# DUALITY OF HARDY SPACE WITH BMO ON THE SHILOV BOUNDARY OF THE PRODUCT DOMAIN IN $\mathbb{C}^{2 n}$ 

Ji Li


#### Abstract

In this paper, we introduce the BMO space via heat kernels on $\widetilde{M}$, where $\widetilde{M}=M_{1} \times \cdots \times M_{n}$ is the Shilov boundary of the product domain in $\mathbb{C}^{2 n}$ defined by Nagel and Stein ([16], see also [17]), each $M_{i}$ is the boundary of a weakly pseudoconvex domain of finite type in $\mathbb{C}^{2}$ and the vector fields of $M_{i}$ are uniformly of finite type ([14]). And we prove that it is the dual space of product Hardy space $H^{1}(\widetilde{M})$ introduced in [11].


## 1. Introduction

In [14], Nagel and Stein studied the initial value problem and the regularity properties of the heat operator $\mathcal{H}=\partial_{s}+\square_{b}$ for the Kohn-Laplacian $\square_{b}$ on $M$, where $M$ is the boundary of a weakly pseudoconvex domain $\Omega$ of finite type in $\mathbb{C}^{2}$. And in [16], they obtained the optimal estimates for solution of the KohnLaplacian on $q$-forms, $\square_{b}=\square_{b}^{(q)}$, which is defined on the boundary $\bar{M}=\partial \Omega$ of a decoupled domain $\Omega \subseteq \mathbb{C}^{n}$. The method they used is to deduce the results about regularity of $\square_{b}$ on $\bar{M}$ from corresponding results on $\widetilde{M} \subset \mathbb{C}^{2 n}$ via projection, where $\widetilde{M}=M_{1} \times \cdots \times M_{n}$ is the Cartesian product of boundaries of domains in $\mathbb{C}^{2}$ mentioned above. Namely, $\widetilde{M}$ is the Shilov boundary of the product domain $\Omega_{1} \times \cdots \times \Omega_{n}$.

In [17], they developed an $L^{p}(1<p<\infty)$ theory of product singular integral operators on product space $\widetilde{M}=M_{1} \times \cdots \times M_{n}$ in sufficient generality, which can be used in a number of different situations, particularly for estimates of fundamental solutions of $\square_{b}$ mentioned above. They carried this out by first considering the initial value problem of the heat operator $\mathcal{H}=\partial_{s}+\mathcal{L}$ for each $M_{i}$, where $\mathcal{L}$ is the

[^0]sub-Laplacian on $M_{i}$ in self-adjoint form, then using the heat kernel to introduce a Littlewood-Paley theory for each $M_{i}$ and finally passing to the corresponding product theory.

In [11], the product Hardy space $H^{p}$ on $\widetilde{M}$ has been introduced and they obtained the $H^{p}$ boundedness of the product singular intergal operators studied by Nagel and Stein in [17].

The main purpose of this paper is to introduce the product BMO space on restrictive product space $\widetilde{M}$. More precisely, each factor $M_{i}$ satisfies the assumption that the vector fields on $M_{i}$ are uniformly of finite type (Assumption 3.1, Definition 2.2, see also [14]). And we prove that it is the dual of the Hardy space $H^{1}(\widetilde{M})$. Namely, we will show the following

Theorem 1.1. $\left(H^{1}(\widetilde{M})\right)^{\prime}=B M O(\widetilde{M})$.
As a consequence of duality, we obtain that the product singular intergal operators defiend by Nagel and Stein in [17] is bounded on $B M O(\widetilde{M})$ and from $L^{\infty}(\widetilde{M})$ to $B M O(\widetilde{M})$.

We shall point out that in [11], to establish the Hardy spaces $H^{p}(\widetilde{M})$, we do not need to impose any additional condition on $\widetilde{M}$, while introducing the BMO space and showing the duality the Assumption 3.1 mentioned above is crucial.

We remark that the duality of Hardy space on $\mathbb{R}^{n}$ was first obtained in [9] by C. Fefferman and Stein. For the multi-parameter product case, S.Y. Chang and R. Fefferman in [3] proved that the dual of $H^{1}\left(\mathbb{R}_{+}^{2} \times \mathbb{R}_{+}^{2}\right)$ is $B M O\left(\mathbb{R}_{+}^{2} \times \mathbb{R}_{+}^{2}\right)$. Recently, in [10], the Carleson measure space $C M O^{p}(\mathcal{X} \times \mathcal{X})$ was introduced and it is proved to be the dual space of $H^{p}(\mathcal{X} \times \mathcal{X})$, where $(\mathcal{X}, d, \mu)$ is space of homogeneous type in the sense of Coifman and Weiss ([6]), $\mu$ satisfies

$$
C_{1} r \leq \mu(B(x, r)) \leq C_{2} r
$$

for all $x \in \mathcal{X}$ and $r>0$, where $B(x, r)=\{y \in \mathcal{X}: d(x, y)<r\}$ and $d$ satisfies some the Lipschitz condition, see more details in [10].

In this paper, to show Theorem 1.1, we will follow the ideas in [10]. The basic scheme is as follows.

Without lost of generality, we first concentrate on the product space of two factors, namely $\widetilde{M}=M_{1} \times M_{2}$. For the sake of simplicity, we assume that $M_{1}=$ $M_{2}$, dropping the subscript.

To begin with, we impose Assumption 3.1 on $M$, then for such $\widetilde{M}$, we give the definition of $B M O(\widetilde{M})$ and establish the Plancherel-Polya-type inequality by using the discrete Calderon reproducing formula. Next, we introduce the product sequence spaces $s^{1}$ and $c^{1}$ and prove that the dual of $s^{1}$ is $c^{1}$ by following the constructive proof of Theorem 4.2 in [10]. Then we prove that $B M O(\widetilde{M})$ can be lifted to $c^{1}$ and $c^{1}$ can be projected to $B M O(\widetilde{M})$ and the combination of the lifting
and projection operators equals the identity on $B M O(\widetilde{M})$. Similar results also hold for $H^{1}(\widetilde{M})$. From these results, Theorem 1.1 follows.

A brief description of the content of this paper is as follows. In Section 2, we provide some preliminaries introduced by Nagel and Stein ([17], [14], [16]) and the product Hardy space $H^{1}(\widetilde{M})$ introduced in [11]. The next three sections focus on $\widetilde{M}=M \times M$. In Section 3 we give the precise definition of $B M O(\widetilde{M})$ and establish the Plancherel-Pôlya-type inequality. In Section 4, we develop the product sequence spaces $s^{1}$ and $c^{1}$ and prove that $\left(s^{1}\right)^{\prime}=c^{1}$. Theorem 1.1 will be proved in Section 5. Finally, in Section 6, we describe the results on $\widetilde{M}=M_{1} \times \cdots \times M_{n}$.

## 2. Preliminaries

2.1. Geometry on $\widetilde{M}=M_{1} \times \cdots \times M_{n}$

We recall the corresponding geometric structure in [16] (See also case (B) of [17]) by concentrating on each factor $M_{i}$, which we denote by $M$, dropping the subscript i.

Here $M$ arises as the boundary of an unbounded model polynomial domain in $\mathbb{C}^{2}$. Let $\Omega=\left\{(z, w) \in \mathbb{C}^{2}: \operatorname{Im}(w)>P(z)\right\}$, where $P$ is a real, subharmonic, non-harmonic polynomial of degree $m$. Then $M=\partial \Omega=\left\{(z, w) \in \mathbb{C}^{2}: \operatorname{Im}(w)=\right.$ $P(z)\}$ can be identified with $\mathbb{C} \times \mathbb{R}=\{(z, t): z \in \mathbb{C}, t \in \mathbb{R}\}$ so that the point $(z, t+i P(z))$ corresponds to the point $(z, t)$. The basic $(0,1)$ Levi vector field is then $\bar{Z}=\frac{\partial}{\partial \bar{z}}-i \frac{\partial P}{\partial \bar{z}} \frac{\partial}{\partial t}$, and we write $\bar{Z}=\mathbb{X}_{1}+i \mathbb{X}_{2}$. The real vector fields $\left\{\mathbb{X}_{1}, \mathbb{X}_{1}\right\}$ and their commutators of order $\leq m$ span the tangent space to $M$ at each point.

One variant of the control distance is defined as follows:
For each $x, y \in M$, let $A C(x, y, \delta)$ denote the collection of absolutely continuous mapping $\varphi:[0,1] \rightarrow M$ with $\varphi(0)=x, \varphi(1)=y$, and for almost every $t \in[0,1], \varphi^{\prime}(t)=\sum_{j=1}^{2} a_{j}(t) \mathbb{X}_{j}(\varphi(t))$ with $\left|a_{j}(t)\right| \leq \delta$. The control distance $\rho(x, y)$ from $x$ to $y$ is the infimum of the set of $\delta>0$ such that $A C(x, y, \delta) \neq \emptyset$. The result we need is that there is a pseudo-metric $d \approx \rho^{1}$ equivalent to this control metric which has the optimal smoothness ; i.e. $d(x, y)$ is $C^{\infty}$ on $\{M \times M$ - diagonal $\}$, and for $x \neq y$

$$
\begin{equation*}
\left|\partial_{X}^{K} \partial_{Y}^{L} d(x, y)\right| \lesssim d(x, y)^{1-K-L} . \tag{2.1}
\end{equation*}
$$

(Here $\partial_{X}^{K}$ is a product of $K$ of the real vector fields $\left\{\mathbb{X}_{1}, \mathbb{X}_{2}\right\}$ acting as derivatives on the $x$ variable, and $\partial_{Y}^{L}$ are a corresponding $L$ vector fields acting on the $y$

[^1]variable). For the existence of such a pseudo-metric, see Theorem 3.3.1 and 4.4.6 in [15], where $d$ is denoted by $\widetilde{\rho}$.

When integrating on $M$, we use Lebesgue measure on $\mathbb{C} \times \mathbb{R}$. Denote by $|E|$ the measure of $E$. The corresponding nonisotropic ball is $B(x, \delta)=\{y \in M$ : $d(x, y)<\delta\}$ and $|B(x, \delta)|$ denotes its volume. The volume functions are introduced as follows:

$$
\begin{equation*}
V(x, y)=|B(x, d(x, y))| . \tag{2.2}
\end{equation*}
$$

The volume of the ball $B(x, \delta)$ is essentially a polynomial in $\delta$ with coefficients that depend on $x$.

Let $\mathbb{T}=\frac{\partial}{\partial t}$ so that at each point of $M$ the tangent space is spanned by the vectors $\left\{\mathbb{X}_{1}, \mathbb{X}_{2}, \mathbb{T}\right\}$. Write the commutator $\left[\mathbb{X}_{1}, \mathbb{X}_{2}\right]=\lambda \mathbb{T}+a_{1} \mathbb{X}_{1}+a_{2} \mathbb{X}_{2}$, where $\lambda, a_{1}, a_{2} \in C^{\infty}(M)$. For $k \geq 2$, set $\Lambda_{k}(x)=\sum_{\alpha \leq k-2}\left|\partial^{\alpha} \lambda(x)\right|$, where $\partial^{\alpha}$ is a product of $\alpha$ of the real vector fields $\left\{\mathbb{X}_{1}, \mathbb{X}_{2}\right\}$. Then the following formula holds for the volume $|B(x, \delta)|$ :

$$
\begin{equation*}
|B(x, \delta)| \approx \sum_{k=2}^{m}\left(\left|\Lambda_{k}(x) \delta^{k}\right|\right) \delta^{2} \tag{2.3}
\end{equation*}
$$

The balls have the required doubling property

$$
|B(x, 2 \delta)| \leq C|B(x, \delta)| \quad \text { for all } \delta>0
$$

We now recall the following construction given by Christ in [1], which provides an analogue of the grid of Euclidean dyadic cubes on space of homogeneous type.

Lemma 2.1. [1]. Let $(\mathcal{X}, \rho, \mu)$ be a space of homogeneous type, then, there exists a collection $\left\{Q_{\alpha}^{k} \subset \mathcal{X}: k \in \mathbb{Z}, \alpha \in I_{k}\right\}$ of open subsets, where $I_{k}$ is some index set, and $C_{1}, C_{2}>0$, such that
(i) $\mu\left(\mathcal{X} \backslash \bigcup_{\alpha} Q_{\alpha}^{k}\right)=0$ for each fixed $k$ and $Q_{\alpha}^{k} \bigcap Q_{\beta}^{k}=\Phi$ if $\alpha \neq \beta$;
(ii) for any $\alpha, \beta, k, l$ with $l \geq k$, either $Q_{\beta}^{l} \subset Q_{\alpha}^{k}$ or $Q_{\beta}^{l} \cap Q_{\alpha}^{k}=\Phi$;
(iii) for each $(k, \alpha)$ and each $l<k$ there is a unique $\beta$ such that $Q_{\alpha}^{k} \subset Q_{\beta}^{l}$;
(iv) $\operatorname{diam}\left(Q_{\alpha}^{k}\right) \leq C_{1} 2^{-k}$;
(v) each $Q_{\alpha}^{k}$ contains some ball $B\left(z_{\alpha}^{k}, C_{2} 2^{-k}\right)$, where $z_{\alpha}^{k} \in \mathcal{X}$.

In fact, we can think of $Q_{\alpha}^{k}$ as being a dyadic cube with diameter rough $2^{-k}$ centered at $z_{\alpha}^{k}$. As a result, we consider $C Q_{\alpha}^{k}$ to be the cube with the same center as $Q_{\alpha}^{k}$ and diameter $C \operatorname{diam}\left(Q_{\alpha}^{k}\right)$.

Using Lemma 2.1, we can obtain a grid of dyadic cubes on $M$.
Next we recall Definition 3.3.1 in [14] which characterizes the assumption imposed on $M$.

