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A REFINEMENT OF JENSEN’S INEQUALITY WITH APPLICATIONS
FOR f-DIVERGENCE MEASURES

S. S. Dragomir

Abstract. A refinement of the discrete Jensen’s inequality for convex functions
defined on a convex subset in linear spaces is given. Application for f-
divergence measures including the Kullback-Leibler and Jeffreys divergences
are provided as well.

1. INTRODUCTION

The Jensen inequality for convex functions plays a crucial role in the Theory
of Inequalities due to the fact that other inequalities such as that arithmetic mean-
geometric mean inequality, Holder and Minkowski inequalities, Ky Fan’s inequality
etc. can be obtained as particular cases of it.

Let C be a convex subset of the linear space X and f a convex function on C.
If p=(p1,...,pn) is a probability sequence and x = (x1,...,x,) € C™, then

(1.1) f <szwz> < pif (@),
=1 i=1

is well known in the literature as Jensen’s inequality.
In 1989, J. Pecari¢ and the author obtained the following refinement of (1.1):
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for £ > 1 and p,x as above.
If ¢1,...,q > 0 with Zle g; = 1, then the following refinement obtained in
1994 by the author [6] also holds:

e (Snm) < 3 ()

where 1 < k£ < n and p, x are as above.

For other refinements and applications related to Ky Fan’s inequality, the arith-
metic mean-geometric mean inequality, the generalised triangle inequality etc., see
[3-8].

The main aim of the present paper is to establish a different refinement of the
Jensen inequality for convex functions defined on linear spaces. Natural applications
for the generalised triangle inequality in normed spaces and for the arithmetic mean-
geometric mean inequality for positive numbers are given. Further applications for
f-divergence measures of Csiszar with particular instances for the total variation
distance, x2-divergence, Kullback-Leibler and Jeffreys divergences are provided as
well.

2. GENERAL RESuLTS

The following result may be stated.

Theorem 1. Let f: C — R be a convex function on the convex subset C' of
the linear space X, z; € C, p; > 0,7 € {1,...,n} with 3" | p; = 1. Then

(S | < win [(1—pk)f <Zj1 pﬂr}%m) .y (wk)]
j=1

1—px

IN
|

i [Zn: (1—py) f <Zj1pjxj_pkwk> +Zn:pkf (xk)]
k=1

1—px

< maxn} [(1_pk)f <Zj1 pjwj_pk$k> +pif (xk)]
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In particular,
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(2.2) k=1 pret
< %ker{rllaxn} [(n -1 f <Zj1 _31 k> N f(xk)]
= %Zf (x5)

j=1

Proof. For any k € {1,...,n}, we have

n
Z Pj
ijxj PEXE = ijxj = i Lj = 1 _pk i L j
];ék j;pj J#k j;pj J#k
Ji#k Ji#k
which implies that
n
=1Pj%j — Pk
(2.3) 2o Pits ijxj ecC
1- Pk Z
Pj 32y
J#k
for each k € {1,...,n}, since the right side of (2.3) is a convex combination of

the elements z; € C, j € {1,...,n}\ {k}.
Taking the function f on (2.3) and applying the Jensen inequality, we get suc-
cessively

> i1 DT — Pk
f( j B ijxj S—ij [ (x5)

1 —pr
]; Pi 2 ]Zl Pi 2
J#k J#k
1 n
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for any k € {1,...,n}, which implies

> i1 DT — DTk -
(2.4) <1—pk>f< S oS () <Y pif ()
j=1
foreach k € {1,...,n}.
Utilising the convexity of f, we also have
> i1 DT — DTk
(2.5) (1—px) f < ’ llj - + pif (k)
— Pk
> i1 DT — DTk -
> f [(1—1%)- . llj_jpk +pnak| = D pia
j=1

foreach k € {1,...,n}.
Taking the minimum over % in (2.5), utilising the fact that

. 1 ¢
min o < — E o < max  qy
n 1 ke{l,...,n}

and then taking the maximum in (2.4), we deduce the desired inequality (2.1). =

After setting z; = y; — > ;- qu and p; = ¢;,j € {1,...,n}, Theorem 1
becomes the following corollary:

Corollary 1. Let f : C — R be a convex function on the convex subset C,
0eC,y; € Xandg; >0,j€{l,...,npwith 370 ¢; =1.1fy;—>3 , qy € C
forany j € {1,...,n}, then

f(0)< kegﬂnn}{(l—%) f[lz—qu <ZZ; qwz—zm) +aqrf (yk—;qwz}

<1 {Z(l —an) f llz—k (Z Qi —yk> +> af <yk -3 qzyz>}
K U \1= =1 =1

+arf <yk -3 qwa}

=1

=1

&% [
< 1- Ok _
- ker{rll?fn}{( @) f [1 — qk <ZZ; i yk)
<> qf (yj - Zqzyz> -
=1 =1

(2.6)
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In particular, if y; — L 3"y, € C forany j € {1,...,n}, then

f(0) < %keg’ign}{(n— [%( Zyz yk> +f (w——Zw)}
yz—yk> +>f (w—%Zw)}
=1 k=1 =1
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The above results can be applied for various convex functions related to cele-
brated inequalities as mentioned in the introduction.

