presented. The stability estimates for the
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solution of these difference schemes under the assumption 1 > ||| 51|+ ||+ |51
were established. The stability estimates for the solutions of difference schemes for
the approximate solutions of the nonlocal boundary value hyperbolic problems were
obtained.

We are interested in studying the stability of solutions of the problem (1.1) under
the assumption

n n n n
(1.2) D ok 4Bl + D laml Y 18] <11+ Y awbil -
k=1 ml k=1
m

In the present paper, the stability estimates for the solution of the problem (1.1)
are established. The first order of accuracy difference schemes for approximately
solving the boundary value problem (1.1) are presented. The stability estimates for
the solution of these difference schemes and its first and second order difference
derivatives are established. In practice, the stability estimates for the solutions of
the difference schemes of nonlocal boundary value problems for one dimensional
hyperbolic equation with nonlocal boundary conditions in space variable and the
multidimensional hyperbolic equation with Dirichlet condition in space variables
are obtained.

Finally, note that nonlocal boundary value problems for parabolic, elliptic equa-
tions and equations of mixed types have been studied extensively (see for instance
[14-42] and the references therein).

2. THE DiFrereNTIAL HyPERBOLI EQUATION. THE MAIN THEOREM

Let H be a Hilbert space, A be a positive definite self-adjoint operator with
A > 61, where 6 > §p > 0. Throughout this paper, {c(t),t > 0} is a strongly
continuous cosine operator-function defined by the formula
itAl/? +e—itA1/2
2

c(t) =

Then, from the definition of the sine operator-function s ()

s(t)u = /tc(s)u ds
0

it follows that
itA/2 e—itA1/2

_ 4-1)2€
s(t)y=A 5;
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For the theory of cosine operator-function we refer to [1] and [13].
Throughout this section for simplicity we put

B, = Zﬁkc Ak) +Z (A Z Zamﬁk m)e(Ak) + As(Am)s(Ak)) -

m=1 k=1
Now, Iet us give some Iemmas that will be needed below.

Lemma 2.1. The estimates hold:

(2.1) le@lpg—p <1, HA1/2 HHHH L

Lemma 2.2. Suppose that the assumption (1.2) holds. Then, the operator
I — B, hasaninverse T'= (I — Bn)‘land the following estimate is satisfied:

1

11+ Zakﬂk\ - Z\Oék + Bl — Z |ovm| Z \ﬁk\
k=1 k=1

k;ém

22)  |Tla-m <

Proof. Using assumption (1.2), we obtain 1 + Zakﬁk # 0. Then, from the
k=1
definitions of ¢ ();) and s (\;) (A\j,7 = 1,---,n) it follows that

I - B, —I—I—Zakﬂkf Zak‘f’ﬁk (k) +Z Zamﬂkc m— Ak)

" i
= (1 + Z%ﬁk) (I —Cn),
k=1
where
Cn = + Z(ak + Be)e( Ak Z A Brc(Am — Ak)
1+ Zakﬂk k=1 ml,frh
k=1
Using the triangle inequality and estimate (2.1), we obtain
1Cnllg—g < + [Z |k + Bl el g
1+ Zakﬂk k=1
k=1

+ > > lamllBel e = Al gp | < 4.

k#m
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where
1 n n n
=7 | 2o len T O+ D X laml I8
SN = b
k=1
Since ¢ < 1, the operator I — C,, has a bounded inverse and
1
reoy| <l

Therefore, from that it follows (I — B,,) ™" exists and
1 1

|87, s 1=
e 1+ Zakﬂk ¢
k=1
= 1 .
1+ > Bl =Dl + Bl = Y ol > (Bl
k=1 k=1 m=1 k=1

k;zm
Lemma 2.2 is proved.

Now, we will obtain the formula for solution of the problem (1.1). It is clear
that (see [1]) the initial value problem

CCZ;TZ + Au(t) = f(t),0 <t < 1,u(0) = ug, u'(0) = uy,
has a unique solution
t
(2.3) u(t) = c(t)uo + s(t)ug + /s(t —5)f(s)ds.
0
Using (2.3) and the nonlocal boundary conditions

u(0) =" amu(Am) + ¢, 4 (0) = > Bru () + 2,
m=1 k=1

it can be written as follows
>\77L

/ S(AmS)f(S)d8}+<P,

0

u(0)=> " am {c()\m)u(())—i-s()\m)u/(())—i-
2.4) m=t

Ak
u'(0)=> B {As()\k)u(O)—i-c()\k)u/(O)—i- / c(\r—5) f(s)ds}+¢.
k=1 0
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Denoting
I- Z ame(Aym) — Z ams(Am)
A = nmzl m:}l
> BeAs()  T=Y Bre(Ar)
k=1 k=1
and using the definitions of ¢ (\;) and s (X\;) (A;,7 =1,---,n), we can write
Az(]—Zamc( > < Zﬁkc )\k>+AZZamﬁks M) =1-B,
m=1 m=1 k=1
Then, using the definition of the operator 7', we obtain
T=A"
Solving system (2.4), we get
n >\77L
Zam/sum—s)f( s+~ ams(hn)
25 w0 =T|" O m

