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GENERALIZED PROJECTION AND ITERATIVE METHODS FOR
APPROXIMATING FIXED POINTS OF ASYMPTOTICALLY

WEAKLY SUPPRESSIVE OPERATORS

L. C. Ceng1,∗, S. Huang2 and A. Petruşel3

Abstract. Let C be a nonempty closed convex proper subset of a real uniformly
convex and uniformly smooth Banach space E, let S : C → C be a relatively
nonexpansive mapping, and let T : C → E be an asymptotically weakly
suppressive operator. Using the notion of generalized projection, iterative
methods for approximating common fixed points of the mappings S and T
are studied. In terms of the modified Ishikawa iteration and modified Halpern
one for relatively nonexpansive mappings, we propose two modified versions
of Chidume, Khumalo and Zegeye’s iterative algorithms [C.E. Chidume, M.
Khumalo and H. Zegeye, Generalized projection and approximation of fixed
points of nonself maps, J. Appro. Theory, 120 (2003) 242-252] for finding
approximate common fixed points of the mappings S and T . Moreover, it
is proved that these two iterative algorithms converge strongly to the same
common fixed point of the mappings S and T .

1. INTRODUCTION

Let E be a real Banach space with the dual E ∗. As usual, 〈·, ·〉 denotes the
generalized duality pairing between E and E∗. The normalized duality mapping
J : E → 2E

∗ is defined as follows
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Jx = {f∗ ∈ E∗ : 〈x, f∗〉 = ‖x‖2 = ‖f∗‖2}.
Recall that if E is smooth, then J is single-valued and if E is uniformly smooth,
then J is uniformly norm-to-norm continuous on bounded subsets of E . We shall
still denote the single-valued duality mapping by J .

Let C be a subset of a Banach space E . A map T : C → C is called a strict
contraction if there exists k ∈ [0, 1) such that ‖Tx − Ty‖ ≤ k‖x − y‖ for all
x, y ∈ C, and is called nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖ for all x, y ∈ C.
The map T is called asymptotically nonexpansive if ‖Tnx−T ny‖ ≤ kn‖x−y‖ for
all x, y ∈ C, where {kn} is a sequence of real numbers such that limn→∞ kn = 1.
It is clear that for asymptotically nonexpansive mappings it may be assumed that
kn ≥ 1 and that ki+1 ≤ ki, i = 1, 2, ....

It is well known that if C is a nonempty closed convex subset of a Hilbert space
H and PC : H → C is the metric projection of H onto C, then PC is nonexpansive.
This fact actually characterizes Hilbert spaces and consequently, it is not available
in more general Banach spaces. In this connection, Alber [2] recently introduced a
generalized projection operator ΠC in a Banach space E which is an analogue of
the metric projection in Hilbert spaces.

Let E be a real smooth Banach space. Consider the functional φ : E × E →
R+ = [0,∞) defined by

φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2, ∀x, y ∈ E.

It is clear that in a Hilbert space H , φ(x, y) = ‖x− y‖2 for all x, y ∈ H .
The generalized projection ΠC : E → C is a map that assigns to an arbitrary

point x ∈ E the minimum point of the functional φ(y, x), that is, ΠCx = x, where
φ(x, x) = infy∈C φ(y, x). Existence and uniqueness of the operator ΠC follow
from the properties of the functional φ and strict monotonicity of the mapping J
(see, e.g., [3]). In Hilbert space H, ΠC = PC .

Recently, Chidume, Khumalo and Zegeye [9] introduced and studied several
new classes of maps in a real Banach space E .

Definition 1.1. ([9, Definition 3.1]). Let C be a nonempty subset of a real
Banach space E . A map T : C → E is called asymptotically weakly suppressive
of class Cψ(t) if there exists a continuous and nondecreasing function ψ(t) defined
on R+ such that ψ is positive on R+ \ {0}, ψ(0) = 0, limt→∞ ψ(t) = +∞ and
∀x, y ∈ C there exists {kn} ⊆ [1,∞) with limn→∞ kn = 1, such that

φ(T (ΠCT )n−1x, T (ΠCT )n−1y) ≤ knφ(x, y)− ψ(φ(x, y)), ∀n ≥ 1.

Let F (T ) := {x ∈ C : Tx = x}. Then T is called asymptotically weakly hemi-
suppressive if F (T ) �= ∅ and the last inequality holds for every x ∈ F (T ) and
y ∈ C.
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The map T : C → E is called asymptotically nonextensive if, for all x, y ∈ C,
there exists kn ≥ 1, with limn→∞ kn = 1, such that

φ(T (ΠCT )n−1x, T (ΠCT )n−1y) ≤ knφ(x, y), ∀n ≥ 1.

and it is called asymptotically quasi-nonextensive, if F (T ) �= ∅ and the last inequal-
ity holds for every x ∈ F (T ) and y ∈ C.