Definition 2.2. [14]. Vector fields $\mathbb{X}_{1}, \mathbb{X}_{2}, \mathbb{T}$ are uniformly of finite type $m$ on an open set $U \subset \mathbb{R}^{3}$ if the derivatives of all coefficients of the vector fields are uniformly bounded on $U$ and if the quantity $\sum_{j=2}^{m} \Lambda_{j}(q)$ is uniformly bounded and uniformly bounded away from zero on $U$. The vector fields $\mathbb{Y}, \mathbb{X}_{1}, \mathbb{X}_{2}, \mathbb{T}$ are uniformly of finite type $m$ on an open set $V \subset \mathbb{R}^{4}$ if the derivatives of all coefficients of the vector fields are uniformly bounded on $U$ and if the quantity $\sum_{j=2}^{m} \Lambda_{j}(q)$ is uniformly bounded and uniformly bounded away from zero on $V$.

### 2.2. The Heat Equation

In [17], the Littlewood-Paley square function was defined in terms of the heat kernel. More precisely, Nagel and Stein considered the sub-Laplacian $\mathcal{L}$ on $M$ in self-adjoint form, given by

$$
\mathcal{L}=\sum_{j=1}^{2} \mathbb{X}_{j}^{*} \mathbb{X}_{j}
$$

Here $\left(\mathbb{X}_{j}^{*} \varphi, \psi\right)=\left(\varphi, \mathbb{X}_{j} \psi\right)$, where $(\varphi, \psi)=\int_{M} \varphi(x) \bar{\psi}(x) d \mu(x)$, and $\varphi, \psi \in C_{0}^{\infty}(M)$, the space of $C^{\infty}$ functions on $M$ with compact support. In general, $\mathbb{X}_{j}^{*}=-\mathbb{X}_{j}+a_{j}$, where $a_{j} \in C^{\infty}(M)$. The solution of the following initial value problem for the heat equation,

$$
\frac{\partial u}{\partial s}(x, s)+\mathcal{L}_{x} u(x, s)=0
$$

with $u(x, 0)=f(x)$, is given by $u(x, s)=H_{s}(f)(x)$, where $H_{s}$ is the operator given via the spectral theorem by $H_{s}=e^{-s \mathcal{L}}$, and an appropriate self-adjoint extension of the non-negative operator $\mathcal{L}$ initially defined on $C_{0}^{\infty}(M)$. And they proved that for $f \in L^{2}(M)$,

$$
H_{s}(f)(x)=\int_{M} H(s, x, y) f(y) d \mu(y)
$$

Moreover $H(s, x, y)$ has some nice properties(see Proposition 2.3.1 in [17] and Theorem 2.3.1 in [14]). We restate them as follows:
(1) $H(s, x, y) \in C^{\infty}([0, \infty) \times M \times M \backslash\{s=0$ and $x=y\})$.
(2) For very integer $N \geq 0$,

$$
\begin{aligned}
& \left|\partial_{s}^{j} \partial_{X}^{L} \partial_{Y}^{K} H(s, x, y)\right| \\
\lesssim & \frac{1}{(d(x, y)+\sqrt{s})^{2 j+K+L}} \frac{1}{V(x, y)+V_{\sqrt{s}}(x)+V_{\sqrt{s}}(y)}\left(\frac{\sqrt{s}}{d(x, y)+\sqrt{s}}\right)^{\frac{N}{2}}
\end{aligned}
$$

(3) For each integer $L \geq 0$ there exists an integer $N_{L}$ and a constant $C_{L}$ so that if $\varphi \in C_{0}^{\infty}\left(B\left(x_{0}, \delta\right)\right)$, then for all $s \in(0, \infty)$

$$
\left|\partial_{X}^{L} H_{S}[\varphi]\left(x_{0}\right)\right| \leq C_{L} \delta^{-L} \sup _{x} \sum_{|J| \leq N_{L}} \delta^{|J|}\left|\partial_{X}^{J} \varphi(x)\right| .
$$

(4) For all $(s, x, y) \in(0, \infty) \times M \times M, H(s, x, y)=H(s, y, x)$ and $H(s, x, y) \geq$ 0.
(5) For all $(s, x) \in(0, \infty) \times M, \int H(s, x, y) d y=1$.
(6) For $1 \leq p \leq \infty,\left\|H_{s}[f]\right\|_{L^{p}(M)} \leq\|f\|_{L^{p}(M)}$.
(7) For every $\varphi \in C_{0}^{\infty}(M)$ and every $t \geq 0, \lim _{s \rightarrow 0}\left\|H_{s}[\varphi]-\varphi\right\|_{t}=0$, where $\|\cdot\|_{t}$ denotes the Sobolev norm.

To introduce the reproducing identity and the Littlewood-Paley square function, they define a bounded operator $Q_{s}=2 s \frac{\partial H_{s}}{\partial s}, s>0$, on $L^{2}(M)$. Denote by $q_{s}(x, y)$ the kernel of $Q_{s}$. Then from the estimates of $H(s, x, y)$, we have
(a) $q_{s}(x, y) \in C^{\infty}(M \times M \backslash\{x=y\})$.
(b) For every integer $N \geq 0$,

$$
\begin{aligned}
& \left|\partial_{X}^{L} \partial_{Y}^{K} q_{s}(x, y)\right| \\
\lesssim & \frac{1}{(d(x, y)+\sqrt{s})^{K+L}} \frac{1}{V(x, y)+V_{\sqrt{s}}(x)+V_{\sqrt{s}}(y)}\left(\frac{\sqrt{s}}{d(x, y)+\sqrt{s}}\right)^{\frac{N}{2}} .
\end{aligned}
$$

(c) $\int q_{s}(x, y) d y=\int q_{s}(x, y) d x=0$.

In [11], to develop the product Hardy space on $\widetilde{M}$, they discretize the operator $Q_{s}$ by considering the sequence of bounded operators $\left\{Q_{j}\right\}_{j \in \mathbb{Z}}$, where $Q_{j}=$ $-\frac{1}{2} \int_{2^{-2 j}}^{2^{-2 j+2}} Q_{s} \frac{d s}{s}$. From the behavior of operator $H_{s}$, it follows that $\sum_{j} Q_{j}=I d$ on $L^{2}(M)$. Denote by $q_{j}(x, y)$ the kernel of $Q_{j}$. From the estimates of $q_{s}(x, y)$, for each $j, q_{j}(x, y)$ satisfies that
$\left(a^{\prime}\right) q_{j}(x, y) \in C^{\infty}(M \times M \backslash\{x=y\})$.
( $b^{\prime}$ ) For every integer $N \geq 0$,

$$
\begin{aligned}
& \left|\partial_{X}^{L} \partial_{Y}^{K} q_{j}(x, y)\right| \\
\lesssim & \frac{1}{\left(d(x, y)+2^{-j}\right)^{K+L}} \frac{1}{V(x, y)+V_{2^{-j}}(x)+V_{2^{-j}}(y)}\left(\frac{2^{-j}}{d(x, y)+2^{-j}}\right)^{\frac{N}{2}} .
\end{aligned}
$$

$\left(c^{\prime}\right) \int q_{j}(x, y) d y=\int q_{j}(x, y) d x=0$.

### 2.3. The Hardy space $H^{1}$ on product space $\widetilde{M}=M \times M$

To recall the definition of $H^{1}(\widetilde{M})$, we need to introduce the the test function space on $\widetilde{M}$

Definition 2.3. ([11]). Let $\left(x_{0}, y_{0}\right) \in \widetilde{M}, \gamma_{1}, \gamma_{2}, r_{1}, r_{2}>0,0<\beta_{1}, \beta_{2} \leq 1$. A function on $\widetilde{M}$ is said to be a test function of type $\left(x_{0}, y_{0} ; r_{1}, r_{2} ; \beta_{1}, \beta_{2} ; \gamma_{1}, \gamma_{2}\right)$ if there exists a constant $C \geq 0$ such that
(i) $|f(x, y)| \leq C \frac{1}{V_{r_{1}}\left(x_{0}\right)+V\left(x_{0}, x\right)}\left(\frac{r_{1}}{r_{1}+d\left(x, x_{0}\right)}\right)^{\gamma_{1}} \frac{1}{V_{r_{2}}\left(y_{0}\right)+V\left(y_{0}, y\right)}$

$$
\left(\frac{r_{2}}{r_{2}+d\left(y, y_{0}\right)}\right)^{\gamma_{2}} \text { for all }(x, y) \in \widetilde{M}
$$

(ii) $\left|f(x, y)-f\left(x^{\prime}, y\right)\right| \leq C\left(\frac{d\left(x, x^{\prime}\right)}{r_{1}+d\left(x, x_{0}\right)}\right)^{\beta_{1}} \frac{1}{V_{r_{1}}\left(x_{0}\right)+V\left(x_{0}, x\right)}\left(\frac{r_{1}}{r_{1}+d\left(x, x_{0}\right)}\right)^{\gamma_{1}}$ $\times \frac{1}{V_{r_{2}}\left(y_{0}\right)+V\left(y_{0}, y\right)}\left(\frac{r_{2}}{r_{2}+d\left(y, y_{0}\right)}\right)^{\gamma_{2}}$ for all $x, x^{\prime} \in \widetilde{M}$ satisfying that $d\left(x, x^{\prime}\right)$ $\leq\left(r_{1}+d\left(x, x_{0}\right)\right) / 2$;
(iii) Property (ii) also holds with $x$ and $y$ interchanged;
(iv) $\left|f(x, y)-f\left(x^{\prime}, y\right)-f\left(x, y^{\prime}\right)+f\left(x^{\prime}, y^{\prime}\right)\right| \leq C\left(\frac{d\left(x, x^{\prime}\right)}{r_{1}+d\left(x, x_{0}\right)}\right)^{\beta_{1}}$ $\frac{1}{V_{r_{1}}\left(x_{0}\right)+V\left(x_{0}, x\right)} \times\left(\frac{r_{1}}{r_{1}+d\left(x, x_{0}\right)}\right)^{\gamma_{1}}\left(\frac{d\left(y, y^{\prime}\right)}{r_{2}+d\left(y, y_{0}\right)}\right)^{\beta_{2}}$ $\frac{1}{V_{r_{2}}\left(y_{0}\right)+V\left(y_{0}, y\right)}\left(\frac{r_{2}}{r_{2}+d\left(y, y_{0}\right)}\right)^{\gamma_{2}}$ for all $x, x^{\prime}, y, y^{\prime} \in \widetilde{M}$ satisfying that $d\left(x, x^{\prime}\right) \leq\left(r_{1}+d\left(x, x_{0}\right)\right) / 2$ and $d\left(y, y^{\prime}\right) \leq\left(r_{2}+d\left(y, y_{0}\right)\right) / 2 ;$
(v) $\int_{\widetilde{M}} f(x, y) d x=0$ for all $y \in \widetilde{M}$;
(vi) $\int_{\widetilde{M}} f(x, y) d y=0$ for all $x \in \widetilde{M}$.

If $f$ is a test function of type $\left(x_{0}, y_{0} ; r_{1}, r_{2} ; \beta_{1}, \beta_{2} ; \gamma_{1}, \gamma_{2}\right)$, we write $f \in$ $G\left(x_{0}, y_{0} ; r_{1}, r_{2} ; \beta_{1}, \beta_{2} ; \gamma_{1}, \gamma_{2}\right)$ and we define the norm of $f$ by

$$
\|f\|_{G\left(x_{0}, y_{0} ; r_{1}, r_{2} ; \beta_{1}, \beta_{2} ; \gamma_{1}, \gamma_{2}\right)}=\inf \{C:(i),(i i),(i i i) \text { and }(i v) \text { hold }\} .
$$

We denote by $G\left(\beta_{1}, \beta_{2} ; \gamma_{1}, \gamma_{2}\right)$ the class of $G\left(x_{0}, y_{0} ; 1,1 ; \beta_{1}, \beta_{2} ; \gamma_{1}, \gamma_{2}\right)$ for any fixed $\left(x_{0}, y_{0}\right) \in \widetilde{M}$. We can check that $G\left(x_{0}, y_{0} ; r_{1}, r_{2} ; \beta_{1}, \beta_{2} ; \gamma_{1}, \gamma_{2}\right)=G\left(\beta_{1}, \beta_{2}\right.$; $\left.\gamma_{1}, \gamma_{2}\right)$ with equivalent norms for all $\left(x_{0}, y_{0}\right) \in \widetilde{M}$ and $r_{1}, r_{2}>0$. Furthermore, it is easy to check that $G\left(\beta_{1}, \beta_{2} ; \gamma_{1}, \gamma_{2}\right)$ is a Banach space with respect to the norm in $G\left(\beta_{1}, \beta_{2} ; \gamma_{1}, \gamma_{2}\right)$.

Now for $\vartheta_{1}, \vartheta_{2} \in(0,1)$, let ${\stackrel{\circ}{G} \vartheta_{1}, \vartheta_{2}}\left(\beta_{1}, \beta_{2} ; \gamma_{1}, \gamma_{2}\right)$ be the completion of the space $G\left(\vartheta_{1}, \vartheta_{2} ; \vartheta_{1}, \vartheta_{2}\right)$ in $G\left(\beta_{1}, \beta_{2} ; \gamma_{1}, \gamma_{2}\right)$ when $0<\beta_{i}, \gamma_{i}<\vartheta_{i}$ with $i=1,2$. We define the dual space $\left(\stackrel{\circ}{G}_{\vartheta_{1}, \vartheta_{2}}\left(\beta_{1}, \beta_{2} ; \gamma_{1}, \gamma_{2}\right)\right)^{\prime}$ to be the set of all linear functionals $L$ from ${\stackrel{\circ}{G} \vartheta_{1}, \vartheta_{2}}\left(\beta_{1}, \beta_{2} ; \gamma_{1}, \gamma_{2}\right)$ to $\mathbb{C}$ with the property that there exists $C \geq 0$ such that for all $f \in \stackrel{\circ}{G}_{\vartheta_{1}, \vartheta_{2}}\left(\beta_{1}, \beta_{2} ; \gamma_{1}, \gamma_{2}\right)$,

$$
|L(f)| \leq C\|f\|_{{\stackrel{\circ}{\vartheta_{1}, \vartheta_{2}}}\left(\beta_{1}, \beta_{2} ; \gamma_{1}, \gamma_{2}\right)}
$$

Next we recall the product square function $\widetilde{S}$ defined via the sequence of operators $\left\{Q_{j}\right\}_{j \in \mathbb{Z}}$ in [11]. If $f(x, y)$ is a function on $\widetilde{M}$ we define ${\underset{\widetilde{S}}{1}}^{j_{1}} Q_{j_{2}}=Q_{j_{1}} \otimes Q_{j_{2}}$ with $Q_{j_{1}}$ acting on the first variable and $Q_{j_{2}}$ on the second. $\widetilde{S}$ is then given by

$$
\begin{equation*}
\widetilde{S}(f)(x, y)=\left\{\sum_{j_{1}=-\infty}^{\infty} \sum_{j_{2}=-\infty}^{\infty}\left|Q_{j_{1}} \cdot Q_{j_{2}}(f)(x, y)\right|^{2}\right\}^{\frac{1}{2}} \tag{2.4}
\end{equation*}
$$

And we have $\|\widetilde{S}(f)\|_{L^{p}(\widetilde{M})} \approx\|f\|_{L^{p}(\widetilde{M})}$ for $1<p<\infty$ ([11]). Then $H^{1}(\widetilde{M})$ is defined as follows.