Zﬁk/c A — S f(s)ds—i—w I — I;ﬁkc()\k)

0

>\"L
— {( Zﬁkc )\k> (Zam/s()\ms)f(s)ds—i—ap)
m=1 0

Ak
+Zam3 (Zﬁk/ Ak —s) f(S)dSer)},

I_Zamc()‘m) Zam 3()‘ _S)f( )ds""@
26) 4(0)=T m=l o
> adsn) DB [ eOns) fls)ds
- k=1
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n n Am
_AZﬁks()‘k) (Z Om / $ ()‘m - 3) f(s)ds + ‘P) } .
k=1 m=1

0
Consequently, if the function f(¢) is not only continuous, but also continuously
differentiable on [0,1], ¢ € D(A) , ¢ € D(A%) and formulas (2.3), (2.5), (2.6)
give a solution of the problem (1.1).

Theorem 2.1. Suppose that ¢ € D(A), ¢ € D(A%) and f(t) is continuously

differentiable function on [0, 1] and the assumption (1.2) holds. Then, there is a
unique solution of problem (1.1) and the stability inequalities

1/2 12¢
@) g 1) I M (I i+ 14720 L+ o | 47270 ]

28) max || AYV2u(t) |lg< M [H A g 4 1 Nl + max || £(0) HH] ,

Ost<l 0<t<1
@9 o | T 4 e | Au) < M Ag i+ ]| AV
. 0<t<1 di? H 0<t<1 H=> @Y 7 H

+ 11 7(0) +/ I1£(t) [l dt]
0

hold, where M does not depend on ¢, ¢ and f(t), t € [0, 1].

Proof. Using formula (1.1) and estimates (2.1), (2.2), we obtain

lu@)llez < lle®lla—alTla-n { <1 + > 164 HC(M)HHHH> > laml
k=1 m=1

([l o],

el + 3 lanl 430
m=1

n >\k
X (Z | 3| / e (e =), HA_%f(S)HHds - AéwH) }
k=1 0
+[atso)| Tl { (1 + Z m lle(x HHHH>
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x (ﬁé/ﬁ:]@C(AkS)HﬁHHAéf@)H ds+A%¢H)
+<§j\ﬁk\|A%s<Ak>H . )(Zamf\
men+]|

0

<0 [l -+ 147720+ goa, | 47210 ]

A3 s (Am—s) HA‘Ef H ds

H—»H

Ao Jatse], o

for every ¢,0 < ¢ < 1.Therefore, estimate (2.7) is proved.

Applying A% to formula (1.1) and using estimates (2.1) and (2.2), in a similar
manner one establishes estimate (2.8).

Now, we obtain the estimate for || Au(t) ||z. Using the integration by parts and
applying A to formula (1.1), we can write the formula

Au(t) = c(t)T{(I—Zn:ﬁkC()‘k)>
k=1

n Am
x (Z . (f (Am)—c()\m)f(())—/c()\m—s) f/(s)ds) —|—A<p)

m=1

Ak
+ ZamAs()\m)<Z ﬁkG(Ak) f(0)+ / s(Ar—s) f(s)ds) +¢)}
(210  TAs(t {(I - Z amc(A >

Ak
X (Zﬁk <S(Ak)f (0) +/ S ()\k—s) f ds)—i— 'lﬂ) <Z Ors )\k>
k=1

0

n Am
X (Z U (f (Am)—c()\m)f(())—/c()\m—s) f/(s)ds) —|—A<p) }

m=1 0

+f(t) —c(t)f(0) — /c (t —s) f(s)ds.
0
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Using formula (2.10) and estimates (2.1) and (2.2), we get

[Au@) [ < lle@®a—ulTH—n { (1 + > 16| HC(M)HHHH>
k=1

X (Z || <Hf()‘m)HH F )l 1Ol

Am
X 0/ lcOm—sl. Hf/(S)HH ds) + A«pH)

£ Jon |atsow)||, ((Z Bl (| azsow)| 1)

./ HA%sw8>HHHHHf/<8>HHdS))

0

HlAaFpln) }+||atse)| ITIan { (1 + 3 fand Hc(AmeHH)

x ((; ol (43w, 171 +Z€HA;3(A/¢3)HH_)H Hf%s)HHds)

A2y + (Z e HA%SWHM)

x (Z || (1F )l + Q)| g 11 (O] g1

Am
N 0/ O =)l Hf/(s)HHds) + A«pH) }

SO+ 1Ot 1Ol + [Nete= 9, £,
0

<M

t
| Ag [l + | A%% [ + [ £(O)ll +/ [FRON* ds]
0

for every ¢, 0 < ¢ < 1. This shows that

(2.11) o7 ]

<M [H Ap |+ I AV [l + 1| £0) Il + poas | £(2) [ | -
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From estimate (2.11) and the triangle inequality it follows estimate (2.9). Theorem
2.1 is proved.