Very recently, Zeng, Tanaka and Yao [10] introduced and studied asymptotically
QC -weakly contractive operators.

Definition 1.2. ([10, Definition 1.5]). Let C be a nonempty closed convex
subset of a real Banach space E such that a nonexpansive retraction QC : E → C

exists. A mapping T : C → E is said to be asymptotically QC -weakly contractive
of class Cψ(t) if there exist a sequence {kn} ⊆ [1,∞) with limn→∞ kn = 1, and
a continuous and increasing function ψ(t) defined on R+ which is positive on
R+ \ {0} with ψ(0) = 0 and limt→+∞ ψ(t) = +∞ such that

‖T (QCT )n−1x− T (QCT )n−1y‖ ≤ kn‖x− y‖ − ψ(‖x− y‖)
for all x, y ∈ C and each integer n ≥ 1.

In [9], Chidume, Khumalo and Zegeye established some results on the succes-
sive approximations of fixed points for two classes of nonself maps in the above
Definitions.

Theorem 1.1. ([9, Theorem 3.3]). Let C be a closed convex subset of a uni-
formly convex and uniformly smooth Banach spaceE . Let T : C → E be an asymp-
totically weakly suppressive operator of class Cψ(t) with sequence {kn} ⊆ [1,∞)
such that

∑∞
n=1(kn− 1) <∞. Suppose F (T ) �= ∅ and for arbitrary x1 ∈ C let the

sequence {xn} be defined by

(1.1) xn+1 := (ΠCT )nxn, n ≥ 1.

Then, {xn} converges strongly to some x∗ ∈ F (T ).

Theorem 1.2. ([9, Theorem 3.4]). L et C be a closed convex subset of a
uniformly smooth and uniformly convex Banach space E . Let T : C → E be
an asymptotically nonextensive operator with sequence {kn} ⊆ [1,∞) such that∑∞

n=1(kn− 1) <∞. Suppose F (T ) �= ∅ and for arbitrary x1 ∈ C let the sequence
{xn} be defined by

xn+1 := (ΠCT )nxn, n ≥ 1.

(i) If the operator A := I − T is demi-closed and ‖xn+1 − xn‖ → 0, then
limn→∞ Axn = 0 and all weak accumulation points of {xn} belong to the
fixed point set F (T ) of T .
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(ii) In addition, if either F (T ) is a singleton, or the duality mapping J is weakly
sequentially continuous (on some bounded set containing {xn}), then {xn}
converges weakly to a point x∗ ∈ F (T ).

In [10], Zeng, Tanaka and Yao also derived some results on the modified re-
traction descent-like approximation of fixed points for asymptotically QC -weakly
contractive operator in Definition 1.2.

Theorem 1.3. ([10, Theorem 3.1]). Let {ωn} be a sequence of positive numbers
such that

∑∞
n=0 ωn = ∞. Let C be a nonempty bounded closed convex subset of a

uniformly convex and uniformly smooth Banach space E such that a nonexpansive
retraction QC : E → C exists. Let T : C → E be an asymptotically QC -weakly
contractive mapping of the class Cψ(t). Suppose that the mapping T has a (unique)
fixed point x∗ ∈ C. Then:

(i) the iterative sequence {xn} generated from any initial x0 ∈ C by

(1.2) xn+1 = QC [(1− ωn)xn + ωnT (QCT )nxn], n ≥ 0,

converges in norm to x∗ as n→ ∞;
(ii) there exists a subsequence {xnl

} ⊆ {xn}, l = 1, 2, ..., such that

‖xnl
− x∗‖ ≤ ψ−1

 1
nl∑
m=0

ωm

+ (knl+1 − 1)diam(G)

 ,

‖xnl+1 − x∗‖ ≤ ψ−1

 1
nl∑
m=0

ωm

+ (knl+1 − 1)diam(G)


+ωnl

(knl+1 − 1)diam(G),

‖xn−x∗‖≤‖xnl+1 − x∗‖−
n−1∑

m=nl+1

ωm
ϑm

, nl+1<n<nl+1, ϑm=
m∑
i=0

ωi,

‖xn+1 − x∗‖ ≤ ‖x0 − x∗‖ −
n∑

m=0

ωm
ϑm

≤ ‖x0 − x∗‖, 1 ≤ n ≤ nl − 1,

1 ≤ nl ≤ smax = max

{
s :

s∑
m=0

ωm
ϑm

≤ ‖x0 − x∗‖v
}
,

where diam(G) is the diameter of the set G.
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Remark 1.1. If the mapping T in (1.2) is a self-mapping of C, then the iterative
scheme (1.2) can be rewritten as

xn+1 = (1− ωn)xn + ωnT
n+1xn, n = 0, 1, 2, ....