Application 1. If (X, |-||) is a normed linear space and p > 1, then the
function f: X — R, f (z) = ||z||” is convex on X. Now, on applying Theorem 1
and Corollary 1 for z; € X, p; > 0,4 € {1,...,n} with >/, p; = 1, we get:
(2.8)

p p
n

ijxj <  min (1—pk)1_p ijxj_pkxk + i [l )"
: =1

g% S —pw)! ijwj PRk +Zpk (e

p

< max (1- pk ijwj przk|| + p llzel”
<> pjlallP
j=1

and

)

max , { [(1 — pk)l—ppi +pk}

ke{l,...n
n p
Tk — Zplxl
=1

n
< ij
j=1

n
T — szwz
=1

2.9)
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In particular, we have the inequality:
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and
p n p
<>

_ 1N\- max
(2.11) [(n 1) p+1} ax e

1 — 1 —
xk——E X xj——E X
n n

=1 =1

If we consider the function A, (t) := (1 — t)l_p tP+t,p>1,te0,1), then
we observe that
W) =1+ptP t(1—t)" P+ (p-1)P(1—-1)",
which shows that h,, is strictly increasing on [0, 1) . Therefore,

minn} {(1 —pi) b +pk} = P+ (1= ) 7P 2,

[ m—i—(l—pm)l_p-pﬁ’n} max ’

ke{l,...,n}
n n
< ij Tj— szwz
j=1 =1

n
T — szwz
=1

(2.12)

Application 2. Let z;, p; > 0,7 € {1,...,n} with 3" | p; = 1. The following
inequality is well known in the literature as the arithmetic mean-geometric mean
inequality:

n

(2.13) ijxj > ﬁ x?j.
j=1

j=1
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The equality case holds in (2.13) iff x1 = -+ = x,,.

Applying the inequality (2.1) for the convex function f : (0,00) — R, f(x) =
—Inz and performing the necessary computations, we derive the following refine-
ment of (2.13):

n Zn . — T 1-pg
me >  max j=1P3%5 — Pk¥k - bk

whi = k
i=1

e{1,..,n} 1 —px
1 1
n n e Pk n
(2.14) > 1] 2= DI PR i
Pt 1 —pg
n 1—pi n
i—1PjTj — PkTk .
> min 2 j=1 Pidi - Zfo’.
kefl,...,n} 1 — pr i1
In particular, we have the inequality:
n—1
P e A
— Z €Ty k max fl . (L‘k
e{1,.. n

3
—
—

n ; n n
. 2j=1 Tj — Tk -
>  min == - - cpr \ > T

3. APPLICATIONS FOR f-DIVERGENCES

Given a convex function f : [0, 00) — R, the f-divergence functional

n
i
(3.1) Ir(p,a):i=Y af (—’) :
i=1 i
where p = (p1,...,pn), 4 = (¢1,- .., qn) are positive sequences, was introduced

by Csiszar in [1], as a generalized measure of information, a “distance function” on
the set of probability distributions P™. As in [1], we interpret undefined expressions

by
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The following results were essentially given by Csiszar and Korner [2]:

(i) If f is convex, then If (p, q) is jointly convex in p and g;
(if) For every p,q € R"Y, we have

3.2) It (p,q) > Z%‘f( =)
= > =1
If f is strictly convex, equality holds in (3.2) iff
pr_P2_  _Pn
Q1 a2 an

If f is normalized, i.e., f (1) = 0, then for every p,q € R" with Y~ | p; =
> i gi, we have the inequality

(3.3) Ir (p,q) > 0.

In particular, if p,q € P", then (3.3) holds. This is the well-known positive
property of the f-divergence.
The following refinement of (3.3) may be stated.

Theorem 2. For any p, q € P", we have the inequalities

oz e 1w (125) 100 ()
o sfEewr(78) B (2)

k=1

. 1 —pg Pk
> 1-— — =0
2 n [( %)f(l_qk) +Qkf<qk>] >0,

provided f : [0, 00) — R is convex and normalized on [0, co) .