Now, we will consider the applications of Theorem 2.1.

First, the mixed problem for hyperbolic equation

utt—(a() )z Fou=f(t,x), 0<t<1l, 0<z<]l,

Zamu my L ((L‘),OS(L‘SL
2.12)

ut (0, ) = Zﬂkut My ) +(x),0< 2z <1,

u(t,0) = u(t, 1), ug(t,0) = uy(¢,1), 0<t <1

under assumption (1.2) is considered. The problem (2.12) has a unique smooth
solution w(t, z) for (1.2), 6 >0 and the smooth functions a(z) >a>0 (x€(0,1)),
o(z),v(x)(ze€l0,1])and f(t,z) (t,x€]0,1]). This allows us to reduce the mixed
problem (2.12) to the nonlocal boundary value problem (1.1) in a Hilbert space
H = L,[0, 1] with a self-adjoint positive definite operator A* defined by (2.12).

Theorem 2.2. For solutions of the mixed problem (2.12), we have the following
stability inequalities
Ofgfgl | ue(t, ) HLQ[O 1]<M [Ofgtag I f(t,-) ”LQ[O 1]+H Pz HL2[0,1]+H¢”L2[0,1]]7

Ofgfgl | wza(t, ) | Lap0,1) + IgaX | wet(t, +) 20,1

<M | max || £t zatoy+ 1 £0.) aton + 1| @ lcato+ 1 s HLQ[O,H],

where M does not depend on ¢(z), v (x) and f(t, x).

The proof of Theorem 2.2 is based on the abstract Theorem 2.1 and the symmetry
properties of the operator A* defined by formula (2.12).
Second, let ©2 be the unit open cube in the m-dimensional Euclidean space
R™{z = (z1," ) :
0<z; <1,1<j<m} withboundary S, @ =QUS. InJ0,1] x Q, the
mixed boundary value problem for the multi-dimensional hyperbolic equation

! gg’;m) - rgl(a’r(x)umr)mr = f(tv fIf),

x:(xl,.. Tm) €Q, 0<t<1,
(2.13) Zaj u(Xj, )+ p(x), 1 €0,

Zﬁkumk, ) +(x),z €,
( x)=0, z€8
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under assumption (1.2) is considered. Here a,.(z), (z € Q), o(z),%(z) (v € Q)
and f(t,x) (t € (0,1), x € Q) are given smooth functions and a,(z) > a >0 .

We introduce the Hilbert space Ly(f2) of the all square integrable functions
defined on Q, equipped with the norm

17 =1 [+ [ V@ Pdar - dnn) .
meﬁ

The problem (2.13) has a unique smooth solution w(t, =) for (1.2) and the smooth
functions (), ¥ (x), a,(x) and f(t, z). Thisallows us to reduce the mixed problem
(2.13) to the nonlocal boundary value problem (1.1) in a Hilbert space H = Ly ()
with a self-adjoint positive definite operator A* defined by (2.13).

Theorem 2.3. For the solutions of the mixed problem (2.13), the following
stability inequalities

3 Z | e, (£) )

<M [max 1 FE N + 22 2wl + 110 Hm] :

0<t<1
0121?2(12 H ua:racr HLQ(Q +01’21?<X1 H utt( ) HLQ(Q

<u [Orgggl 1)

1O Ny + D o @ + 2 N o HLQ@)]
r=1 r=1

hold, where M does not depend on o(z), ¥ (z) and f(t, x).

The proof of Theorem 2.3 is based on the abstract Theorem 2.1, the symmetry
properties of the operator A* defined by formula (2.13) and the following theorem
on the coercivity inequality for the solution of the elliptic differential problem in
Ly ().

Theorem 2.4. For the solutions of the elliptic differential problem
(2.14) A%u(z) = w(x), z € Q,
u(z) =0,z € S,
the following coercivity inequality holds [3]:

m
Z HumrmruLg(ﬁ) S MHwHLQ(ﬁ)
r=1
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3. THE FIRST ORDER OF AcCURACY DIFFERENCE SCHEMES

Throughout this paper for simplicity A; > 27 and \,, < 1 will be considered.
Let us associate the boundary value problem (1.1) with the corresponding first order
of accuracy difference scheme

T2 (W1 — 2uk + up—1) + Augrr = fi, fo = f(t),

n

= < < —_ = N =
(3.1) ty,=k7, 1<k<N-1, N7 =1;u9 rglaru[%ﬁ] + o,

7 Huy — ) = rzn:1 Br <U[ATL]+1 - u[é—]) % +9.

A study of discretization, over time only, of the nonlocal boundary value prob-
lem also permits one to include general difference schemes in applications, if the
differential operator in space variables, A, is replaced by the difference operators
Ay, that act in the Hilbert spaces and are uniformly self-adjoint positive definite in
h for 0 < h < hg.