Definition 2.4. ([11]). Let $0<\vartheta_{i}<1$ and $0<\beta_{i}, \gamma_{i}<\vartheta_{i}$ for $i=1,2$. The Hardy space $H^{1}(\widetilde{M})$ is defined to be the set of all $f \in\left({\stackrel{\circ}{G} \vartheta_{1}, \vartheta_{2}}\left(\beta_{1}, \beta_{2} ; \gamma_{1}, \gamma_{2}\right)\right)^{\prime}$ such that $\|\widetilde{S}[f]\|_{L^{1}(\widetilde{M})}<\infty$, and we define

$$
\|f\|_{H^{1}(\widetilde{M})}=\|\widetilde{S}[f]\|_{L^{1}(\widetilde{M})}
$$

Now we recall the discrete Calderon reproducing formula, the Plancherel-Polyatype inequality for $H^{1}(\widetilde{M})$ and the almost orthogonality estimate as follows.

Lemma 2.5. ([11]). For $\vartheta_{i} \in(0,1), 0<\beta_{i}, \gamma_{i}<\vartheta_{i}$ with $=1,2$ and $f \in$ $\stackrel{\circ}{G}_{\vartheta_{1}, \vartheta_{2}}\left(\beta_{1}, \beta_{2} ; \gamma_{1}, \gamma_{2}\right)$,

$$
\begin{equation*}
f(x, y)=\sum_{k_{1}, k_{2}} \sum_{I, J}|I||J| \widetilde{q}_{k_{1}} \widetilde{q}_{k_{2}}\left(x, x_{I}, y, y_{J}\right) Q_{k_{1}} Q_{k_{2}}[f]\left(x_{I}, y_{J}\right) \tag{2.5}
\end{equation*}
$$

where $\widetilde{q}_{k_{1}} \widetilde{q}_{k_{2}} \in{\stackrel{\circ}{G} \vartheta_{\vartheta_{1}, \vartheta_{2}}\left(\beta_{1}, \beta_{2} ; \gamma_{1}, \gamma_{2}\right) ; I, J \subset M \text { are dyadic cubes with length }}_{\text {le }}$ $2^{-k_{1}-N_{0}}$ and $2^{-k_{2}-N_{0}}$ for a fixed integer $N_{0} ; x_{I}, y_{J}$ are any fixed points in $I$ and $J$, respectively. The series in (2.5) converges in the norm of ${\stackrel{\circ}{G} \vartheta_{1}, \vartheta_{2}}\left(\beta_{1}, \beta_{2} ; \gamma_{1}, \gamma_{2}\right)$. Moreover, for $f \in\left(\stackrel{\circ}{G}_{\vartheta_{1}, \vartheta_{2}}\left(\beta_{1}, \beta_{2} ; \gamma_{1}, \gamma_{2}\right)\right)^{\prime}$, (2.5) holds in the dual space $\left(\stackrel{\circ}{G}_{\vartheta_{1}, \vartheta_{2}}\right.$ $\left.\left(\beta_{1}, \beta_{2} ; \gamma_{1}, \gamma_{2}\right)\right)^{\prime}$.

Lemma 2.6. ([11]). Suppose $0<\vartheta_{i}<1$ and $0<\beta_{i}, \gamma_{i}<\vartheta_{i}$ for $i=1,2$. Then, for all $f \in\left({ }^{\circ} \vartheta_{\vartheta_{1}, \vartheta_{2}}\left(\beta_{1}, \beta_{2} ; \gamma_{1}, \gamma_{2}\right)\right)^{\prime}$,

$$
\begin{align*}
& \left\|\left\{\sum_{k_{1}, k_{2}} \sum_{I, J} \sup _{u \in I, v \in J}\left|Q_{k_{1}} Q_{k_{2}}[f](u, v)\right|^{2} \chi_{I}(x) \chi_{J}(y)\right\}^{\frac{1}{2}}\right\|_{L^{1}(\widetilde{M})}  \tag{2.6}\\
\approx & \left\|\left\{\sum_{k_{1}, k_{2}} \sum_{I, J} \inf _{u \in I, v \in J}\left|Q_{k_{1}} Q_{k_{2}}[f](u, v)\right|^{2} \chi_{I}(x) \chi_{J}(y)\right\}^{\frac{1}{2}}\right\|_{L^{1}(\widetilde{M})}
\end{align*}
$$

where $I, J$ are the same as in Lemma 2.5.
Let $\widetilde{q}_{k_{1}} \widetilde{q}_{k_{2}}\left(x, x_{I}, y, y_{J}\right)$ be the same as in Lemma 2.5. Note that for any $\beta_{1}, \beta_{2}, \gamma_{1}, \gamma_{2} \in(0,1), \widetilde{q}_{k_{1}} \widetilde{q}_{k_{2}}\left(x, x_{I}, y, y_{J}\right) \in G\left(\beta_{1}, \beta_{2}, \gamma_{1}, \gamma_{2}\right)$. We have that for any $\gamma_{1}, \gamma_{2} \in(0,1)$ and $\epsilon_{1} \in\left(0, \gamma_{1}\right), \epsilon_{2} \in\left(0, \gamma_{2}\right)$,

$$
\begin{aligned}
& \left|q_{j_{1}} q_{j_{2}} \widetilde{q}_{k_{1}} \widetilde{q}_{k_{2}}\left(x, x_{I}, y, y_{J}\right)\right| \lesssim 2^{-\left|j_{1}-k_{1}\right| \epsilon_{1}} 2^{-\left|j_{2}-k_{2}\right| \epsilon_{2}} \\
& \frac{1}{V\left(x, x_{I}\right)+V_{2^{-\left(j_{1} \wedge k_{1}\right)}}(x)+V_{2^{-\left(j_{1} \wedge k_{1}\right)}}\left(x_{I}\right)} \times\left(\frac{2^{-\left(j_{1} \wedge k_{1}\right)}}{2^{-\left(j_{1} \wedge k_{1}\right)}+d\left(x, x_{I}\right)}\right)^{\gamma_{1}} \\
& \frac{1}{V\left(y, y_{J}\right)+V_{2^{-\left(j_{2} \wedge k_{2}\right)}}(y)+V_{2^{-\left(j_{2} \wedge k_{2}\right)}}\left(y_{J}\right)}\left(\frac{2^{-\left(j_{2} \wedge k_{2}\right)}}{2^{-\left(j_{2} \wedge k_{2}\right)}+d\left(y, y_{J}\right)}\right)^{\gamma_{2}}
\end{aligned}
$$

## 3. Product BMO Space and the Plancherel-pôlya-type Inequality

In this section, to characterize the dual space of $H^{1}(\widetilde{M})$, we introduce the product BMO space on $\widetilde{M}=M \times M$, which is motivated by ideas of Chang and R. Fefferman([2]), see also [10]. To carry this out, we impose the following assumption on $M$ in all rest sections.

Assumption 3.1. Let $M$ and the real vector fields $\left\{\mathbb{X}_{1}, \mathbb{X}_{2}, \mathbb{T}\right\}$ be the same as in $\S 2.1$. Assume that $\left\{\mathbb{X}_{1}, \mathbb{X}_{2}, \mathbb{T}\right\}$ are uniformly of finite type $m$ on $M$ (see Definition 2.2).

Now we give the definition of BMO space on $\widetilde{M}=M \times M$ via the sequence of operators $\left\{Q_{j}\right\}_{j \in \mathbb{Z}}$ as follows.

Definition 3.2. Suppose $0<\vartheta_{i}<1$ and $0<\beta_{i}, \gamma_{i}<\vartheta_{i}$ for $i=1,2$. We define the space $B M O(\widetilde{M})$ to be the set of all $f \in\left({ }_{G}^{\circ}{ }_{\vartheta_{1}, \vartheta_{2}}\left(\beta_{1}, \beta_{2} ; \gamma_{1}, \gamma_{2}\right)\right)^{\prime}$ such that

$$
\begin{align*}
& \|f\|_{B M O(\widetilde{M})} \\
= & \sup _{\Omega}\left\{\frac{1}{|\Omega|} \int_{\Omega_{k_{1}, k_{2}} I \times J \subseteq \Omega} \sum_{k_{1}}\left|Q_{k_{2}}[f](x, y)\right|^{2} \chi_{I}(x) \chi_{J}(y) d x d y\right\}^{\frac{1}{2}}<\infty, \tag{3.1}
\end{align*}
$$

where the supermum is taken over all open sets $\Omega$ in $\widetilde{M}$ with finite measure and for each $k_{1}$ and $k_{2}, I, J$ range over all the dyadic cubes with length $\ell(I)=2^{-k_{1}-N_{0}}$ and $\ell(J)=2^{-k_{2}-N_{0}}$, respectively.

To see this definition is independent of the choice of $Q_{j}$, we first establish the Plancherel-Pôlya-type inequality for $B M O(\widetilde{M})$.

Theorem 3.3. Let all notation be the same as in Definition 3.2. Then for each $f \in B M O(\widetilde{M})$,

$$
\begin{align*}
& \sup _{\Omega}\left\{\frac{1}{|\Omega|} \int_{\Omega} \sum_{k_{1}, k_{2}} \sum_{I \times J \subseteq \Omega} \sup _{I \in I, v \in J}\left|Q_{k_{1}} Q_{k_{2}}[f](u, v)\right|^{2} \chi_{I}(x) \chi_{J}(y) d x d y\right\}^{\frac{1}{2}} \\
\approx & \sup _{\Omega}\left\{\frac{1}{|\Omega|} \int_{\Omega} \sum_{k_{1}, k_{2}} \sum_{I \times J \subseteq \Omega} \inf _{I \in I, v \in J}\left|Q_{k_{1}} Q_{k_{2}}[f](u, v)\right|^{2} \chi_{I}(x) \chi_{J}(y) d x d y\right\}^{\frac{1}{2}} . \tag{3.2}
\end{align*}
$$

Proof. Since $M$ satisfies Assumption 3.1, then the quantity $\sum_{j=2}^{m} \Lambda_{j}(q)$ is uniformly bounded and uniformly bounded away from zero on $M$. Thus, from (2.3), we have

$$
\begin{equation*}
|B(x, \delta)| \approx|B(y, \delta)| \quad \text { for all } x, y \in M \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
|B(x, \delta)| \approx \delta^{m+2} \quad \text { for } \delta \geq 1 ; \quad|B(x, \delta)| \approx \delta^{4} \quad \text { for } \delta \leq 1 \tag{3.4}
\end{equation*}
$$

The estimates in (3.11) are crucial, namely, if $\operatorname{diam} I \approx \delta, \delta \leq 1$, then $|I| \approx \delta^{4}$ and if $\operatorname{diam} I \approx \delta, \delta>1$, then $|I| \approx \delta^{m+2}$. These estimates will be often used in the following proof.

Now for any $f \in B M O(\widetilde{M})$, by using the discrete product reproducing identity (2.5), the Hölder inequality and the almost orthogonality estimate (2.7), we have

$$
\begin{aligned}
& \sup _{u \in I, v \in J}\left|Q_{k_{1}} Q_{k_{2}}[f](u, v)\right|^{2} \\
\lesssim & \sum_{k_{1}^{\prime}, k_{2}^{\prime}} 2^{-\left|k_{1}-k_{1}^{\prime}\right| \epsilon_{1}} 2^{-\left|k_{2}-k_{2}^{\prime}\right| \epsilon_{2}} \sum_{I^{\prime}, J^{\prime}}\left|I^{\prime}\right|\left|J^{\prime}\right| \frac{1}{V\left(x_{I}, x_{I^{\prime}}\right)+V_{2^{-\left(k_{1} \wedge \kappa_{1}^{\prime}\right)}}\left(x_{I}\right)+V_{2^{-\left(k_{1} \wedge k_{1}^{\prime}\right)}}\left(x_{I^{\prime}}\right)} \\
& \times\left(\frac{2^{-\left(k_{1} \wedge k_{1}^{\prime}\right)}}{2^{-\left(k_{1} \wedge k_{1}^{\prime}\right)}+d\left(x_{I}, x_{I^{\prime}}\right)}\right)^{\gamma_{1}} \frac{1}{V\left(y_{J}, y_{J^{\prime}}\right)+V_{2^{-\left(k_{2} \wedge k_{2}^{\prime}\right)}}\left(y_{J}\right)+V_{2^{-\left(k_{2} \wedge k_{2}^{\prime}\right)}\left(y_{J^{\prime}}\right)}} \\
& \times\left(\frac{2^{-\left(k_{2} \wedge k_{2}^{\prime}\right)}}{2^{-\left(k_{2} \wedge k_{2}^{\prime}\right)}+d\left(y_{J}, y_{J^{\prime}}\right)}\right)^{\gamma_{2}}\left|Q_{k_{1}^{\prime}} Q_{k_{2}^{\prime}}[f]\left(x_{I^{\prime}}, y_{J^{\prime}}\right)\right|^{2},
\end{aligned}
$$

where $\epsilon_{i}$ is chosen to satisfy $\epsilon_{i} \in\left(\vartheta_{i}, 1\right)$ for $i=1,2, I^{\prime}$ and $J^{\prime}$ range over all dyadic cubes with length $\ell\left(I^{\prime}\right) \approx 2^{-k_{1}^{\prime}-N_{0}}$ and $\ell\left(J^{\prime}\right) \approx 2^{-k_{2}^{\prime}-N_{0}}$, respectively. Moreover, $x_{I}, x_{I^{\prime}}$ and $y_{J}, y_{J^{\prime}}$ can be any fixed points in $I, I^{\prime}$ and $J, J^{\prime}$, respectively.