In this case, T is also an asymptotically nonexpansive mapping. Moreover, the
iterative scheme (1.2) essentially reduces to the Mann iterative process considered
and studied by many authors; for instance, [7, 11, 13, 18].

On the other hand, let C be a nonempty closed convex subset of a real Banach
space E . Whenever E is a Hilbert space H , Nakajo and Takahashi [16] proposed
the following iterative algorithm for a single nonexpansive mapping S : C → C

(1.3)



x0 ∈ C chosen arbitrarily,
yn = αnxn + (1 − αn)Sxn,
Cn = {v ∈ C : ‖yn − v‖ ≤ ‖xn − v‖},
Qn = {v ∈ C : 〈x0 − xn, xn − v〉 ≥ 0},

xn+1 = PCn∩Qnx0,

where PK denotes the metric projection from H onto a nonempty closed convex
subset K of H and proved that the sequence {xn} converges strongly to PF (S)x0,
where F (S) is the set of fixed points of S; that is, F (S) = {x ∈ C : Sx = x}.

In 2006, Martinez-Yanes and Xu [14] introduced one iterative algorithm for a
nonexpansive mapping S : C → C, with C a bounded closed convex subset of a
real Hilbert space H

(1.4)



x0 ∈ C chosen arbitrarily,
zn = βnxn + (1− βn)Sxn,
yn = αnxn + (1− αn)Szn,
Cn = {v ∈ C : ‖yn − v‖2 ≤ ‖xn − v‖2 + (1 − αn)(‖zn‖2

−‖xn‖2 + 2〈xn − zn, v〉)},
Qn = {v ∈ C : 〈x0 − xn, xn − v〉 ≥ 0},

xn+1 = PCn∩Qnx0,

and also defined another iterative algorithm

(1.5)



x0 ∈ C chosen arbitrarily,
yn = αnx0 + (1− αn)Sxn,

Cn = {v ∈ C : ‖yn − v‖2≤‖xn−v‖2+αn(‖x0‖2+2〈xn − x0, v〉)},
Qn = {v ∈ C : 〈x0 − xn, xn − v〉 ≥ 0},

xn+1 = PCn∩Qnx0,
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where {αn}∞n=0 and {βn}∞n=0 are sequences in the interval [0, 1]. They proved
that both the sequence {xn} generated by algorithm (1.4) and the sequence {xn}
generated by algorithm (1.5) converge strongly to the same point PF (S)x0.

Very recently, utilizing Nakajo and Takahashi’s idea [16], Qin and Su [20] mod-
ified algorithms (1.4) and (1.5) for relatively nonexpansive mappings in a Banach
space E . They first introduced one iterative algorithm (i.e., modified Ishikawa iter-
ation) for a relatively nonexpansive mapping S : C → C, with C a closed convex
subset of a uniformly convex and uniformly smooth Banach space E

(1.6)



x0 ∈ C chosen arbitrarily,

zn = J−1(βnJxn + (1 − βn)JSxn),

yn = J−1(αnJxn + (1 − αn)JSzn),

Cn = {v ∈ C : φ(v, yn) ≤ αnφ(v, xn) + (1− αn)φ(v, zn)},
Qn = {v ∈ C : 〈xn − v, Jx0 − Jxn〉 ≥ 0},

xn+1 = ΠCn∩Qnx0,

where J is the single-valued normalized duality mapping on E , φ(x, y) = ‖x‖2 −
2〈x, Jy〉 + ‖y‖2 for all x, y ∈ E and ΠC : E → C is the generalized projec-
tion. Second, they also defined another iterative algorithm (i.e., modified Halpern
iteration)

(1.7)



x0 ∈ C chosen arbitrarily,

yn = J−1(αnJx0 + (1− αn)JSxn),

Cn = {v ∈ C : φ(v, yn) ≤ αnφ(v, x0) + (1 − αn)φ(v, xn)},
Qn = {v ∈ C : 〈xn − v, Jx0 − Jxn〉 ≥ 0},

xn+1 = ΠCn∩Qnx0.

They proved that under appropriate conditions both the sequence {xn} generated
by algorithm (1.6) and the sequence {xn} generated by algorithm (1.7), converge
strongly to the same point ΠF (S)x0.

Let C be a nonempty closed convex subset of a real Banach space E with the
dual E∗. Assume that T : C → E is an asymptotically weakly suppressive operator
on C and S : C → C is a relatively nonexpansive mapping such that F (S) �= ∅.
The purpose of this paper is to introduce and study new iterative algorithms (1.8)
and (1.9) in a uniformly convex and uniformly smooth Banach space E , which
combine (1.1) with (1.6) and (1.1) with (1.7), respectively.
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Algorithm I.