In general, we have not been able to obtain the stability estimates for the solution
of difference scheme (3.1) under assumption (1.2). Note that the stability of solutions
of the difference scheme (3.1) will be obtained under the strong assumption

3.2) D ol + D186+ Y el D18kl < 1.
k=1 =1

k=1 k=1

Throughout this section for simplicity we put

2
k=1 2
_i Zn: Zn:amﬂ"“ Rl 4 gl gl
=1 k=1

Now, let us give some lemmas that will be needed below.

Lemma 3.1. The following estimates hold:

IR|g—n <1, |R|lg—u <1,
3.3) IR'Rllg—p <1, |[R'Rl|lg—n < 1,

ITAY2R| g < 1, |TAY2R|| g < 1.



Hyperbolic Differential and Difference Equations 177

Here and in future R = (I + irA1/2)_1, R= (I- 17A1/2)‘1

Lemma 3.2. Suppose that the assumption (3.2) holds. Then, the operator I —B],
has an inverse T, = (I — B7) ‘and the following estimate is satisfied:

1
1—2\0%\ Z\ﬁk\ Z\%\ZWH
k=1

Proof.  Using the definitions of B7, R, R and the triangle inequality and
estimate (3.3), we obtain

(3.4) | T lg—u<

’\i

1B < Zw o Ll

ﬂ}l
-

H—H

n Z: a5 HR -1 +R[¥”‘]—1HH_>H

1
# 30 3 jlam [ REFI R A Rl
CRPEIRF L REIRE <)

where
Z || + Z |Br| + Z |k | Z |Bk| -
=1

Since ¢ < 1, the operator I — B} has a bounded inverse and
1 1

< pu—
= okl = 18kl - Z |k | Z Wk\
=1 =1

HH—>H 1—gq
k=1

o5

Lemma 3.2 is proved.

Remark 1. Note that the operator function

 (RPER o PR 1 PRI Rl R))

is the approximation of ¢(\,,, — Ax). By the definition of ¢(¢) : ¢(\,, — \x) = I for
= k. It is clear that

L (m%&]—l RIEH L Rl gl gl p[%] R[&}]R[%)
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for m = k. Since R[ }HR[ }H = I,we can not obtain the statements of Lemma
3.2 and later the stability estimates for the solution of difference scheme (3.1) under
assumption (1.2).

Now, we will obtain the formula for the solution of problem (3.1). It is clear
that the first order of accuracy difference scheme

T2 (Upg1 — 2up + up—1) + Augs1 = f,
fe=f(trr1), thkrn = (k+1)7, 1<k <N -1, N7 =1,
up = p, 7 Hup — up) = w
has a solution and the following formula holds:

Uy = py, Ul = p+ TW,

1 . _ .

wo= o[RS 4 BE i (R— R) (R - R

(3.5) 2
k—1

N~ L p12 [R’H _ R’H} £, 2<k<N.
= 21

Applying formula (3.5) and the nonlocal boundary conditions

uozzamu[m]ﬂL% g — uo) = ZT lﬁk< [2] 41 Pi})ﬂ”ﬂv
m=1 T T

T

we can write

(3.6) m] -
-3 pan (Rl R
% s P
s=1

k=1
p+(R—R)'r (ﬂ%}ﬂ _ gl gl +g[%})
@7 .,
w— 2_iA_1/2 [R— R} f[%} — 2
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Using formulas (3.6) and (3.7), we obtain

p :TT{<I—§:T—1@ <(R—R)_IT(—1'TA1/2)(R[%}+1—Hﬂ%b—l)))
k=1

. <@ =3 o [ﬂz] AT (R[*J:L]—s - R[“f“‘]*) I

o 2i 2]
(3.9)
i 1 Ak Ak
+ T f3 irAY? —R[T}—FR[T} >
(s () )
n (2]
o= an 3 LarPEl - gl
m=1 s=1

So, formulas (3.5), (3.8) and (3.9) give a solution of problem (3.1).