Note that $2^{-\left|k_{1}-k_{1}^{\prime}\right|} \approx \frac{\operatorname{diam}(I)}{\operatorname{diam}\left(I^{\prime}\right)} \wedge \frac{\operatorname{diam}\left(I^{\prime}\right)}{\operatorname{diam}(I)}, 2^{-\left(k_{1} \wedge k_{1}^{\prime}\right)} \approx \operatorname{diam}(I) \vee \operatorname{diam}\left(I^{\prime}\right)$, $d\left(x_{I}, x_{I^{\prime}}\right) \geq \operatorname{dist}\left(I, I^{\prime}\right)$ and that similar results hold for $k_{2}, k_{2}^{\prime}$ and $J, J^{\prime}$. Then

$$
\begin{aligned}
& \sup _{u \in I, v \in J}\left|Q_{k_{1}} Q_{k_{2}}[f](u, v)\right|^{2} \\
& \lesssim \sum_{k_{1}^{\prime}, k_{2}^{\prime}} \sum_{I^{\prime}, J^{\prime}}\left|I^{\prime}\right|\left|J^{\prime}\right|\left[\frac{\operatorname{diam}(I)}{\operatorname{diam}\left(I^{\prime}\right)} \wedge \frac{\operatorname{diam}\left(I^{\prime}\right)}{\operatorname{diam}(I)}\right]^{\epsilon_{1}}\left[\frac{\operatorname{diam}(J)}{\operatorname{diam}\left(J^{\prime}\right)} \wedge \frac{\operatorname{diam}\left(J^{\prime}\right)}{\operatorname{diam}(J)}\right]^{\epsilon_{2}} \\
& \times \frac{1}{V_{\operatorname{dist}\left(I, I^{\prime}\right)}\left(x_{I}\right)+|I| \vee\left|I^{\prime}\right|}\left(\frac{\operatorname{diam}(I) \vee \operatorname{diam}\left(I^{\prime}\right)}{\operatorname{diam}(I) \vee \operatorname{diam}\left(I^{\prime}\right)+\operatorname{dist}\left(I, I^{\prime}\right)}\right)^{\gamma_{1}} \\
& \times \frac{1}{V_{\operatorname{dist}\left(J, J^{\prime}\right)}\left(y_{J}\right)+|J| \vee\left|J^{\prime}\right|}\left(\frac{\operatorname{diam}(J) \vee \operatorname{diam}\left(J^{\prime}\right)}{\operatorname{diam}(J) \vee \operatorname{diam}\left(J^{\prime}\right)+\operatorname{dist}\left(J, J^{\prime}\right)}\right)^{\gamma_{2}} \\
& \times\left|Q_{k_{1}^{\prime}} Q_{k_{2}^{\prime}}[f]\left(x_{I^{\prime}}, y_{J^{\prime}}\right)\right|^{2} .
\end{aligned}
$$

Combining the above estimate with the facts that $x_{I^{\prime}}$ and $y_{J^{\prime}}$ are arbitrary points in $I^{\prime}$ and $J^{\prime}$ respectively and $a b=(a \vee b)^{2}\left(\frac{a}{b} \wedge \frac{b}{a}\right)$ for any $a, b>0$ implies that for any open set $\Omega \in \widetilde{M}$ with finite measure,

$$
\begin{align*}
& \frac{1}{|\Omega|} \sum_{k_{1}, k_{2}} \sum_{I \times J \subset \Omega}|I||J| \sup _{u \in I, v \in J}\left|Q_{k_{1}} Q_{k_{2}}[f](u, v)\right|^{2} \\
& \lesssim \frac{1}{|\Omega|} \sum_{k_{1}, k_{2}} \sum_{I \times J \subset \Omega_{k_{1}^{\prime}, k_{2}^{\prime}}^{\prime} I^{\prime}, J^{\prime}} \sum\left[\frac{|I|}{\left|I^{\prime}\right|} \wedge \frac{\left|I^{\prime}\right|}{|I|}\right]\left[\frac{|J|}{\left.\left\lvert\, \frac{J^{\prime} \mid}{} \wedge \frac{\left|I^{\prime}\right|}{|J|}\right.\right]\left[\frac{\operatorname{diam}(I)}{\operatorname{diam}\left(I^{\prime}\right)} \wedge \frac{\operatorname{diam}\left(I^{\prime}\right)}{\operatorname{diam}(I)}\right]^{\epsilon_{1}},{ }^{\prime}, J^{\prime}}\right. \\
& \times\left[\frac{\operatorname{diam}(J)}{\operatorname{diam}\left(J^{\prime}\right)} \wedge \frac{\operatorname{diam}\left(J^{\prime}\right)}{\operatorname{diam}(J)}\right]^{\epsilon_{2}} \cdot\left(|I| \vee\left|I^{\prime}\right|\right)\left(|J| \vee\left|J^{\prime}\right|\right)  \tag{3.5}\\
& \times \frac{|I| \vee\left|I^{\prime}\right|}{V_{\operatorname{dist}\left(I, I^{\prime}\right)}\left(x_{I}\right)+|I| \vee\left|I^{\prime}\right|}\left(\frac{\operatorname{diam}(I) \vee \operatorname{diam}\left(I^{\prime}\right)}{\operatorname{diam}(I) \vee \operatorname{diam}\left(I^{\prime}\right)+\operatorname{dist}\left(I, I^{\prime}\right)}\right)^{\gamma_{1}} \\
& \times \frac{|J| \vee\left|J^{\prime}\right|}{V_{\operatorname{dist}\left(J, J^{\prime}\right)}\left(y_{J}\right)+|J| \vee\left|J^{\prime}\right|}\left(\frac{\operatorname{diam}(J) \vee \operatorname{diam}\left(J^{\prime}\right)}{\operatorname{diam}(J) \vee \operatorname{diam}\left(J^{\prime}\right)+\operatorname{dist}\left(J, J^{\prime}\right)}\right)^{\gamma_{2}} \\
& \times \inf _{u \in I^{\prime}, v \in J^{\prime}}\left|Q_{k_{1}^{\prime}} Q_{k_{2}^{\prime}}[f](u, v)\right|^{2} .
\end{align*}
$$

For our convenience, let $R=I \times J$ and $R^{\prime}=I^{\prime} \times J^{\prime}$, where $I, J, I^{\prime}$ and $J^{\prime}$ range over all dyadic cubes on $M$. And set

$$
\begin{aligned}
& \sum_{k_{1}, k_{2}} \sum_{I \times J \subset \Omega}=\sum_{R \subset \Omega} ; \sum_{k_{1}^{\prime}, k_{2}^{\prime}} \sum_{I^{\prime}, J^{\prime}}=\sum_{R^{\prime}} ; \\
& |R|=|I| \times|J| ;\left|R^{\prime}\right|=\left|I^{\prime}\right| \times\left|J^{\prime}\right|
\end{aligned}
$$

$$
\begin{aligned}
& r\left(R, R^{\prime}\right)=\left[\frac{|I|}{\left|I^{\prime}\right|} \wedge \frac{\left|I^{\prime}\right|}{|I|}\right]\left[\frac{|J|}{\left|J^{\prime}\right|} \wedge \frac{\left|J^{\prime}\right|}{|J|}\right]\left[\frac{\operatorname{diam}(I)}{\operatorname{diam}\left(I^{\prime}\right)} \wedge \frac{\operatorname{diam}\left(I^{\prime}\right)}{\operatorname{diam}(I)}\right]^{\epsilon_{1}}\left[\frac{\operatorname{diam}(J)}{\operatorname{diam}\left(J^{\prime}\right)} \wedge \frac{\operatorname{diam}\left(J^{\prime}\right)}{\operatorname{diam}(J)}\right]^{\epsilon_{2}} ; \\
& v\left(R, R^{\prime}\right)=\left(|I| \vee\left|I^{\prime}\right|\right)\left(|J| \vee\left|J^{\prime}\right|\right) ; \\
& R\left(R, R^{\prime}\right)=\frac{|I| \vee\left|I^{\prime}\right|}{V_{\operatorname{dist}\left(I, I^{\prime}\right)}\left(x_{I}\right)+|I| \vee\left|I^{\prime}\right|}\left(\frac{\operatorname{diam}(I) \vee \operatorname{diam}\left(I^{\prime}\right)}{\operatorname{diam}(I) \vee \operatorname{diam}\left(I^{\prime}\right)+\operatorname{dist}\left(I, I^{\prime}\right)}\right)^{\gamma_{1}} \\
& \times \frac{|J| \vee\left|J^{\prime}\right|}{V_{\operatorname{dist}\left(J, J^{\prime}\right)}\left(y_{J}\right)+|J| \vee\left|J^{\prime}\right|}\left(\frac{\operatorname{diam}(J) \vee \operatorname{diam}\left(J^{\prime}\right)}{\operatorname{diam}(J) \vee \operatorname{diam}\left(J^{\prime}\right)+\operatorname{dist}\left(J, J^{\prime}\right)}\right)^{\gamma_{2}} ; \\
& S_{R}=\sup _{u \in I, v \in J}\left|Q_{k_{1}} Q_{k_{2}}[f](u, v)\right|^{2} ; \\
& T_{R^{\prime}}=\inf _{u \in I^{\prime}, v \in J^{\prime}}\left|Q_{s_{1}^{\prime}} Q_{s_{2}^{\prime}}[f](u, v)\right|^{2} .
\end{aligned}
$$

Then, (3.5) can be rewritten as

$$
\begin{equation*}
\frac{1}{|\Omega|} \sum_{R \subset \Omega}|R| S_{R} \lesssim \frac{1}{|\Omega|} \sum_{R \subset \Omega} \sum_{R^{\prime}} r\left(R, R^{\prime}\right) v\left(R, R^{\prime}\right) P\left(R, R^{\prime}\right) T_{R^{\prime}} \tag{3.6}
\end{equation*}
$$

To complete the proof, we need to prove that the right-hand side of (3.6) can be controlled by

$$
\sup _{\bar{\Omega}} \frac{1}{|\bar{\Omega}|} \sum_{R^{\prime} \subset \bar{\Omega}}\left|R^{\prime}\right| T_{R^{\prime}}
$$

where $\bar{\Omega}$ ranges over all open sets in $\widetilde{M}$ with finite measure.

$$
\text { Let } \begin{aligned}
\Omega^{i, \ell} & =\bigcup_{R=I \times J \subset \Omega} 3\left(2^{i} I \times 2^{\ell} J\right) \text { for } i, \ell \geq 0 \text { and } \\
B_{0,0} & =\left\{R^{\prime}=I^{\prime} \times J^{\prime}: 3 R^{\prime} \bigcap \Omega^{0,0} \neq \emptyset\right\} ; \\
B_{i, 0} & =\left\{R^{\prime}=I^{\prime} \times J^{\prime}: 3\left(2^{i} I^{\prime} \times J^{\prime}\right) \bigcap \Omega^{i, 0} \neq \emptyset, 3\left(2^{i-1} I^{\prime} \times J^{\prime}\right) \bigcap \Omega^{i-1,0}=\emptyset\right\} ; \\
B_{0, \ell} & =\left\{R^{\prime}=I^{\prime} \times J^{\prime}: 3\left(I^{\prime} \times 2^{\ell} J^{\prime}\right) \bigcap \Omega^{0, \ell} \neq \emptyset, 3\left(I^{\prime} \times 2^{\ell-1} J^{\prime}\right) \bigcap \Omega^{0, l-1}=\emptyset\right\} ; \\
B_{i, \ell} & =\left\{R^{\prime}=I^{\prime} \times J^{\prime}: 3\left(2^{i} I^{\prime} \times 2^{\ell} J^{\prime}\right) \bigcap \Omega^{i, \ell} \neq \emptyset, 3\left(2^{i-1} I^{\prime} \times 2^{\ell-1} J^{\prime}\right) \bigcap \Omega^{i-1, l-1}=\emptyset\right\},
\end{aligned}
$$

where $i, \ell \geq 1$.
First, it is obvious that $\bigcup_{i, \ell \geq 0} B_{i, \ell} \subset\left\{R^{\prime}=I^{\prime} \times J^{\prime}, I^{\prime}, J^{\prime}\right.$ are dyadic cubes $\}$. Moreover, since $\lim _{i, \ell \rightarrow \infty} \Omega^{i, \ell}=\bar{M}$, we can see that for any dyadic rectangle $R^{\prime}$, it must belong to some $B_{i, \ell}$. Thus, $\left\{R^{\prime}=I^{\prime} \times J^{\prime}, I^{\prime}, J^{\prime}\right.$ are dyadic cubes $\} \subset \bigcup_{i, \ell \geq 0} B_{i, \ell}$. Hence we have

$$
\left\{R^{\prime}=I^{\prime} \times J^{\prime}, I^{\prime}, J^{\prime} \text { are dyadic cubes }\right\}=\bigcup_{i, \ell \geq 0} B_{i, \ell}
$$