(1.8)



x0 ∈ C chosen arbitrarily,

x̃n = J−1(γnJxn + (1− γn)J(ΠCT )nxn),

zn = J−1(βnJx̃n + (1 − βn)JSx̃n),

yn = J−1(αnJx̃n + (1 − αn)JSzn),

Cn = {v ∈ C : φ(v, yn) ≤ αnφ(v, x̃n) + (1− αn)φ(v, zn)},
Qn = {v ∈ C : 〈v − xn, Jx0 − Jxn〉 ≤ 0},

xn+1 = ΠCn∩Qnx0, n = 0, 1, 2, ...,

where {αn}∞n=0, {βn}∞n=0 and {γn}∞n=0 are sequences in [0, 1].

Algorithm II.

(1.9)



x0 ∈ E chosen arbitrarily,

x̃n = J−1(γnJxn + (1 − γn)J(ΠCT )nxn),

yn = J−1(αnJx0 + (1 − αn)JSx̃n),

Cn = {v ∈ C : φ(v, yn) ≤ αnφ(v, x0) + (1− αn)φ(v, x̃n)},
Qn = {v ∈ C : 〈v − xn, Jx0 − Jxn〉 ≤ 0},

xn+1 = ΠCn∩Qnx0, n = 0, 1, 2, ...,

where {αn}∞n=0 and {γn}∞n=0 are sequences in [0, 1].
In this paper, strong convergence results on these two iterative algorithms are

established; that is, under appropriate conditions, both the sequence {xn} generated
by algorithm (1.8) and the sequence {xn} generated by algorithm (1.9), converge
strongly to the same point ΠF (S)x0, which is an element of the F (T ). Our results
represent the improvement, generalization and development of the previously known
results in the literature including Chidume, Khumalo and Zegeye [9], Zeng, Tanaka
and Yao [10], and Qin and Su [20].

Notation. ⇀ stands for weak convergence and → for strong convergence.

2. PRELIMINARIES

Let E be a Banach space with the dual E ∗. We denote by J the normalized
duality mapping from E to 2E

∗ defined by

Jx = {f∗ ∈ E∗ : 〈x, f∗〉 = ‖x‖2 = ‖f∗‖2},
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where 〈·, ·〉 denotes the generalized duality pairing. It is well known that if E is
smooth then J is single-valued and if E is uniformly smooth, then J is uniformly
norm-to-norm continuous on bounded subsets of E . We shall still denote the single-
valued duality mapping by J .

Recall that if C is a nonempty closed convex subset of a Hilbert space H and
PC : H → C is the metric projection of H onto C, then PC is nonexpansive.
This fact actually characterizes Hilbert spaces and hence, it is not available in
more general Banach spaces. In this connection, Alber [2] recently introduced a
generalized projection operator ΠC in a Banach space E which is an analogue of
the metric projection in Hilbert spaces.

Next, we assume that E is a smooth Banach space. Consider the functional
defined as in [1,2] by

(2.1) φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2 for all x, y ∈ E.
It is clear that in a Hilbert space H , (2.1) reduces to φ(x, y) = ‖x−y‖2, ∀x, y ∈ H .

The generalized projection ΠC : E → C is a mapping that assigns to an arbitrary
point x ∈ E the minimum point of the functional φ(y, x); that is, ΠCx = x, where
x is the solution to the minimization problem

(2.2) φ(x, x) = min
y∈C

φ(y, x).

The existence and uniqueness of the operator ΠC follows from the properties of
the functional φ(x, y) and strict monotonicity of the mapping J (see, e.g., [3]). In
a Hilbert space, ΠC = PC . From [2], in uniformly convex and uniformly smooth
Banach spaces, we have

(2.3) (‖y‖ − ‖x‖)2 ≤ φ(y, x) ≤ (‖y‖ + ‖x‖)2 for all x, y ∈ E.

Let C be a closed convex subset of E , and let S be a mapping from C into itself.
A point p in C is called an asymptotically fixed point of S [17] if C contains
a sequence {xn} which converges weakly to p such that Sxn − xn → 0. The
set of asymptotical fixed points of S will be denoted by F̂ (S). A mapping S
from C into itself is called relatively nonexpansive [4-6] if F̂ (S) = F (S) and
φ(p, Sx) ≤ φ(p, x) for all x ∈ C and p ∈ F (S).

A Banach space E is called strictly convex if ‖x+y2 ‖ < 1 for all x, y ∈ E

with ‖x‖ = ‖y‖ = 1 and x �= y. It is said to be uniformly convex if xn −
yn → 0 for any two sequences {xn}, {yn} ⊂ E such that ‖xn‖ = ‖yn‖ = 1 and
limn→∞ ‖xn+yn

2 ‖ = 1. Let U = {x ∈ E : ‖x‖ = 1} be a unit sphere of E . Then
the Banach space E is called smooth if

lim
t→0

‖x+ ty‖ − ‖x‖
t
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exists for each x, y ∈ U . It is also said to be uniformly smooth if the limit is
attained uniformly for x, y ∈ U . Recall also that if E is uniformly smooth, then J
is uniformly norm-to-norm continuous on bounded subsets of E . A Banach space
is said to have the Kadec-Klee property if for any sequence {xn} ⊂ E , whenever
xn ⇀ x ∈ E and ‖xn‖ → ‖x‖, we have xn → x. It is known that if E is uniformly
convex, then E has the Kadec-Klee property; see [8,19] for more details.