Theorem 3.1. Suppose that the assumption (3.2) holds and ¢ € D(A), ¢ €

D(A%). Then, for the solution of the difference scheme (3.1) satisfy the following
stability estimates

[k ]| e
N-1

@10y S MDA R lar AT i+ o Ml k= 0,2, N,
s=1
N-1

luller <MY AT flla+ 1 @ [l + 1| (T+ir AYV2) AT 2 | ),
s=1
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N—-1
HA”?ukHHSM{Zufsumu b |+ A% HH} k=0,2,--+ N,

(3.11) ]s;[:_ll
4" s < 2 [ZHszHTJF | AY20 g + || (I + it AY?)y HH] :
s=1
N—-1
| Aug|lar < M{Z I fs— oot ]
s=2
(3.12) 1 fulle + A i+ | Ag HH},k:o,g,...M

N—-1

[Au||g < M [Z | fs = fso1 lm
Syl + 1 A i+ (| (14 imAYZ) A2 || ]
hold, where M does not depend on 7, ¢, ¢ and fs, 1 < s < N — 1.
Proof. Using formulas(3.8), (3.9) and estimates (3.3), (3.4), we obtain

[l 4ll e

AT { (1 +32 15 QR R g+ g R R-1|HﬁH>>

[ ]
< lAler +Z || Z (IR " 6HH~H+HR IHaH>| A

(3.13) (Z ol (W R4 IH%H>>

A&
T

n i& 41-s ~[2k] g g _
<3 1l Z (|R ey R 5|HaH>|A V2§, g
k=1

+ HRRH HA 1/2f[7k} [ |A_1/2¢|H>}

N-1
=M { DA fllar+ | ATV |l + e IH} :

s=1

_1 - 1 Am]_ ~Am]_
|A %0l < |Trlun {(1 + 3 laml 5 (IRE#I e + ) RE) 1HHHH)>
m=1

x <HA‘1/2¢HH +3 18 (HRRHH% 147 sl
k=1 T
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s

T

1 i& +1-s [%&]+
t 2 2<HR T e 4 IR e ) 1A

(Zwm (HR i n + 12 HHHH)> (el
(3.14) \k=1

], N

_s ~[ T ]—s _
+Z | Z (”R I h—m R ler—m ) A2 £l

N-1
=M { DAL+ AT |l + o HH} -

s=1

Applying A? to formulas (3.8), (3.9) and using estimates (3.3) and (3.4), in a
similar manner, we obtain

N-1
(3.15) 1A 2l < M { S fslar+ 1l + 1| A% HH} :
s=1
N-1
(3.16) lwllg < M {Z!!fs!!HT+ I e+ 1| A% HH} :
s=1

Now, we obtain the estimates for || Ay ||z and ||A'/2?w| . First, applying A
to formula (3.8) and using Abel’s formula, we can write

et {<I St (- Ryl R “>>>
k=1

3.17 n -1 Am
G47) +<ZamA1/27 (R—R) (R[LP]_R[ ’ ]>>
" n [%&}—2 Akl
x| A3 5 (RH‘S R ) (forr = £)
k=1 s=1
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Second, applying A'/2 to formula (3.9) and using Abel’s formula, we can write

AV =T, { <I - Zn: am% (R[*J}]—l +R[M}]_1>

n [é&] -2 N Akl
X A1/2¢+Zﬁk’i Z % <R[_}}_8—R[T] > (fs—l—l_fs)

k=1 s=1

Y, AT&] 5 /2. 2p7
R LR G TR )
N (27—1@7 (-l RM))
k=1
n [@]—1 Am]_,

X (A@Z:lam! - %(R[%E]_S_R[ T] )(fs—l_fs)

Using formulas (3.17), (3.18) and estimates (3.3), (3.4), we obtain
(3.19)

n (o p[2] B
IAplly < 1T |lH—m 1+Z|ﬁk|§ [RRU" Hg—m +|RR | zr—
k=1
[2] ) )

R (LS P

s=1

|HaH>|fs—fs_1|H

f[&:l]—lHH])
]|HaH>> (\\A”%H,ﬁi B
k=1

n
x| 1Al g+ lom
m=1
[2m]-1 Al A
+ RS [+ [[R [ r— HleHJ’_HR"i_RHH—'H‘
+<

{

() [2] s =[] -
« (g  PRPRYT i P (TS A PRS2 TP R

| il

[)\m
T

i

1 ~ Am]_ =
a5 (lR‘lR[ EI e IR R

¥
| —

s H

" ( &l

N-1
= M{Z I fo = Fomrlla + 1 fu Ml + 1 A2 [l + ] A IH},

s=2

L.Y’S

[ :
Dot + IR i ) 13l + 142 R [

5
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n 1 Am]_ = 2]
|42 s|TT|HﬁH{<1+z |am|§(|R[ SRl PR g |HHH>
=

[

1

1 A e - iﬂ_& —s
x §<|RH} 6|\H—»H+HR[ | |H—»H>

: 1]

Bl (uﬂ*’ﬂ — |HaH>> <|A¢|H +mi=1|am|

n
[ AL
k=1

S

N
Il i

Vi — Fullg IR+ Rl Hf[ﬁ}_l
T H

p=

- }|HaH>|f1|H+|A1/%QRR|HﬁHpr

2k
T

I

} A

(=l

VN

(3.20)