As a consequence, the right-hand side of (3.6) can be controlled by

$$
\begin{aligned}
& \frac{1}{|\Omega|} \sum_{R \subset \Omega}\left(\sum_{R^{\prime} \in B_{0,0}^{\prime}}+\sum_{i \geq 1} \sum_{R^{\prime} \in B_{i, 0}}+\sum_{\ell \geq 1} \sum_{R^{\prime} \in B_{0, \ell}}+\sum_{i, \ell \geq 1} \sum_{R^{\prime} \in B_{i, \ell}}\right) \\
& r\left(R, R^{\prime}\right) v\left(R, R^{\prime}\right) P\left(R, R^{\prime}\right) T_{R^{\prime}} \\
& =: \mathbb{I}+\mathbb{I I}+\mathbb{I I I I I}+\mathbb{I V} .
\end{aligned}
$$

We first estimate $\mathbb{I}$. Note that when $R^{\prime} \in B_{0,0}, 3 R^{\prime} \bigcap \Omega^{0,0} \neq \emptyset$, so let $\mathcal{F}_{h}^{0,0}=\left\{R^{\prime}\right.$ :

$$
\left.\left|3 R^{\prime} \cap \Omega^{0,0}\right| \geq \frac{1}{2^{h}}\left|3 R^{\prime}\right|\right\}, \mathcal{D}_{h}^{0,0}=\mathcal{F}_{h}^{0,0} \backslash \mathcal{F}_{h-1}^{0,0}, \mathcal{F}_{-1}^{0,0}=\emptyset \text { and } \Omega_{h}^{0,0}=\underset{R^{\prime} \in \mathcal{D}_{h}^{0,0}}{\bigcup} R^{\prime}
$$

where $h \geq 0$. Since $B_{0,0}=\bigcup_{h \geq 0} \mathcal{D}_{h}^{0,0}$, we have

$$
\begin{equation*}
\mathbb{I} \leq \frac{1}{|\Omega|} \sum_{h \geq 0} \sum_{R^{\prime} \in \mathcal{D}_{h}^{0,0}} \sum_{R \subset \Omega} r\left(R, R^{\prime}\right) v\left(R, R^{\prime}\right) P\left(R, R^{\prime}\right) T_{R^{\prime}} \tag{3.7}
\end{equation*}
$$

To estimate (3.7), for each $R^{\prime} \in \mathcal{D}_{h}^{0,0}$, we decompose $\{R: R \subset \Omega\}$ by

$$
\begin{aligned}
A_{0,0}\left(R^{\prime}\right)= & \left\{R \subseteq \Omega: \operatorname{dist}\left(I, I^{\prime}\right) \leq \operatorname{diam}(\mathrm{I}) \vee \operatorname{diam}\left(\mathrm{I}^{\prime}\right), \operatorname{dist}\left(J, J^{\prime}\right) \leq \operatorname{diam}(\mathrm{J}) \vee \operatorname{diam}\left(\mathrm{J}^{\prime}\right)\right\} ; \\
A_{j, 0}\left(R^{\prime}\right)= & \left\{R \subseteq \Omega: 2^{j-1}\left(\operatorname{diam}(\mathrm{I}) \vee \operatorname{diam}\left(\mathrm{I}^{\prime}\right)\right)<\operatorname{dist}\left(I, I^{\prime}\right) \leq 2^{j}\left(\operatorname{diam}(\mathrm{I}) \vee \operatorname{diam}\left(\mathrm{I}^{\prime}\right)\right),\right. \\
& \left.\operatorname{dist}\left(J, J^{\prime}\right) \leq \operatorname{diam}(\mathrm{J}) \vee \operatorname{diam}\left(\mathrm{J}^{\prime}\right)\right\} ; \\
A_{0, k}\left(R^{\prime}\right)= & \left\{R \subseteq \Omega: \operatorname{dist}\left(I, I^{\prime}\right) \leq \operatorname{diam}(\mathrm{I}) \vee \operatorname{diam}\left(\mathrm{I}^{\prime}\right),\right. \\
& \left.2^{k-1}\left(\operatorname{diam}(\mathrm{~J}) \vee \operatorname{diam}\left(\mathrm{J}^{\prime}\right)\right)<\operatorname{dist}\left(J, J^{\prime}\right) \leq 2^{k}\left(\operatorname{diam}(\mathrm{~J}) \vee \operatorname{diam}\left(\mathrm{J}^{\prime}\right)\right)\right\} ; \\
A_{j, k}\left(R^{\prime}\right)= & \left\{R \subseteq \Omega: 2^{j-1}\left(\operatorname{diam}(\mathrm{I}) \vee \operatorname{diam}\left(\mathrm{I}^{\prime}\right)\right)<\operatorname{dist}\left(I, I^{\prime}\right) \leq 2^{j}\left(\operatorname{diam}(\mathrm{I}) \vee \operatorname{diam}\left(\mathrm{I}^{\prime}\right)\right),\right. \\
& \left.2^{k-1}\left(\operatorname{diam}(\mathrm{~J}) \vee \operatorname{diam}\left(\mathrm{J}^{\prime}\right)\right)<\operatorname{dist}\left(J, J^{\prime}\right) \leq 2^{k}\left(\operatorname{diam}(\mathrm{~J}) \vee \operatorname{diam}\left(\mathrm{J}^{\prime}\right)\right)\right\},
\end{aligned}
$$

where $j, k \geq 1$. Then we split the right-hand side of (3.7) into

$$
\begin{gathered}
\frac{1}{|\Omega|} \sum_{h \geq 0} \sum_{R^{\prime} \in \mathcal{D}_{h}^{0,0}}\left(\sum_{R \in A_{0,0}\left(R^{\prime}\right)}+\sum_{j \geq 1} \sum_{R \in A_{j, 0}\left(R^{\prime}\right)}+\sum_{k \geq 1} \sum_{R \in A_{0, k}\left(R^{\prime}\right)}+\sum_{j, k \geq 1} \sum_{R \in A_{j, k}\left(R^{\prime}\right)}\right) v\left(R, R^{\prime}\right) \\
\times r\left(R, R^{\prime}\right) P\left(R, R^{\prime}\right) T_{R^{\prime}}=: \mathbb{I}_{1}+\mathbb{I}_{2}+\mathbb{I}_{3}+\mathbb{I}_{4} .
\end{gathered}
$$

Now we first estimate $\mathbb{I}_{1}$. To do this, we only need to consider

$$
\begin{equation*}
\sum_{R \in A_{0,0}\left(R^{\prime}\right)} r\left(R, R^{\prime}\right) v\left(R, R^{\prime}\right) \tag{3.8}
\end{equation*}
$$

for any $R^{\prime} \in \mathcal{D}_{h}^{0,0}$ and $h \geq 0$, since $P\left(R, R^{\prime}\right) \leq 1$ in this case. In what follows, we use the geometrical argument as we deal with the homogeneous space, which is a generalization of Chang and R. Fefferman's idea, see more details in [10] and [2]. Note that when $R \in A_{0,0}\left(R^{\prime}\right), 3 R \bigcap 3 R^{\prime} \neq \emptyset$. So we can split (3.8) into four cases:

Case 1. $\left|I^{\prime}\right| \geq|I|,\left|J^{\prime}\right| \leq|J|$.
We first consider the comparison of the diameters of $I, I^{\prime}$ and $J, J^{\prime}$. Note that $\operatorname{diam}(I) \approx 2^{-k_{1}}$ and $\operatorname{diam}\left(I^{\prime}\right) \approx 2^{-k_{1}^{\prime}}$. As we remarked above, the following geometric arguments follow from Assumption 3.1.

If $2^{-k_{1}}, 2^{-k_{1}^{\prime}} \geq 1$, then $2^{-k_{1}^{\prime}(m+2)} \approx\left|I^{\prime}\right| \geq|I| \approx 2^{-k_{1}(m+2)}$. This yields $2^{-k_{1}^{\prime}} \gtrsim 2^{-k_{1}}$.

If $2^{-k_{1}}, 2^{-k_{1}^{\prime}} \leq 1$, then $2^{-k_{1}^{\prime} \cdot 4} \approx\left|I^{\prime}\right| \geq|I| \approx 2^{-k_{1} \cdot 4}$. This also implies $2^{-k_{1}^{\prime}} \gtrsim 2^{-k_{1}}$.

If $2^{-k_{1}^{\prime}} \geq 1 \geq 2^{-k_{1}}$, then obviously $2^{-k_{1}^{\prime}} \geq 2^{-k_{1}}$.
If $2^{-k_{1}^{\prime}} \leq 1 \leq 2^{-k_{1}}$, we can see that this is impossible since in Case1, $\left|I^{\prime}\right| \geq|I|$.
Combining the above four results, we can see that $\operatorname{diam}\left(I^{\prime}\right) \gtrsim \operatorname{diam}(I)$. Similarly, we can obtain that $\operatorname{diam}\left(J^{\prime}\right) \lesssim \operatorname{diam}(J)$.

From this, we have

$$
\frac{|I|}{\left|3 I^{\prime}\right|}\left|3 R^{\prime}\right| \lesssim\left|3 R \bigcap 3 R^{\prime}\right| \lesssim\left|3 R^{\prime} \bigcap \Omega^{0,0}\right| \lesssim \frac{1}{2^{h-1}}\left|3 R^{\prime}\right|
$$

then $2^{h-1}|I| \leq\left|3 I^{\prime}\right| \lesssim\left|I^{\prime}\right|$. Thus $\left|I^{\prime}\right| \approx 2^{h-1+n_{1}}|I|$, for some $n_{1} \geq 0$. For each fixed $n_{1}$, the number of such $I$ 's must be $\lesssim 2^{n_{1}}$. As for $J,|J| \approx 2^{n_{2}}\left|J^{\prime}\right|$ for some $n_{2} \geq 0$. For each fixed $n_{2}$, the number of such $J^{\prime}$ 's is less than a constant independent of $n_{2}$, since $3 J \bigcap 3 J^{\prime} \neq \emptyset$ and $|J| \geq\left|J^{\prime}\right|$.

Again, by Assumption 3.1, if $2^{-k_{1}}, 2^{-k_{1}^{\prime}} \geq 1$, then $2^{-k_{1}^{\prime}(m+2)} \approx\left|I^{\prime}\right| \approx$ $2^{h-1+n_{1}}|I| \approx 2^{h-1+n_{1}} 2^{-k_{1}(m+2)}$. This yields that $\frac{\operatorname{diam}(I)}{\operatorname{diam}\left(I^{\prime}\right)} \approx 2^{-\frac{h-1+n_{1}}{m+2}}$.

Similarly, if $2^{-k_{1}^{\prime}} \geq 1 \geq 2^{-k_{1}}$, then $2^{-k_{1}^{\prime}(m+2)} \approx\left|I^{\prime}\right| \approx 2^{h-1+n_{1}}|I| \approx$ $2^{h-1+n_{1}} 2^{-k_{1} \cdot 4}$. This implies that $\frac{\operatorname{diam}(I)}{\operatorname{diam}\left(I^{\prime}\right)} \lesssim 2^{-\frac{h-1+n_{1}}{m+2}}$.

Finally, if $2^{-k_{1}}, 2^{-k_{1}^{\prime}} \leq 1$, then $2^{-k_{1}^{\prime} \cdot 4} \approx\left|I^{\prime}\right| \approx 2^{h-1+n_{1}}|I| \approx 2^{-k_{1} \cdot 4}$. Hence, $\frac{\operatorname{diam}(I)}{\operatorname{diam}\left(I^{\prime}\right)} \approx 2^{-\frac{h-1+n_{1}}{4}}$.

Combining the above cases, we have $\frac{\operatorname{diam}(I)}{\operatorname{diam}\left(I^{\prime}\right)} \lesssim 2^{-\frac{h-1+n_{1}}{m+2}}$. Similarly, $\frac{\operatorname{diam}\left(J^{\prime}\right)}{\operatorname{diam}(J)} \lesssim$ $2^{-\frac{n_{2}}{m+2}}$.

Thus

$$
\begin{aligned}
& \sum_{R \in \text { case } 1} r\left(R, R^{\prime}\right) v\left(R, R^{\prime}\right) \\
= & \sum_{R \in \text { case1 }}\left(\frac{|I|}{\left|I^{\prime}\right|}\right)\left(\frac{\left|J^{\prime}\right|}{|J|}\right)\left(\frac{\operatorname{diam}(I)}{\operatorname{diam}\left(I^{\prime}\right)}\right)^{\epsilon_{1}}\left(\frac{\operatorname{diam}\left(J^{\prime}\right)}{\operatorname{diam}(J)}\right)^{\epsilon_{2}}\left|I^{\prime}\right||J| \\
\lesssim & \sum_{n_{1}, n_{2} \geq 0} 2^{-\left(h-1+n_{1}\right)\left(1+\frac{\epsilon_{1}}{m+2}\right)} 2^{-n_{2}\left(1+\frac{\epsilon_{2}}{m+2}\right)} 2^{n_{1}}\left|I^{\prime}\right| 2^{n_{2}}\left|J^{\prime}\right| \\
\lesssim & 2^{-h\left(1+\frac{\epsilon_{1}}{m+2}\right)}\left|R^{\prime}\right| .
\end{aligned}
$$

Case 2. $\left|I^{\prime}\right| \leq|I|,\left|J^{\prime}\right| \geq|J|$.
This can be handled similarly as Case 1 . We have

$$
\sum_{R \in \text { case } 2} r\left(R, R^{\prime}\right) v\left(R, R^{\prime}\right) \lesssim 2^{-h\left(1+\frac{\epsilon_{2}}{m+2}\right)}\left|R^{\prime}\right| .
$$

Case 3. $\left|I^{\prime}\right| \geq|I|,\left|J^{\prime}\right| \geq|J|$.
Similar to Case1, by comparing $2^{-k_{i}}$ and $2^{-k_{i}^{\prime}}$ with 1 respectively, we can obtain that $\operatorname{diam}\left(I^{\prime}\right) \gtrsim \operatorname{diam}(I)$ and $\operatorname{diam}\left(J^{\prime}\right) \gtrsim \operatorname{diam}(J)$. Thus we have

$$
|R| \lesssim\left|3 R^{\prime} \bigcap 3 R\right| \leq\left|3 R^{\prime} \bigcap \Omega_{0,0}\right| \leq \frac{1}{2^{h-1}}\left|3 R^{\prime}\right| .
$$

thus $2^{h-1}|R| \lesssim\left|R^{\prime}\right|$. Hence $\left|R^{\prime}\right| \approx 2^{h-1+n}|R|$ for some $n \geq 0$. For each fixed $n$, the number of such $R$ 's is $\lesssim 2^{n}$.