Remark 2.1. ([20]). If E is a reflexive, strictly convex and smooth Banach
space, then for any x, y ∈ E , φ(x, y) = 0 if and only if x = y. It is sufficient
to show that if φ(x, y) = 0 then x = y. From (2.3), we have ‖x‖ = ‖y‖. This
implies that 〈x, Jy〉 = ‖x‖2 = ‖y‖2. From the definition of J , we have Jx = Jy.
Therefore, we have x = y; see [8,19] for more details.

We need the following lemmas, which will be used for the proof of our main
results in the sequel.

Lemma 2.1. (Kamimura and Takahashi [12]). Let E be a uniformly convex
and smooth Banach space and let {xn} and {yn} be two sequences of E . If
φ(xn, yn) → 0 and either {xn} or {yn} is bounded, then xn − yn → 0.

Lemma 2.2. (Alber [2]). Let C be a nonempty closed convex subset of a smooth
Banach space E and x ∈ E . Then, x0 = ΠCx if and only if

〈z − x0, Jx0 − Jx〉 ≥ 0 for all z ∈ C.

Lemma 2.3. (Alber [2]). Let E be a reflexive, strictly convex and smooth
Banach space, let C be a nonempty closed convex subset of E and let x ∈ E .
Then

φ(y,ΠCx) + φ(ΠCx, x) ≤ φ(y, x) for all y ∈ C.

Lemma 2.4. (Matsushita and Takahashi [15]). Let E be a strictly convex and
smooth Banach space, let C be a closed convex subset ofE , and let S be a relatively
nonexpansive mapping from C into itself. Then F (S) is closed and convex.

3. MAIN RESULTS

Now we are in a position to prove the main theorems of this paper.

Theorem 3.1. Let E be a uniformly convex and uniformly smooth Banach
space, let C be a nonempty closed convex subset ofE , let S : C → C be a relatively
nonexpansive mapping such that F (S) �= ∅ and let T : C → E be an asymptotically
weakly suppressive operator of class Cψ(t) with sequence {kn} ⊆ [1,∞) such that
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limn→∞ kn = 1. Let {αn}∞n=0, {βn}∞n=0 and {γn}∞n=0 be sequences in [0, 1] such
that lim supn→∞ αn < 1 and βn → 1. Suppose F (T ) �= ∅ and let the sequence
{xn}∞n=0 in C be defined by

(3.1)



x0 inC chosen arbitrarily,

x̃n = J−1(γnJxn + (1 − γn)J(ΠCT )nxn),

zn = J−1(βnJx̃n + (1 − βn)JSx̃n),

yn = J−1(αnJx̃n + (1− αn)JSzn),

Cn = {v ∈ C : φ(v, yn) ≤ αnφ(v, x̃n) + (1 − αn)φ(v, zn)},
Qn = {v ∈ C : 〈v − xn, Jx0 − Jxn〉 ≤ 0},

xn+1 = ΠCn∩Qnx0, n = 0, 1, 2, ....

Assume that S is uniformly continuous. If x n − (ΠCT )nxn → 0 (n → ∞), then
{xn} converges strongly to ΠF (S)x0, which is an element of F (T ); conversely, if
{xn} converges strongly to an element of F (T ), then xn−(ΠCT )nxn→0 (n→∞).

Proof. First of all, let us show that Cn and Qn are closed and convex for each
n ≥ 0. Indeed, from the definition of Cn and Qn, it is obvious that Cn is closed
and Qn is closed and convex for each n ≥ 0. We claim that Cn is convex. For any
v1, v2 ∈ Cn and any t ∈ (0, 1), put v = tv1 + (1 − t)v2. It is sufficient to show
that v ∈ Cn. Note that the inequality

(3.2) φ(v, yn) ≤ αnφ(v, x̃n) + (1− αn)φ(v, zn)

is equivalent to the one

(3.3) 2αn〈v, Jx̃n〉+2(1−αn)〈v, Jzn〉−2〈v, Jyn〉≤αn‖x̃n‖2+(1−αn)‖zn‖2−‖yn‖2.