+
YR
il 3

=1

s=1
A
Am

IR 1-1|HHH+|R[J*]1|H~H>|f1|H+|R+RIH~HHf[MJ—IHHD

=

el e
x 5 (WAL= + 1R o) 152 = ol

N-1
< M{Z I fs = Fomt lla + 1 fu Ml + 1 A2 [l + | A IH}-
s=2
Now, we will prove estimates (3.10), (3.11) and (3.12). Let k¥ > 2. Then using
formula (3.5) and estimates (3.3), (3.13), (3.14), (3.15) and (3.16), we obtain

_ <1 T _
el < 5 (1B o + 1R | e + 5B B s

1
2
. ol 3

HIR RS ) ARl + 30 2 (IRl + IRl 14 ol

s=1
N-1
=M { DAV LT+ T ATV |l + [l IH} -

s=1

1 ~ 1 1 ~
I unler < 5 (IR i+ 1R o] N ARl + SR R s

|~

k—1
1 pk— T _s ~l_ s
IR R )@l + 32 5 (1B a4+ 1R ] 1l
s=1

N-1
< M{Z|f8|HT+ [0 e+ [ A% |H} :

s=1

Now, we obtain the estimates for || Auy, ||z for & > 2. Applying A to formula (3.5)
and using Abel’s formula, we can write
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1 . .
Auw, = 5 [Rk—l + R"“‘l} Ap+ (R — B)“'r(R* — R¥) Aw

(3.21) e N |
+3 (Z; [Rk_sjuRk_s} (fs—1—fs)+2fk-1— [Rk_leRk_l} f1> |

Using formula (3.21) and estimates (3.3), (3.19), (3.20), we obtain

1 - -
| Augllm < 5 [HRk YWa—m + | R 1HH—>H} | Apll &

1 ~ ~ 1
5 (IRTRS 4+ RRA Y| A2w

k-1
"'% <Z ([HRk_SHHHH + ”Rk_SHH—)H} [ fs—1 — fsllm
5=2

2| fi-aller + (IR ors + 1Rl il )

N-1
= M{Z 1 fs = fomt Nl + W ol + 1AV Nl + 1] A HH}-

s=2

Thus, estimates (3.10), (3.11), (3.12) for any & > 2 are obtained. From uy = u
and (3.13), (3.15), (3.19) it follows estimates (3.10), (3.11) and (3.12) for & = 0.
Note that in a similar manner with estimates (3.14), (3.16), (3.20), (3.3) and (3.4),
we obtain

Ilrwlla < 1TAYV2R)| el T || —n
n 1 A A
x { (1 + 3 lowl SURCE T o + |R[J}1-I|Hm>
m=1

x (IA_”Q(IHTA‘”QWIH + > 16| (IRIHaHlA‘”Qf[A

2] (Fga
k=1
AL
[7&}_11 OF 28] 41
+ B <|R g +|RT'R |H—»H> A2 fllur
s=1

(3.22) . N N
v ( ol (IR s+ 1R AL |HaH>> (el
k

[ 4

1 Am| _q a2
3 land (I 2 R

m=1 s=1

|A-1/2fs|m)}

N-1
= M{Z IATY2 ol + (| A7V2(I 4+ ir A7) [l + (| @ IH} :

s=1



(3.23)

(3.24)
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IrAwlln < |1TAYV? Rl a—n|Tr | a—n

x { (1 3 Joml UREE

m=1

IR 1)) <|Au+irA-“2>¢|H+Z 1By (HRHHaHHfH&} srr
k=1

A
[7&}—1 1 A ~[Ark“}+1’s
2 3 (lR[ A e+ IRR |HﬁH) £l
s=1
~ 1 A Y
(1 5 (1 s 1 B ) ) (472
pt 2 H
Am
n [ T ]—1 1 [M]_s_l . ~[A7r—n‘]75
+ Y laml Y 5 | I’ |#—m+ R R le—m | [ fsllaT
m=1 s=1

,_.

N—
M{ fellzrm || (T +imA™ )0 || + IAWIH}
s=1

IrAw|lm < T A Rl|n—p || T+ | 1 -

{(HZI% (IR |+ RO |HﬁH)>X(IA”Q(IHTA‘”Q)U)IH

m=1
[*]_, \
d Sl S I ]
18| D 5 | I’ |H—n +[|RT R ler—m | [ fst1 = fsllg
k=1 s=1

%]

A ~
+<|R[ﬂ‘1|HﬁH+|R-1R

)