Now we further consider the diameter of the cubes $I, I^{\prime}, J, J^{\prime}$.
If $2^{-k_{1}}, 2^{-k_{1}^{\prime}} \geq 1$ and $2^{-k_{2}}, 2^{-k_{2}^{\prime}} \geq 1$, then $2^{-k_{1}^{\prime}(m+2)} 2^{-k_{2}^{\prime}(m+2)} \approx 2^{h-1+n}$ $2^{-k_{1}(m+2)} 2^{-k_{2}(m+2)}$. Hence $\frac{\operatorname{diam}(I)}{\operatorname{diam}\left(I^{\prime}\right)} \frac{\operatorname{diam}(J)}{\operatorname{diam}\left(J^{\prime}\right)} \lesssim 2^{-\frac{h-1+n}{m+2}}$.

Similarly, by continuing comparing $2^{-k_{i}}$ and $2^{-k_{i}^{\prime}}$ with 1 , respectively, we have $\frac{\operatorname{diam}(I)}{\operatorname{diam}\left(I^{\prime}\right)} \frac{\operatorname{diam}(J)}{\operatorname{diam}\left(J^{\prime}\right)} \lesssim 2^{-\frac{h-1+n}{m+2}}$. As a consequence, we have

$$
\begin{aligned}
\sum_{R \in \text { case } 3} r\left(R, R^{\prime}\right) v\left(R, R^{\prime}\right) & =\sum_{R \in \text { case } 3} \frac{|R|}{\left|R^{\prime}\right|}\left(\frac{\operatorname{diam}(I)}{\operatorname{diam}\left(I^{\prime}\right)}\right)^{\epsilon_{1}}\left(\frac{\operatorname{diam}(J)}{\operatorname{diam}\left(J^{\prime}\right)}\right)^{\epsilon_{2}}\left|R^{\prime}\right| \\
& \lesssim \sum_{n \geq 0} 2^{-(h-1+n)\left(1+\frac{\epsilon_{3}}{m+2}\right)}\left|R^{\prime}\right| \\
& \lesssim 2^{-h\left(1+\frac{\epsilon_{3}}{m+2}\right)}\left|R^{\prime}\right|,
\end{aligned}
$$

where $\epsilon_{3}=\epsilon_{1} \wedge \epsilon_{2}$.

Case 4. $\left|I^{\prime}\right| \leq|I|,\left|J^{\prime}\right| \leq|J|$.
Similar to Case 3, we have $\operatorname{diam}\left(I^{\prime}\right) \lesssim \operatorname{diam}(I)$ and $\operatorname{diam}\left(J^{\prime}\right) \lesssim \operatorname{diam}(J)$, which implies that

$$
\left|R^{\prime}\right| \lesssim\left|3 R^{\prime} \bigcap 3 R\right| \leq\left|3 R^{\prime} \bigcap \Omega_{0,0}\right| \leq \frac{1}{2^{h-1}}\left|3 R^{\prime}\right| .
$$

Hence there exists a constant $h_{0}>0$ independent of $R$ and $R^{\prime}$ such that $0 \leq h \leq h_{0}$. We obtain that $|R| \approx 2^{h-1+n}\left|R^{\prime}\right|$ for some $n \geq 0$ and that for each fixed $n$, the number of such $R^{\prime}$ 's is less then a constant independent of $n$. Also, by using the same skills as in Case3, we have $\frac{\operatorname{diam}\left(I^{\prime}\right)}{\operatorname{diam}(I)} \frac{\operatorname{diam}\left(J^{\prime}\right)}{\operatorname{diam}(J)} \lesssim 2^{-\frac{h-1+n}{m+2}}$. Therefore

$$
\begin{aligned}
& \sum_{R \in \text { case } 4} r\left(R, R^{\prime}\right) v\left(R, R^{\prime}\right) \\
= & \sum_{R \in \text { case } 4} \frac{\left|R^{\prime}\right|}{|R|}\left(\frac{\operatorname{diam}\left(I^{\prime}\right)}{\operatorname{diam}(I)}\right)^{\epsilon_{1}}\left(\frac{\operatorname{diam}\left(J^{\prime}\right)}{\operatorname{diam}(J)}\right)^{\epsilon_{2}}|R| \lesssim 2^{-h \frac{\epsilon_{3}}{m+2}}\left|R^{\prime}\right|,
\end{aligned}
$$

where $\epsilon_{3}$ is the same as in Case3.
Now let us turn to $\mathbb{I}_{1}$.

$$
\begin{aligned}
\mathbb{I}_{1} & =\frac{1}{|\Omega|} \sum_{h} \sum_{R^{\prime} \in \mathcal{D}_{h}^{0,0}}\left(\sum_{R \in \text { case } 1}+\sum_{R \in \text { case } 2}+\sum_{R \in \text { case } 3}+\sum_{R \in \text { case } 4}\right) r\left(R, R^{\prime}\right) v\left(R, R^{\prime}\right) T_{R^{\prime}} \\
& =: \mathbb{I}_{11}+\mathbb{I}_{12}+\mathbb{I}_{13}+\mathbb{I}_{14} .
\end{aligned}
$$

Obviously, combining the fact that $\left|\Omega_{h}^{0,0}\right| \lesssim h 2^{h}|\Omega|$ for $h \geq 1,\left|\Omega_{0}^{0,0}\right| \lesssim|\Omega|$, $\epsilon_{i} \in\left(\vartheta_{i}, 1\right)$ for $i=1,2$, we have

$$
\begin{aligned}
\mathbb{I}_{11}, \mathbb{I}_{12}, \mathbb{I}_{13} & \lesssim \frac{1}{|\Omega|} \sum_{h} \sum_{R^{\prime} \in \mathcal{D}_{h}^{0,0}} 2^{-h\left(1+\frac{\epsilon_{3}}{m+2}\right)}\left|R^{\prime}\right| T_{R^{\prime}} \\
& \lesssim \sum_{h} 2^{-h\left(1+\frac{\epsilon_{3}}{m+2}\right)} \frac{\left|\Omega_{h}^{0,0}\right|}{|\Omega|} \frac{1}{\left|\Omega_{h}^{0,0}\right|} \sum_{R^{\prime} \subset \Omega_{h}^{0,0}}\left|R^{\prime}\right| T_{R^{\prime}} \\
& \lesssim \sum_{h} 2^{-h\left(1+\frac{\epsilon_{3}}{m+2}\right)} h 2^{h} \sup _{\bar{\Omega}} \frac{1}{|\bar{\Omega}|} \sum_{R^{\prime} \subset \bar{\Omega}} \mu\left(R^{\prime}\right) T_{R^{\prime}} \\
& \lesssim \sup _{\bar{\Omega}} \frac{1}{|\bar{\Omega}|} \sum_{R^{\prime} \subset \bar{\Omega}} \mu\left(R^{\prime}\right) T_{R^{\prime}} .
\end{aligned}
$$

As for $\mathbb{I}_{14}$, noting that $0 \leq h \leq h_{0}$ then we can get the same estimate as above.
Then, following the same routine and skills as in the proof of Theorem 3.2 in [10], we can obtain the estimates of other three terms in $\mathbb{I}$ and similarly we can deal with $\mathbb{I I}, \mathbb{I} \mathbb{I I}$ and $\mathbb{I V}$ with only minor differences that we need to compare the diameter of the dyadic cube with 1 according to the volume of the cube.

This completes the proof of Theorem 3.3.

## 4. Product Sequence Spaces and Duality

In this section, we introduce the product sequence space $c^{1}$ and prove that $c^{1}$ is the dual space of $s^{1}$. Let $\widetilde{M}=M \times M$, where $M$ is mentioned in Section 2.1. We first recall the definition of $s^{1}$ introduced in [11].

Definition 4.1. [11]. Set $\tilde{\chi}_{R}\left(x_{1}, x_{2}\right)=|R|^{-1 / 2} \chi_{R}\left(x_{1}, x_{2}\right)$ for any dyadic rectangle $R$ in $\widetilde{M}$. The product sequence space $s^{1}$ is defined as the collection of all complex-value sequences $s=\left\{s_{R}\right\}_{R}$ such that

$$
\begin{equation*}
\|s\|_{s^{1}}=\left\|\left\{\sum_{R}\left(\left|s_{R}\right| \tilde{\chi}_{R}\left(x_{1}, x_{2}\right)\right)^{2}\right\}^{1 / 2}\right\|_{L^{1}(\widetilde{M})} \tag{4.1}
\end{equation*}
$$

Definition 4.2. The product sequence space $c^{1}$ is defined as the collection of all complex-value sequences $t=\left\{t_{R}\right\}_{R}$ such that

$$
\begin{equation*}
\|t\|_{c^{1}}=\sup _{\Omega}\left\{\frac{1}{|\Omega|} \sum_{R \subseteq \Omega}\left|t_{R}\right|^{2}\right\}^{1 / 2}, \tag{4.2}
\end{equation*}
$$

where the sup is taken over all open sets $\Omega \in \widetilde{M}$ with finite measure and $R$ ranges over all the dyadic rectangles in $\widetilde{M}$.

The main result in this section is the following duality theorem.
Theorem 4.3. $\left(s^{1}\right)^{\prime}=c^{1}$.
Proof. First, we prove that for all $t \in c^{1}$, let

$$
\begin{equation*}
L(s)=\sum_{R} s_{R} \cdot \bar{t}_{R}, \quad \forall s \in s^{1}, \tag{4.3}
\end{equation*}
$$

then $|L(s)| \lesssim\|s\|_{s^{1}}\|t\|_{c^{1}}$.
To see this, let

$$
\begin{aligned}
& \Omega_{k}=\left\{\left(x_{1}, x_{2}\right) \in \widetilde{M}:\left\{\sum_{R}\left(\left|s_{R}\right| \tilde{\chi}_{R}\left(x_{1}, x_{2}\right)\right)^{2}\right\}^{1 / 2}>2^{k}\right\} \\
& B_{k}=\left\{R:\left|\Omega_{k} \bigcap R\right|>\frac{1}{2}|R|,\left|\Omega_{k+1} \bigcap R\right| \leq \frac{1}{2}|R|\right\} \\
& \tilde{\Omega}_{k}=\left\{\left(x_{1}, x_{2}\right) \in \widetilde{M}: \mathcal{M}_{s}\left(\chi_{\Omega_{k}}\right)>\frac{1}{2}\right\}
\end{aligned}
$$

where $M_{s}$ is the strong maximal function on $\widetilde{M}$. By (4.3) and the Hölder inequality,

$$
\begin{align*}
|L(s)| & \leq \sum_{k}\left(\sum_{R \in B_{k}}\left|s_{R}\right|^{2}\right)^{\frac{1}{2}}\left(\sum_{R \in B_{k}}\left|t_{R}\right|^{2}\right)^{\frac{1}{2}} \\
& \leq \sum_{k}\left|\tilde{\Omega}_{k}\right|^{\frac{1}{2}}\left(\sum_{R \in B_{k}}\left|s_{R}\right|^{2}\right)^{\frac{1}{2}}\left(\frac{1}{\left|\tilde{\Omega}_{k}\right|} \sum_{R \subset \tilde{\Omega}_{k}}\left|t_{R}\right|^{2}\right)^{\frac{1}{2}}  \tag{4.4}\\
& \leq \sum_{k}\left|\tilde{\Omega}_{k}\right|^{\frac{1}{2}}\left(\sum_{R \in B_{k}}\left|s_{R}\right|^{2}\right)^{\frac{1}{2}}\|t\|_{c^{1}} .
\end{align*}
$$

Combining the facts that $\int_{\tilde{\Omega}_{k} \backslash \Omega_{k+1}} \sum_{R \in B_{k}}\left(\left|s_{R}\right| \tilde{\chi}_{R}(x)\right)^{2} d x \leq 2^{2(k+1)}\left|\tilde{\Omega}_{k} \backslash \Omega_{k+1}\right| \leq$ $C 2^{2 k}\left|\Omega_{k}\right|$ and that

$$
\int_{\tilde{\Omega}_{k} \backslash \Omega_{k+1}} \sum_{R \in B_{k}}\left(\left|s_{R}\right| \tilde{\chi}_{R}(x)\right)^{2} d x \geq \sum_{R \in B_{k}}\left|s_{R}\right|^{2}|R|^{-1}\left|\tilde{\Omega}_{k} \backslash \Omega_{k+1} \bigcap R\right|
$$

$$
\text { since } R \in B_{k} \text { then } R \text { is contained in } \tilde{\Omega}_{k}
$$

$$
\geq \sum_{R \in B_{k}}\left|s_{R}\right|^{2}|R|^{-1} \frac{1}{2}|R|
$$

$$
\geq \frac{1}{2} \sum_{R \in B_{k}}\left|s_{R}\right|^{2}
$$

we have $\left(\sum_{R \in B_{k}}\left|s_{R}\right|^{2}\right)^{\frac{1}{2}} \lesssim 2^{k}\left|\Omega_{k}\right|^{\frac{1}{2}}$. Substituting this back into the last term of (4.4) yields that $|L(s)| \lesssim\|s\|_{s^{1}}\|t\|_{c^{1}}$.

Conversely, we need to verify that for any $L \in\left(s^{1}\right)^{\prime}$, there exists $t \in c^{1}$ with $\|t\|_{c^{1}} \leq\|L\|$ such that for all $s \in s^{1}, L(s)=\sum_{R} s_{R} \bar{t}_{R}$. Here we adapt a similar idea given by Frazier and Jawerth in [8] in one-parameter case to our multi-parameter situation.