Observe that there hold the following

φ(v, yn) = ‖v‖2 − 2〈v, Jyn〉 + ‖yn‖2, φ(v, x̃n) = ‖v‖2 − 2〈v, Jx̃n〉 + ‖x̃n‖2

and φ(v, zn) = ‖v‖2 − 2〈v, Jzn〉 + ‖zn‖2. Thus we have

2αn〈v, Jx̃n〉 + 2(1 − αn)〈v, Jzn〉 − 2〈v, Jyn〉
= 2αn〈tv1 + (1 − t)v2, Jx̃n〉 + 2(1− αn)〈tv1 + (1 − t)v2, Jzn〉
−2〈tv1 + (1− t)v2, Jyn〉

= 2tαn〈v1, Jx̃n〉 + 2(1 − t)αn〈v2, Jx̃n〉 + 2(1− αn)t〈v1, Jzn〉
+2(1 − αn)(1− t)〈v2, Jzn〉 − 2t〈v1, Jyn〉 − 2(1− t)〈v2, Jyn〉

≤ αn‖x̃n‖2 + (1− αn)‖zn‖2 − ‖yn‖2.
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This implies that v ∈ Cn. So, Cn is convex. Next let us show that F (S) ⊂ Cn for
all n. Indeed, we have, for all w ∈ F (S)

φ(w, yn) = φ(w, J−1(αnJx̃n + (1 − αn)JSzn))

= ‖w‖2 − 2〈w, αnJx̃n + (1 − αn)JSzn〉 + ‖αnJx̃n + (1 − αn)JSzn‖2

≤ ‖w‖2 − 2αn〈w, Jx̃n〉 − 2(1− αn)〈w, JSzn〉
+αn‖x̃n‖2 + (1− αn)‖Szn‖2

≤ αnφ(w, x̃n) + (1 − αn)φ(w, Szn)

≤ αnφ(w, x̃n) + (1 − αn)φ(w, zn).

So w ∈ Cn for all n ≥ 0. Next let us show that

(3.4) F (S) ⊂ Qn for all n ≥ 0.

We prove this by induction. For n = 0, we have F (S) ⊂ C = Q0. Assume that
F (S) ⊂ Qn. Since xn+1 is the projection of x0 onto Cn ∩Qn, by Lemma 2.2, we
have

〈xn+1 − z, Jx0 − Jxn+1〉 ≥ 0, ∀z ∈ Cn ∩Qn.
As F (S) ⊂ Cn ∩ Qn by the induction assumption, the last inequality holds, in
particular, for all z ∈ F (S). This together with the definition of Qn+1 implies that
F (S) ⊂ Qn+1. Hence (3.4) holds for all n ≥ 0. This implies that {xn} is well
defined.

On the other hand, it follows from the definition of Qn that xn = ΠQnx0. Since
xn+1 = ΠCn∩Qnx0 ∈ Qn, we have

φ(xn, x0) ≤ φ(xn+1, x0) for all n ≥ 0.

Thus {φ(xn, x0)} is nondecreasing. And also from xn = ΠQnx0 and Lemma 2.3
that

φ(xn, x0) = φ(ΠQnx0, x0) ≤ φ(w, x0)− φ(w, xn) ≤ φ(w, x0)

for each w ∈ F (S) ⊂ Qn for each n ≥ 0. Consequently, {φ(xn, x0)} is bounded.
Moreover, according to the inequality

(‖xn‖ − ‖x0‖)2 ≤ φ(xn, x0) ≤ (‖xn‖ + ‖x0‖)2,
we conclude that {xn} is bounded. So, we know that limn→∞ φ(xn, x0) exists.
From Lemma 2.3, we derive

φ(xn+1, xn) = φ(xn+1,ΠQnx0)

≤ φ(xn+1, x0) − φ(ΠQnx0, x0)

= φ(xn+1, x0) − φ(xn, x0)
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for all n ≥ 0. This implies that φ(xn+1, xn) → 0. So it follows from Lemma 2.1
that xn+1 − xn → 0. Since xn+1 = ΠCn∩Qnx0 ∈ Cn, from the definition of Cn,
we also have

(3.5) φ(xn+1, yn) ≤ αnφ(xn+1, x̃n) + (1− αn)φ(xn+1, zn).

Observe that

(3.6a)

φ(xn+1, zn)

= φ(xn+1, J
−1(βnJx̃n + (1− βn)JSx̃n))

= ‖xn+1‖2 − 2〈xn+1, βnJx̃n + (1 − βn)JSx̃n〉
+‖βnJx̃n + (1 − βn)JSx̃n‖2

≤ ‖xn+1‖2 − 2βn〈xn+1, Jx̃n〉 − 2(1− βn)〈xn+1, JSx̃n〉
+βn‖x̃n‖2 + (1− βn)‖Sx̃n‖2

= βnφ(xn+1, x̃n) + (1 − βn)φ(xn+1, Sx̃n).