(Zwk 5<|R e 4 IR RP’&}|H%H))(|A¢|H

|HﬁH) 1l + I+ R Rl wa_l
T H

LAY Ry g wa

(2]~

)
+Z|am|{ Z % HR e P L

+<|R 2y 1R |HﬁH) 1l + VR Bl | 2

S|HAH) Ife = Feoill

Dy

N-1
< M{Z IS fama Nl + 1Syl + | A2 (I A7)0 |l + | A IH}-

s=2

Using the formula u; = p+ 7w and the triangle inequality and estimates (3.13),
(3.15), (3.19), (3.22) and (3.23), we obtain estimates(3.10), (3.11), (3.12) for k£ = 1.
Theorem 3.1 is proved.
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Remark 2. Note that stability estimates (3.10), (3.11) and (3.12) in the case

k = 1 are weaker than respective estimates in the cases k¥ = 0,2,-- -, N. How-
ever, obtaining this type of estimate is important for applications.We denote by
™ = {ax}1_, the mesh function of approximation. Then ||(T + it A~"/?)ay ||y ~

lla1||lzr = o(7) if we assume that 7||Aaq||z tends to 0 as 7 — 0 not slower than
|la1|| gr. 1t takes place in applications by supplementary restriction of the smooth
property of the data of space variables. It is clear that the uniformity in 7 estimate

N—1
lurlg < M| S NATY2 flgr+ | A7 g + | @ HH]
s=1

is absent. However, estimates for the solution of first order of accuracy modified
difference scheme for approximately solving the boundary value problem (1.1)

T2 (W1 — 2uk + uk—1) + Augrr = fi, fo = f(tr),
n
th=kr, I<E<N-1, Nt=Lu=» apnu

B

(I +12A) 7 (ug — o) Zr 1@( 2] [%O—i—w

+ ¥,
(3.25)

are better than the estimates for the solution of difference scheme (3.1).

Theorem 3.2. Suppose that the assumption (3.2) holds and ¢ € D(A), ¢ €

D(A%). Then, for the solution of the difference scheme (3.25) the stability inequal-
ities

N-1
max Jugllg < M{Y AT follar+ | A2 | + || @ [lad,
0<k<N =

N-1

max [|AY2ugllg < MY || fo lla + 1| Ao llm + 1| ¢ llm}
0<k<N =

—2 A
| Jmax [l (w1 — 2up + up—1)||m + omax || Aug |la

N-1

<MY fs = Foor lm+ | Al + LAY |l + || Ap [lm}

s=2

hold, where M does not depend on 7, p, 1 and f;,1 <s < N —1.

The proof of Theorem 3.2 follows the scheme of the proof of Theorem 3.1 and
it is based on the following formulas
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ug = W, U1 = + 7RRw,

1 - - - -
wp =3[R+ B ek (R— )7 (RY — RN RAw

-
- % (R B ot (R = )V r(RF — RY)RRw
+A‘1% <2fk_1 . [Rk_l + R’H} f1>
Al ki;( (R + B (fr = £).2 SR S N,
p=T, { <I CRRY ((R R (i AV (RIEI R[“ﬂ“)))
=
x |- mz::l U [bgjl_l %A‘I/Q (R[*J%]—s - R[&}]S> fs

RE (Z R Rt (R R[*ﬂll)>

m=1
. (], . .
|o-Sria & Zaveirar el g |
k=1 s=1
n 1 Am]_q ~[Am ] _q
“‘TTRRKI_;O‘W (RP#) 4 R ))
n [A"&} —1 Ak Ak
< (o= > 2%14_1/2 (_iTAl/Q) (R[ e gl *'}H_s)fs
k=1 s=1

N
o= am 3O QLiA—lm(R[%l]—s ~ R g,
1 s=1

m=

and on estimates (3.4) and (3.3).

Remark 3. Note that the estimates for the solution of the modified difference
scheme (3.25) better than the estimates for the solution of difference scheme (3.1).
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The stability estimates for the solutions of the second order of accuracy implicit
difference schemes can be also obtained, unfortunaly, under the strong assumption
than (3.2). Of course, stability statements could be also proved for the second
order of accuracy explicit difference scheme under the assumption that the condition
T||A||g—g — 0 when 7 — 0 is satisfied. In applications, this result permit us
to obtain the stability estimates for the solutions of the difference scheme of the
nonlocal boundary value problems for hyperbolic equations under the assumption
that the magnitudes of the grid steps = and h with respect to the time and space
variables are connected.

Now, we consider the applications of Theorem 3.2.

First, the nonlocal boundary value problem (2.12) for one dimensional hyperbolic
equation under assumption (3.2) is considered. The discretization of problem (2.12)
is carried out in two steps. In the first step, let us define the grid space

0,1]p={z:2, =rh,0<r < K,Kh=1}.