We define $s_{R}^{i}=1$ when $R=R_{i}$ and $s_{R}^{i}=0$ for all other $R$. Then it is easy to see that $\left\|S_{R}^{i}\right\|_{s^{1}}=1$. Now for all $s \in s^{1}, s=\left\{s_{R}\right\}=\sum_{i} s_{R_{i}} s_{R_{i}}^{i}$, the limit holds in the norm of $s^{1}$, where $\left\{R_{i}\right\}_{i \in \mathbb{Z}}$ are denoted by all dyadic rectangles in $\widetilde{M}$. For any $L \in\left(s^{1}\right)^{\prime}$, let $\bar{t}_{R_{i}}=L\left(s^{i}\right)$, then $L(s)=L\left(\sum_{i} s_{R_{i}} s^{i}\right)=\sum_{i} s_{R_{i}} \bar{t}_{R_{i}}=\sum_{R} s_{R} \bar{t}_{R}$. Let $t=\left\{t_{R}\right\}$. Then we only need to check that $\|t\|_{c^{1}} \leq\|L\|$.

For any open set $\Omega \subset \widetilde{M}$ with finite measure, let $\bar{\mu}$ be a new measure such that $\bar{\mu}(R)=\frac{|R|}{|\Omega|}$ when $R \subset \Omega, \bar{\mu}(R)=0$ when $R \nsubseteq \Omega$. And let $l^{2}(\bar{\mu})$ be a sequence space such that when $s \in l-{ }^{2}(\bar{\mu}),\left(\sum_{R \subset \Omega}\left|s_{R}\right|^{2} \frac{|R|}{|\Omega|}\right)^{1 / 2}<\infty$. It is easy to see that
$\left(l^{2}(\bar{\mu})\right)^{\prime}=l^{2}(\bar{\mu})$. Then,

$$
\begin{aligned}
\left\{\frac{1}{|\Omega|} \sum_{R \subset \Omega}\left|t_{R}\right|^{2}\right\}^{1 / 2} & =\left\||R|^{-1 / 2}\left|t_{R}\right|\right\|_{l^{2}(\bar{\mu})} \\
& =\sup _{s:\|s\|_{l^{2}(\bar{\mu})} \leq 1}\left|\sum_{R \subseteq \Omega}\left(t_{R}|R|^{-1 / 2}\right) \cdot \bar{s}_{R} \cdot \frac{|R|}{|\Omega|}\right| \\
& \leq \sup _{s:\|s\|_{l^{2}(\bar{\mu})} \leq 1}\left|L\left(\chi_{\{R \subseteq \Omega\}}(R) \frac{|R|^{1 / 2}\left|s_{R}\right|}{|\Omega|}\right)\right| \\
& \leq \sup _{s:\|s\|_{l^{2}(\bar{\mu})} \leq 1}\|L\| \cdot\left\|\chi_{\{R \subseteq \Omega\}}(R) \frac{|R|^{1 / 2}\left|s_{R}\right|}{|\Omega|}\right\|_{s^{1}}
\end{aligned}
$$

By (4.1) and the Hölder inequality, we have

$$
\left\|\chi_{\{R \subseteq \Omega\}}(R) \frac{|R|^{1 / 2}\left|s_{R}\right|}{|\Omega|}\right\|_{s^{1}} \leq\left(\sum_{R \subseteq \Omega}\left|s_{R}\right|^{2} \frac{|R|}{|\Omega|}\right)^{1 / 2}
$$

Hence,

$$
\|t\|_{c^{1}} \leq \sup _{s:\|s\|_{l^{2}(\bar{\mu})} \leq 1}\|L\| \cdot\|s\|_{l^{2}(\bar{\mu})} \leq\|L\| .
$$

This completes the proof of Theorem 4.3.

$$
\text { 5. Duality of } H^{1}(\widetilde{M}) \text { with } B M O(\widetilde{M})
$$

In this section, we prove Theorem 1.1. Let $\widetilde{M}=M \times M$, where $M$ satisfies Assumption 3.1. First, we define the lifting and projection operators as follows.

Definition 5.1. Suppose $\vartheta_{i} \in(0,1)$ and $0<\beta_{i}, \gamma_{i}<\vartheta_{i}$ for $i=1,2$. For any $f \in\left({ }^{\circ} \vartheta_{\vartheta_{1}, \vartheta_{2}}\left(\beta_{1}, \beta_{2} ; \gamma_{1}, \gamma_{2}\right)\right)^{\prime}$, define the lifting operator $S_{Q}$ by

$$
\begin{equation*}
S_{Q}(f)=\left\{|I|^{\frac{1}{2}}|J|^{\frac{1}{2}} Q_{k_{1}} Q_{k_{2}}[f]\left(x_{I}, y_{J}\right)\right\}_{k_{1}, k_{2}, I, J} \tag{5.1}
\end{equation*}
$$

where $k_{1}, k_{2} \in \mathbb{Z}, I, J$ are the same as in Lemma 2.5 and $R=I \times J, x_{I}$ and $y_{J}$ are the centers of $I$ and $J$, respectively.

Definition 5.2. For any complex-value sequence $\lambda=\left\{\lambda_{k_{1}, k_{2}, I, J}\right\}_{k_{1}, k_{2}, I, J}$, define the projection operator $T_{\widetilde{Q}}$ by

$$
\begin{equation*}
T_{\widetilde{Q}}(\lambda)(x, y)=\sum_{j, k} \sum_{I, J}|I|^{\frac{1}{2}}|J|^{\frac{1}{2}} \widetilde{q}_{k_{1}} \widetilde{q}_{k_{2}}\left(x, x_{I}, y, y_{J}\right) \cdot \lambda_{j, k, I, J}, \tag{5.2}
\end{equation*}
$$

where $\widetilde{q}_{s_{1}} \widetilde{q}_{s_{2}}\left(x, x_{I}, y, y_{J}\right)$ are the same as in Lemma 2.5 , and $k_{1}, k_{2} ; I, J ; x_{I}, y_{J}$ are the same as in the above definition. Moreover,

$$
T_{\widetilde{Q}}\left(S_{Q}(f)\right)(x, y)=\sum_{k_{1}, k_{2}} \sum_{I, J}|I||J| \widetilde{q}_{k_{1}} \widetilde{q}_{k_{2}}\left(x, x_{I}, y, y_{J}\right) Q_{k_{1}} Q_{k_{2}}[f]\left(x_{I}, y_{J}\right)
$$

For the above lifting and projection operators, we first recall the following result on $H^{1}(\widetilde{M})$ showed in [11].

Lemma 5.3. ([11]). For any $f \in H^{1}(\widetilde{M})$, we have

$$
\begin{equation*}
\left\|S_{Q}(f)\right\|_{s^{1}} \lesssim\|f\|_{H^{1}(\widetilde{M})} \tag{5.3}
\end{equation*}
$$

Conversely, for any $s \in s^{1}$,

$$
\begin{equation*}
\left\|T_{\widetilde{Q}}(s)\right\|_{H^{1}(\widetilde{M})} \lesssim\|s\|_{s^{1}} \tag{5.4}
\end{equation*}
$$

Moreover, $T_{\widetilde{Q}} S_{Q}$ equals the identity on $H^{1}(\widetilde{M})$.
We now establish a similar result on $B M O(\widetilde{M})$ as follows.

Lemma 5.4. For any $f \in B M O(\widetilde{M})$, we have

$$
\begin{equation*}
\left\|S_{Q}(f)\right\|_{c^{1}} \lesssim\|f\|_{B M O(\widetilde{M})} \tag{5.5}
\end{equation*}
$$

Conversely, for any $t \in c^{1}$,

$$
\begin{equation*}
\left\|T_{Q}(t)\right\|_{B M O(\widetilde{M})} \lesssim\|t\|_{c^{1}} \tag{5.6}
\end{equation*}
$$

Moreover, $T_{\widetilde{Q}} S_{Q}$ equals the identity on $B M O(\widetilde{M})$.
Proof. According to Definition 4.2, 5.1 and 3.2, (5.5) follows directly from the Plancherel-Pôlya-type inequality for $B M O(\widetilde{M})$ (Theorem 3.3).

Now let us prove (5.6). For any $t \in c^{1}$, by Definition 3.2 and 5.2 and using the same skills as in the estimate of (3.5), we obtain that

$$
\begin{aligned}
& \frac{1}{|\Omega|} \sum_{k_{1}, k_{2}} \sum_{I \times J \subset \Omega}|I||J| \sup _{u \in I, v \in J}\left|Q_{k_{1}} Q_{k_{2}}\left[T_{\widetilde{Q}}(t)\right](u, v)\right|^{2} \\
\lesssim & \frac{1}{|\Omega|} \sum_{k_{1}, k_{2}} \sum_{I \times J \subset \Omega^{\prime}} \sum_{k_{1}^{\prime}, k_{2}^{\prime}} \sum_{I^{\prime}, J^{\prime}}\left[\frac{|I|}{\left|I^{\prime}\right|} \wedge \frac{\left|I^{\prime}\right|}{|I|}\right]\left[\frac{|J|}{\left|J^{\prime}\right|} \wedge \frac{\left|J^{\prime}\right|}{|J|}\right]\left[\frac{\operatorname{diam}(I)}{\operatorname{diam}\left(I^{\prime}\right)} \wedge \frac{\operatorname{diam}\left(I^{\prime}\right)}{\operatorname{diam}(I)}\right]^{\epsilon_{1}} \\
& \times\left[\frac{\operatorname{diam}(J)}{\operatorname{diam}\left(J^{\prime}\right)} \wedge \frac{\operatorname{diam}\left(J^{\prime}\right)}{\operatorname{diam}(J)}\right]^{\epsilon_{2}} \cdot\left(|I| \vee\left|I^{\prime}\right|\right)\left(|J| \vee\left|J^{\prime}\right|\right) \\
& \times \frac{|I| \vee\left|I^{\prime}\right|}{V_{\operatorname{dist}\left(I, I^{\prime}\right)}\left(x_{I}\right)+|I| \vee\left|I^{\prime}\right|}\left(\frac{\operatorname{diam}(I) \vee \operatorname{diam}\left(I^{\prime}\right)}{\operatorname{diam}(I) \vee \operatorname{diam}\left(I^{\prime}\right)+\operatorname{dist}\left(I, I^{\prime}\right)}\right)^{\gamma_{1}} \\
& \times \frac{|J| J^{\prime} \mid}{V_{\operatorname{dist}\left(J, J^{\prime}\right)}\left(y_{J}\right)+|J| \vee\left|J^{\prime}\right|}\left(\frac{\operatorname{diam}(J) \vee \operatorname{diam}\left(J^{\prime}\right)}{\operatorname{diam}(J) \vee \operatorname{diam}\left(J^{\prime}\right)+\operatorname{dist}\left(J, J^{\prime}\right)}\right)^{\gamma_{2}} \\
& \times\left.\left.\left|t_{k_{1}^{\prime}, k_{2}^{\prime}, I^{\prime}, J^{\prime}}\right| I^{\prime}\right|^{-\frac{1}{2}}\left|J^{\prime}\right|^{\frac{1}{2}}\right|^{2} .
\end{aligned}
$$

In fact, we now deal with the same estimates as (3.5) with only minor modification that $\inf _{u \in I^{\prime}, v \in J^{\prime}}\left|Q_{k_{1}^{\prime}} Q_{k_{2}^{\prime}}[f](u, v)\right|^{2}$ is replaced by $\left.\left.\left|t_{k_{1}^{\prime}, k_{2}^{\prime}, I^{\prime}, J^{\prime}}\right| I^{\prime}\right|^{-\frac{1}{2}}\left|J^{\prime}\right|^{\frac{1}{2}}\right|^{2}$. Thus, following the proof of Theorem 3.3, we can obtain that

$$
\left\|T_{\widetilde{Q}}(t)\right\|_{B M O(\widetilde{M})} \lesssim\left(\left.\left.\sup _{\Omega} \frac{1}{|\Omega|} \sum_{k_{1}, k_{2}} \sum_{I \times J \subset \Omega}|I \| J|\left|t_{k_{1}, k_{2}, I, J}\right| I\right|^{-\frac{1}{2}}|J|^{-\frac{1}{2}}\right|^{2}\right)^{\frac{1}{2}} \lesssim\|t\|_{c^{1}} .
$$

Finally, we can easily get that from the Calderon reproducing formula $T_{\widetilde{Q}} S_{Q}$ is the identity operator on $B M O(\widetilde{M})$. The proof of Lemma 5.4 is completed.

We now prove the main result, Theorem 1.1.
Proof of Theorem 1.1. First, for any $g \in \stackrel{\circ}{G}_{\vartheta_{1}, \vartheta_{2}}\left(\beta_{1}, \beta_{2} ; \gamma_{1}, \gamma_{2}\right)$ with $0<$ $\beta_{i}, \gamma_{i}<\vartheta_{i}$ for $i=1,2$ and $f \in \operatorname{BMO}(\widetilde{M})$, from Lemma 2.5, we have

$$
<f, g>=\sum_{k_{1}, k_{2}} \sum_{I, J}|I||J| \widetilde{Q}_{k_{1}} \widetilde{Q}_{k_{2}}[f]\left(x_{I}, y_{J}\right) Q_{k_{1}} Q_{k_{2}}[f]\left(x_{I}, y_{J}\right) .
$$

Here we use $\widetilde{Q}_{k_{i}}$ to denote the operator whose kernel is $\widetilde{q}_{k_{i}}(x, y)$. Following the idea of (4.4), we have $|<f, g>| \leq C\left\|S_{\widetilde{Q}}(g)\right\|_{s^{1}}\left\|S_{Q}(f)\right\|_{c^{1}}$, where $S_{\widetilde{Q}}(g)=$ $\left\{|I|^{\frac{1}{2}}|J|^{\frac{1}{2}} \widetilde{Q}_{k_{1}} \widetilde{Q}_{k_{2}}[g]\left(x_{I}, y_{J}\right)\right\}_{k_{1}, k_{2}, I, J}$.