At the same time, observe that

(3.6b)

φ(xn+1, x̃n)

= φ(xn+1, J
−1(γnJxn + (1− γn)J(ΠCT )nxn))

= ‖xn+1‖2 − 2〈xn+1, γnJxn + (1 − γn)J(ΠCT )nxn〉
+‖γnJxn + (1− γn)J(ΠCT )nxn‖2

≤ ‖xn+1‖2 − 2γn〈xn+1, Jxn〉 − 2(1− γn)〈xn+1, J(ΠCT )nxn〉
+γn‖xn‖2 + (1 − γn)‖(ΠCT )nxn‖2

= γnφ(xn+1, xn) + (1− γn)φ(xn+1, (ΠCT )nxn),

and

(3.6c)

φ(xn+1, (ΠCT )nxn)

≤ φ(xn+1, T (ΠCT )n−1xn) − φ((ΠCT )nxn, T (ΠCT )n−1xn)

= ‖xn+1‖2 − 2〈xn+1, JT (ΠCT )n−1xn〉+ ‖T (ΠCT )n−1xn‖2

−[‖(ΠCT )nxn‖2−2〈(ΠCT )nxn, JT (ΠCT )n−1xn〉
+‖T (ΠCT )n−1xn‖2]

= ‖xn+1‖2−‖(ΠCT )nxn‖2−2〈xn+1−(ΠCT )nxn, JT (ΠCT )n−1xn〉
= (‖xn+1‖ − ‖(ΠCT )nxn‖)(‖xn+1‖ + ‖(ΠCT )nxn‖)

−2〈xn+1 − (ΠCT )nxn, JT (ΠCT )n−1xn〉
≤ ‖xn+1 − (ΠCT )nxn‖(‖xn+1‖ + ‖(ΠCT )nxn‖)

+2‖xn+1 − (ΠCT )nxn‖‖T (ΠCT )n−1xn‖.
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Also, observe that

‖xn+1 − (ΠCT )nxn‖ ≤ ‖xn+1 − xn‖+ ‖xn − (ΠCT )nxn‖.
From xn+1 − xn → 0 and xn − (ΠCT )nxn → 0 it follows that

xn+1 − (ΠCT )nxn → 0.

Therefore, we get

‖Jxn+1 − Jx̃n‖ = ‖γn(Jxn+1 − Jxn) + (1 − γn)(Jxn+1 − J(ΠCT )nxn)‖
≤ γn‖Jxn+1 − Jxn‖ + (1− γn)‖Jxn+1 − J(ΠCT )nxn‖.

Utilizing the uniform norm-to-norm continuity of J on bounded subsets of E , we
deduce that Jxn+1 −Jxn → 0 and Jxn+1 −J(ΠCT )nxn → 0 and hence Jxn+1 −
Jx̃n → 0. Since J−1 is uniformly norm-to-norm continuous on bounded subsets of
E∗, we obtain that xn+1 − x̃n → 0 and hence {x̃n} is bounded. Thus {Sx̃n} is
also bounded. Note that

‖(ΠCT )nxn‖ ≤ ‖(ΠCT )nxn − xn‖ + ‖xn‖.
So we know that {(ΠCT )nxn} is bounded.

Let x∗ ∈ F (T ). Then, by the definition of asymptotically weakly suppressive
operator, we have

φ(x∗, T (ΠCT )n−1xn) = φ(T (ΠCT )n−1x∗, T (ΠCT )n−1xn)

≤ knφ(x∗, xn)− ψ(φ(x∗, xn))

≤ knφ(x∗, xn),

which together with the boundedness of {kn} and {φ(x∗, xn)}, implies that {φ(x∗,
T (ΠCT )n−1xn)} is bounded. Thus {T (ΠCT )n−1xn)} is bounded. Consequently,
utilizing the boundedness of {xn}, {(ΠCT )nxn} and {T (ΠCT )n−1xn}, from (3.6c)
and xn+1 − (ΠCT )nxn → 0 we have φ(xn+1, (ΠCT )nxn) → 0. Again from (3.6b)
and φ(xn+1, xn) → 0 we obtain φ(xn+1, x̃n) → 0. Consequently from (3.6a),
φ(xn+1, x̃n) → 0 and βn → 1 it follows that

(3.7) φ(xn+1, zn) → 0.

Further it follows from (3.5), φ(xn+1, x̃n) → 0 and φ(xn+1, zn) → 0 that

(3.8) φ(xn+1, yn) → 0.

Utilizing Lemma 2.1 we obtain

(3.9) lim
n→∞ ‖xn+1 − yn‖ = lim

n→∞ ‖xn+1 − x̃n‖ = lim
n→∞ ‖xn+1 − zn‖ = 0.
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Since J is uniformly norm-to-norm continuous on bounded subsets of E we have

(3.10a) lim
n→∞ ‖Jxn+1 − Jyn‖ = lim

n→∞ ‖Jxn+1 − Jx̃n‖ = 0.