The proof is obvious by Theorem 1 applied for the convex function f : [0, c0) —
R and for the choice z; = %, i € {1,...,n} and the probabilities ¢;, ¢ €

{1,....n}. ’

If we consider a new divergence measure Ry (p, q) defined for p, q € P" by

(3.5) Ry (p,q) := ilz(l—qk)fc:pk)

n el dk
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and call it the reverse f—divergence, we observe that

(3.6) Ry (p,a) = Iy (r,t)

with
1—p 1—pn 1—q 1—qn
= t = > 2).
' <n—17 "n—1)" n—1"""Tn=1 (n=2)

With this notation, we can state the following corollary of the above proposition.

Corollary 2. For any p,q € P™, we have

(3.7) It (p,q) > Ry (p,q) > 0.

The proof is obvious by the second inequality in (3.4) and the details are omitted.

In what follows, we point out some particular inequalities for various instances of
divergence measures such as: the total variation distance, x 2-divergence, Kullback-
Leibler divergence, Jeffreys divergence.

The total variation distance is defined by the convex function f (¢t) = |t — 1],
t € R and given in:

(3.8) V)= g

J=1

n
.
= - ':Z\pj—Qj\-
g5 =

The following improvement of the positivity inequality for the total variation
distance can be stated as follows.

Proposition 1. For any p,q € P", we have the inequality:

-----

(3.9) V(p,q) >2 max |pr—q (=0).
ke{l,...,n}

The proof follows by the first inequality in (3.4) for f(¢) = |t — 1|, ¢t € R.
The K. Pearson y?2-divergence is obtained for the convex function f(t) =
(1—t)%, t € R and given by

(3.10) X (p,a) = q <& - ) = oy —g) ,qJ) :
j=1 4 j=1 4
Proposition 2. For any p,q € P™,
G o> max JEW Lo w0,
ke{l,.n} | qk (1 — qx) ke{l,...n}
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Proof. On applying the first inequality in (3.4) for the function f(¢) =
(1—1t)%, t € R, we get

L —pr ? Pk ?
2 ) 2 oo (122 1) v (2 0)
v q>—k£??fn}{< wW=a ) el

C e (pr — aqr)? _
ke{l,..n} | ax (1 — qx)

Since . L1
(L —a) < 7l + (1 —a)]” = 7,
then ( )2
Pk — qk 2
m >4 (pr — qx)
for each k € {1,...,n}, which proves the last part of (3.11). |

The Kullback-Leibler divergence can be obtained for the convex function f :
(0,00) — R, f(t) =tlnt and is defined by

n p, p, n p,
(3.12) KL(p.q):=Y q;- P <_J> =3 pjin <_J>
7=1 qj qj j=1 QJ

Proposition 3. For any p,q € P", we have:
1—pk>1_p’“ (m)pk
3.13 KL(p,q) > 1In| max — = > 0.
449 0 [ke{l ..... " { (1 —a @

Proof.  The first inequality is obvious by Theorem 2. Utilising the inequality
between the geometric mean and the harmonic mean,

1
xo‘yl_o‘zg_’_;a, x,y >0, a €0,1]

x y
we have .

N —Pk Pk

(=) () =
I —qk Qe

for any k € {1,...,n}, which implies the second part of (3.13). ]

Another divergence measure that is of importance in Information Theory is the
Jeffreys divergence
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619 T =30 (2 1) (2) =3 - a)m ().
— 4 4 — 4
j= j=
which is an f-divergence for f(t) = (t —1)Int¢, t > 0.

Proposition 4. For any p,q € P", we have:

(1_1%)%]}
3.15 J(p,q) > ma — In | ——F—
(3.15) (P, q) ke{1,..).<,n}{(% Pr) [(1—%)1%
2
ke{l,...n} | Pk + Qk — 2Dkqk

Proof.  Writing the first inequality in Theorem 2 for f (t) = (t — 1) Int¢, we
have

() (22
J(p,q) > 1— -1)1 +ar ( ——1)In{=—=
(P, 9) ker{rll?.).(,n}{( Qk)[<1—% ! 1—qk " qk ! qk
1 —pg Dk
ke T} {(q'“ pi)In (1 - %) (@ —pr)In <Qk>}
(1—pk)qk]}
= — 1 -~
ke(lon) {(Qk Pi) In [(1 —a)prkl)’

proving the first inequality in (3.15).
Utilising the elementary inequality for positive numbers,

Inb—1na 2
> )
b—a T a+bd

o [ (i250) = )
~(52) () prom_n]

I—aq

a,b>0

we have

= (qx — Pk) -

I=pi ) _ Dk
(ax — pi)° _ln<1—q§§> 1“(«/2)

- _ 1=pe _ P&
ar (1 — qx) ok — T
(g — pr)’ _ 2 o 2(q —pr)’

- — 1—pg Dk — — -
g (1 —ar) =22+ B pr+ k= 2Pk

for each k € {1,...,n}, giving the second inequality in (3.15). ]
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