From the Definition 4.1, the Calderon reproducing formula and the Plancherel-Polya-type inequality (6.2), we can get that $\left\|S_{\widetilde{Q}}(g)\right\|_{s^{1}} \lesssim\|g\|_{H^{1}(\widetilde{M})}$. And from

Lemma 5.4, we have $\left\|S_{Q}(f)\right\|_{c^{1}} \leq C\|f\|_{B M O(\widetilde{M})}$. Thus,

$$
|<f, g>| \leq C\|f\|_{B M O(\widetilde{M})}\|g\|_{H^{1}(\widetilde{M})} .
$$

Since $\stackrel{\circ}{G}_{\vartheta_{1}, \vartheta_{2}}\left(\beta_{1}, \beta_{2} ; \gamma_{1}, \gamma_{2}\right)$ is dense in $H^{1}(\widetilde{M})$, it follows from a standard density argument that $B M O(\widetilde{M}) \subseteq\left(H^{1}(\widetilde{M})\right)^{\prime}$.

Conversely, suppose $L \in\left(H^{1}(\widetilde{M})\right)^{\prime}$. Then $L_{1}=L \circ T_{\widetilde{Q}} \in\left(s^{1}\right)^{\prime}$ by Lemma 5.3. So by Theorem 4.3, there exists $t \in c^{1}$ such that $L_{1}(s)=<t, s>$ for all $s \in s^{1}$ and that $\|t\|_{c^{1}} \approx\left\|L_{1}\right\| \lesssim\|L\|$ since $T_{\widetilde{Q}}$ is bounded. Hence for any $g \in{\stackrel{\circ}{G} \vartheta_{1}, \vartheta_{2}}\left(\beta_{1}, \beta_{2} ; \gamma_{1}, \gamma_{2}\right), L(g)=L\left(T_{\widetilde{Q}} S_{Q}(g)\right)=<t, S_{Q}(g)>$. From Definition 4.2, we have

$$
\begin{aligned}
<t, S_{Q}(g)> & =\sum_{k_{1}, k_{2}} \sum_{I, J}|I|^{\frac{1}{2}}|J|^{\frac{1}{2}} Q_{k_{1}} Q_{k_{2}}[g]\left(x_{I}, y_{J}\right) \cdot t_{k_{1}, k_{2}, I, J} \\
& =\int_{\widetilde{M}} \sum_{k_{1}, k_{2}} \sum_{I, J}|I|^{\frac{1}{2}}|J|^{\frac{1}{2}} q_{k_{1}} q_{k_{2}}\left(x, x_{I}, y, y_{J}\right) t_{k_{1}, k_{2}, I, J} \cdot g(x, y) d x d y \\
& =<T_{Q}(t), g>.
\end{aligned}
$$

By using the Plancherel-Polya-type inequality in Theorem 3.3, we can get that $\left\|T_{Q}(t)\right\|_{B M O(\widetilde{M})} \leq C\|t\|_{c^{1}} \leq C\|L\|$. By the density argument, we have that for any $g \in H^{1}(\widetilde{M})$,

$$
L(g)=<T_{Q}(t), g>,
$$

which shows that $\left(H^{1}(\widetilde{M})\right)^{\prime} \subseteq B M O(\widetilde{M})$.

## 6. Product Case of $n$ Factors

In this section, we describe the results on $\widetilde{M}=M_{1} \times \cdots \times M_{n}$, where each $M_{i}$ satisfies Assumption 3.1, since the method we used on $\widetilde{M}=M \times M$ can be applied for the product case of $n$ factors.

To begin with, we state some necessary results in [11]. Denote by ${ }^{\circ}{ }_{\vartheta_{1}, \cdots, \vartheta_{n}}\left(\beta_{1}, \gamma_{1} ;\right.$ $\left.\cdots ; \beta_{n}, \gamma_{n}\right)$ and $\left(\stackrel{\circ}{G}_{\vartheta_{1}, \cdots, \vartheta_{n}}\left(\beta_{1}, \gamma_{1} ; \cdots ; \beta_{n}, \gamma_{n}\right)\right)^{\prime}$ the test function space and its dual space, where $\vartheta_{i} \in(0,1)$ and $0<\beta_{i}, \gamma_{i}<\vartheta_{i}$ for $i=1,2, \cdots, n$. The LittlewoodPaley square function associated to the sequence of operators $\left\{Q_{k_{i}}\right\}_{k_{i} \in \mathbb{Z}}$ on each $M_{i}$ is defined by

$$
\widetilde{S}(f)\left(x_{1}, \cdots, x_{n}\right)=\left\{\sum_{k_{1}} \cdots \sum_{k_{n}}\left|Q_{k_{1}} \cdots Q_{k_{n}}(f)\left(x_{1}, \cdots, x_{n}\right)\right|^{2}\right\}^{\frac{1}{2}} .
$$

In [11] we can see that $\|\widetilde{S}(f)\|_{L^{p}(\widetilde{M})} \approx\|f\|_{L^{p}(\widetilde{M})}$ for $1<p<\infty$. And the Hardy space $H^{1}(\widetilde{M})$ is defined as follows.

Definition 6.1. ([11]). Let $0<\vartheta_{i}<1$ and $0<\beta_{i}, \gamma_{i}<\vartheta_{i}$ for $i=1, \cdots, n$. The Hardy space $H^{1}(\widetilde{M})$ is defined to be the set of all $f \in\left({ }_{G}^{G_{\vartheta}, \cdots, \vartheta_{n}},\left(\beta_{1}, \gamma_{1} ; \cdots ; \beta_{n}\right.\right.$, $\left.\left.\gamma_{n}\right)\right)^{\prime}$ such that $\|\widetilde{S}[f]\|_{L^{1}(\widetilde{M})}<\infty$, and we define

$$
\|f\|_{H^{1}(\widetilde{M})}=\|\widetilde{S}[f]\|_{L^{1}(\widetilde{M})}
$$

Now we give the definition of $B M O(\widetilde{M})$ via the sequence of operators $\left\{Q_{k_{i}}\right\}_{k_{i} \in \mathbb{Z}}$ on each $M_{i}$ as follows.

Definition 6.2. Let $0<\vartheta_{i}<1$ and $0<\beta_{i}, \gamma_{i}<\vartheta_{i}$ for $i=1, \cdots, n$. We define the space $B M O(\widetilde{M})$ to be the set of all $f \in\left(\stackrel{\circ}{G}_{\vartheta_{1}, \cdots, \vartheta_{n}}\left(\beta_{1}, \gamma_{1} ; \cdots ; \beta_{n}, \gamma_{n}\right)\right)^{\prime}$ such that

$$
\begin{align*}
& \|f\|_{B M O(\widetilde{M})} \\
= & \sup _{\Omega}\left\{\frac{1}{|\Omega|} \int_{\Omega_{k_{1}, \cdots, k_{n}}} \sum_{I_{1} \times \cdots \times I_{n} \subseteq \Omega}\left|Q_{k_{1}} \cdots Q_{k_{n}}[f]\left(x_{1}, \cdots, x_{n}\right)\right|^{2}\right.  \tag{6.1}\\
& \left.\times \chi_{I_{1}}\left(x_{1}\right) \cdots \chi_{I_{n}}\left(x_{n}\right) d x_{1} \cdots d x_{n}\right\}^{\frac{1}{2}}<\infty,
\end{align*}
$$

where the sup is taken over all open sets $\Omega$ in $\widetilde{M}$ with finite measure and for each $k_{i}, I_{i}$ ranges over all the dyadic cubes in $M_{i}$ with length $\ell\left(I_{i}\right)=2^{-k_{i}-N_{0}}$ for $i=1,2, \cdots, n$.

Following the same routine as in the product case of two factors, we can establish the Plancherel-Polya-type inequality for $B M O(\widetilde{M})$.

Theorem 6.3. Let all the notation be the same as in Definition 6.2. Then for all $f \in B M O(\widetilde{M})$,

$$
\begin{aligned}
& \sup _{\Omega}\left\{\frac{1}{|\Omega|} \int_{\Omega_{k_{1}, \cdots, k_{n}}} \sum_{I_{1} \times \cdots \times I_{n} \subseteq \Omega} \sup _{u_{1} \in I_{1}, \cdots, u_{n} \in I_{n}}\left|Q_{k_{1}} \cdots Q_{k_{n}}[f]\left(u_{1}, \cdots, u_{n}\right)\right|^{2}\right. \\
& \left.\quad \times \chi_{I_{1}}\left(x_{1}\right) \cdots \chi_{I_{n}}\left(x_{n}\right) d x_{1} \cdots d x_{n}\right\}^{\frac{1}{2}} \\
& \approx \sup _{\Omega}\left\{\frac{1}{|\Omega|} \int_{\Omega_{k_{1}, \cdots, k_{n}}} \sum_{I_{1} \times \cdots \times I_{n} \subseteq \Omega} \sum_{u_{1} \in I_{1}, \cdots, u_{n} \in I_{n}}\left|Q_{k_{1}} \cdots Q_{k_{n}}[f]\left(u_{1}, \cdots, u_{n}\right)\right|^{2}\right. \\
& \\
& \left.\quad \times \chi_{I_{1}}\left(x_{1}\right) \cdots \chi_{I_{n}}\left(x_{n}\right) d x_{1} \cdots d x_{n}\right\}^{\frac{1}{2}} .
\end{aligned}
$$

Next, we can extend the result of sequence spaces on product space of 2-factors, namely, Theorem 4.3, Lemma 5.3 and 5.4, to product spaces of n-factors. Then, by working on the level of sequence spaces, we can obtain Theorem 1.1 on product case of $n$ factors. For the detail, we omit it here.

## References

1. M. Christ, $\mathrm{A} T(\mathrm{~b})$ theorem with remarks on analytic capacity and the Cauchy integral, Colloq. Math., 60/61 (1990), 601-628.
2. S-Y. A. Chang and R. Fefferman, A continuous version of the duality of $H^{1}$ and BMO on the bi-disc, Ann. Math., 112 (1980), 179-201.
3. S-Y. A. Chang and R. Fefferman, Some recent developments in Fourier analysis and $H^{p}$-theory on product domains, Bull. Amer. Math. Soc. (N.S.), 12(1) (1985), 1-43.
4. D.-C. Chang, A. Nagel and E. M. Stein, Estimates for the $\bar{\partial}$-Neumann problem for pseudoconvex domains in $\mathbb{C}^{2}$ of finite type, Proc. Natl. Acad. Sci. U.S.A., Vol. 85, pp. 8771-8774, December 1988 Mathematics.
5. D.-C. Chang, A. Nagel and E. M. Stein, Estimates for the $\bar{\partial}$-Neumann problem in pseudoconvex domains of finite type in $C^{2}$, Acta Math., 169 (1992), 153-228.
6. R. Coifman and G. Weiss, Analyse harmonique non-commutative sur certains espaces homogènes, Lecture Notes in Math. 242, Springer, Berlin, 1971.
7. D. G. Deng and Y. S. Han, Harmonic analysis on spaces of homogeneous type. With a preface by Yves Meyer, Lecture Notes in Mathematics, 1966, Springer-Verlag, Berlin, 2009.
8. M. Frazier and B. Jawerth, A discrete transform and decomposition of distribution spaces, J. Funct. Anal., 93 (1990), 34-170.
9. C. Fefferman and E. M. Stein, $H^{p}$ spaces of several variables, Acta. Math., 129 (1972), 137-195.
10. Y. S. Han, J. Li and G. Lu, Duality of Hardy space $H^{p}$ on product spaces of homogeneous type, Submitted 2008.
11. Y. S. Han, J. Li and G. Lu, Product theory on Carnot-Caratheodory spaces, Preprint.
12. Y. Han, D. Müller and D. Yang, A theory of Besov and Triebel-Lizorkin spaces on Metric measure spaces Modeled on Carnot Caratheodory spaces, Abstract and Applied Analysis, Vol. 2008, Article ID 893409.
13. Y. Han, D. Müller and D. Yang, Littlewood-Paley characterizations for Hardy spaces on spaces of homogeneous type, Math. Nachr., 279 (2006), 1505-1537.
14. A. Nagel and E. M. Stein, The $\square_{b}$-Heat equation on pseudoconvex manifolds of finite type in $\mathbb{C}^{2}$, Math. Z., 238 (2001), 37-88.
15. A. Nagel and E. M. Stein, Differentiable control metrics and scaled bump functions, J. Differential Geom., 57 (2001), 465-492.
16. A. Nagel and E. M. Stein, The $\bar{\partial}_{b}$-complex on decoupled boundaries in $\mathbb{C}^{n}$, Ann. of Math. (2), 164 (2006), 649-713.
17. A. Nagel and E. M. Stein, On the product theory of singular integrals, Rev. Mat. Iberoamericana., 20 (2004), 531-561.
18. A. Nagel, E. M. Stein and S. Wainger, Boundary behaviour of functions holomorphic in domains of finite type, Proc. Natl. Acad. Sci. USA, Mathematics. Vol. 78, No. 11, November 1981, pp. 6596-6599.
19. A. Nagel, E. M. Stein and S. Wainger, Ball and metrics defined by vector fields I: Basic properties, Acta. Math., 155 (1985), 103-147.

Ji Li<br>Department of Mathematics,<br>Sun Yat-sen University,<br>Guangzhou 510275,<br>P. R. China<br>E-mail: liji6@mail.sysu.edu.cn


[^0]:    Received September 4, 2008, accepted October 8, 2008.
    Communicated by Yongsheng Han.
    2000 Mathematics Subject Classification: Primary 42B35; Secondary 32T25, 32W30.
    Key words and phrases: Shilov boundary, Finite type domains, Uniformly of finite type, Hardy space, BMO space, Sequence space, Plancherel-Polya-type inequality, Uuality.
    Project supported by NNSF of China (Grant No. 10771221).

[^1]:    Here, and throughout the paper, $A \approx B$ means that the ratio $A / B$ is bounded and bounded away from zero by constants that do not depend on the relevant variables in $A$ and $B$. $A \lesssim B$ means that the ratio $A / B$ is bounded by a constant independent of the relevant variables. $a \vee b=\max \{a, b\}$ and $a \wedge b=\min \{a, b\}$.