We introduce the Hilbert space Loy, = Ly ([0,1]5) of the grid functions " (z) =
{11 defined on [0, 1], equipped with the norm

o, = (St

To the differential operator A generated by the problem (2.12), we assign the dif-
ference operator A7 by the formula

K-1

(3.26) A (@) = {~(a(@)p)er + 067}

acting in the space of grid functions " (z) = {"}{ satisfying the conditions
0 = it — 0 = K — K1 With the help of A% we arrive at the nonlocal
boundary value problem

FULD) L Azoh(t ) = fi(tx), 0<t <1, @ € [0,1]

V(0.2) = 3 00" (Ay.2) + " (@), € [, 1
o (0.) = £ Aot (. 2) + (@), € 0.1,

(3.27)

for an infinite system of ordinary differential equations.
In the second step, we replace problem (3.27) by the difference scheme (3.28)
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uz+1(a:) 2uz(m)+uk 1 (@)

+ Ahuk+1 = fk (), /?+1(x) = fh(tk+179€n)7
thst = (k+1)71<k<N—1 Nr=1,z€[0,1],

(3.28) uo( )= Z Oéju[,\ /T]( T)+ ¢ ( ),z € [0, 1]p,

uk /T+1( )_‘uk i /7] (m)

(I+T2Am)u1 (J»‘)—Uo(m Zﬁj -|—'¢h(x), x €0, 1]p.

Jj=

Theorem 3.3. Let 7 and h be sufficiently small numbers. Suppose that the
assumption (3.2) holds.Then, the solutions of the difference scheme (3.28) satisfy
the following stability estimates:

s [t +oma [[() [,
<on | e at], o]+l |
e 772 (ks —2ufuly ) | e ()]
< M [Hf{l‘ L2h+2§§cn§a]$f(—1 HT_l (fg—f’il_l)‘ Lo, L2h+H <(P1£>ac Lgh] ’

Here M; does not depend on 7, h, ¢"(z), "(x) and f',1 <k < N.

The proof of Theorem 3.3 is based on the abstract Theorem 3.2 and the symmetry
properties of the operator A7 defined by (3.26).

Second, the nonlocal boundary value problem (2.13) for the m-dimensional
hyperbolic equation under assumption (3.2) is considered. The discretization of
problem (3.27) is carried out in two steps.

In the first step, let us define the grid sets

ﬁh: {z =2 = (har1, - hinrm), 7= (11,7 - 7)),
OSTJ SNj,thjzl,]:177m}7Qh:§th7Sh:§th

We introduce the Banach space Lo, = L2(§h) of the grid functions ¢"(z) =
{o(hir1,- -+, hymry)} defined on ©Qy,, equipped with the norm

= (o ae)

mEQh
To the differential operator A generated by problem (3.27), we assign the difference
operator Ay by the formula

m

(3.29) Ajult = =>" <ar(x)uh_>
Tr,Jr

Tr
r=1
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acting in the space of grid functions u"(x), satisfying the conditions v/ (x) = 0

for all z € S,. It is known that A} is a self-adjoint positive definite operator in

Ly(€,). With the help of A7 we arrive at the nonlocal boundary value problem
E) 4 Az () = f(t2), 0SS, T e

(330) vh(ov fI,') = Z alvh ()‘17 fI,') + @h(‘%‘)v T c th

@ 00) _ zﬂwt (A ) + (), 2 € Qp

for an infinite system of ordinary differential equations.
In the second step, we replace problem (3.30) by the difference scheme (3.31)

ul - (z)—2ul (x)+ul_, (x)
bt k bl + Ah“’k-}-l - f]?(x)v f£+1($) = fh(tk‘-f-lvx)v
thy1 = (k—l—l) 1<k<N-1, Ntr=1,z € Qp,

(331 4 uf(z) = zazuwu (@), = € O,

(I—I—TQAm)ul(m_uO(m Zﬁ /\l/r+1() /7] (a: _’_wh( ) $€§h-

Theorem 3.4. Let 7 and |h| be sufficiently small numbers. Suppose that the
assumption (3.2) holds. Then, the solutions of the difference scheme (3.31) satisfy
the following stability estimates:

max Huﬁ‘ + max <ullz>
0<k<N Ly,  0<kSN = Trgr || Ly
r=1 2h
<M 2], + [l ,
=t [13%13%{—1 I Lgh+ ¥ Lo +Z @m_rjr Lo
m

max ‘7_2 <ull,§+1 — QuZ + uz_lﬂ + max <u2> _
1<k<N-1 Lon  O<k<N £ ey gr|| g,
< M Hf{1 + _ max HT_I <f/?—f/i1 1 "’Z
Lop  2<k<N-1 L2 a:r Jr |l L,
o .
TyrTr,Jr Lon

Here M; does not depend on 7, h, ¢"(z), "(x) and f',1 <k < N.

The proof of Theorem 3.4 is based on the abstract Theorem 3.2, the symmetry
properties of the operator A7 defined by formula (3.29) and the following theorem
on the coercivity inequality for the solution of the elliptic difference problem in Lo,.
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Theorem 3.5. For the solutions of the elliptic difference problem
(3.32) Aful(z) = W (z), 2 € Qp,

u(z) =0,2€ Sy

the following coercivity inequality holds [3]:

m
h h
ot < Ml|w™|| Ly,
=t L ErendrilLy,
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