Furthermore, we have

‖xn − zn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − zn‖.

It follows from xn+1 − xn → 0 and xn+1 − zn → 0 that

(3.10b) lim
n→∞ ‖xn − zn‖ = 0.

Noticing that

‖Jxn+1 − Jyn‖ = ‖Jxn+1 − (αnJx̃n + (1 − αn)JSzn)‖
= ‖αn(Jxn+1 − Jx̃n) + (1 − αn)(Jxn+1 − JSzn)‖
= ‖(1− αn)(Jxn+1 − JSzn) − αn(Jx̃n − Jxn+1)‖
≥ (1 − αn)‖Jxn+1 − JSzn‖ − αn‖Jx̃n − Jxn+1‖,

we have

‖Jxn+1 − JSzn‖ ≤ 1
1 − αn

(‖Jxn+1 − Jyn‖+ αn‖Jx̃n − Jxn+1‖).

From (3.10a) and lim supn→∞ αn < 1, we obtain

lim
n→∞ ‖Jxn+1 − JSzn‖ = 0.

Since J−1 is also uniformly norm-to-norm continuous on bounded subsets of E∗,
we obtain

(3.10c) lim
n→∞ ‖xn+1 − Szn‖ = 0.

Observe that

‖xn − Sxn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − Szn‖ + ‖Szn − Sxn‖.

Since S is uniformly continuous, it follows from (3.10b), (3.10c) and xn+1−xn → 0
that xn − Sxn → 0.

Next, let us show that {xn} converges strongly to ΠF (S)x0, which is an element
of F (T ). Indeed, assume that {xni} is a subsequence of {xn} such that xni ⇀ x̃ ∈
E . Then x̃ ∈ F (S). Next let us show that x̃ = ΠF (S)x0 and convergence is strong.
Put x = ΠF (S)x0. From xn+1 = ΠCn∩Qnx0 and x ∈ F (S) ⊂ Cn ∩Qn, we have
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φ(xn+1, x0) ≤ φ(x, x0). Now from weakly lower semicontinuity of the norm, we
derive

φ(x̃, x0) = ‖x̃‖2 − 2〈x̃, Jx0〉 + ‖x0‖2

≤ lim inf
i→∞

(‖xni‖2 − 2〈xni , Jx0〉 + ‖x0‖2)

= lim inf
i→∞

φ(xni , x0)

≤ lim sup
i→∞

φ(xni , x0)

≤ φ(x, x0).

It follows from the definition of ΠF (S)x0 that x̃ = x and hence

lim
i→∞

φ(xni , x0) = φ(x, x0).

So we have limi→∞ ‖xni‖ = ‖x‖. Utilizing the Kadec-Klee property of E , we
conclude that {xni} converges strongly to ΠF (S)x0. Since {xni} is an arbitrarily
weakly convergent subsequence of {xn}, we know that {xn} converges strongly to
x = ΠF (S)x0. Now, by the definition of asymptotically weakly suppressive operator
and property of ΠC , we have for x∗ ∈ F (T )

φ(x∗, (ΠCT )nxn)

≤ φ(x∗, T (ΠCT )n−1xn) − φ((ΠCT )nxn, T (ΠCT )n−1xn)

≤ φ(x∗, T (ΠCT )n−1xn)

= φ(T (ΠCT )n−1x∗, T (ΠCT )n−1xn)

≤ knφ(x∗, xn) − ψ(φ(x∗, xn)),

and hence

ψ(φ(x∗, xn))

≤ knφ(x∗, xn) − φ(x∗, (ΠCT )nxn)

= kn(‖x∗‖2−2〈x∗, Jxn〉+‖xn‖2)−(‖x∗‖2−2〈x∗, J(ΠCT )nxn〉+‖(ΠCT )nxn‖2)

= (kn − 1)‖x∗‖2 − 2(kn − 1)〈x∗, Jxn〉 + 2〈x∗, J(ΠCT )nxn − Jxn〉
+(kn − 1)‖xn‖2 + ‖xn‖2 − ‖(ΠCT )nxn‖2

≤ (kn − 1)‖x∗‖2 + 2(kn − 1)‖x∗‖‖xn‖ + 2‖x∗‖‖J(ΠCT )nxn − Jxn‖
+(kn − 1)‖xn‖2 + (‖xn‖ − ‖(ΠCT )nxn‖)(‖xn‖ + ‖(ΠCT )nxn‖)

≤ (kn − 1)‖x∗‖2 + 2(kn − 1)‖x∗‖‖xn‖ + 2‖x∗‖‖J(ΠCT )nxn − Jxn‖
+(kn − 1)‖xn‖2 + ‖xn − (ΠCT )nxn‖(‖xn‖ + ‖(ΠCT )nxn‖).
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Since kn → 1, (ΠCT )nxn − xn → 0 and {xn} and {(ΠCT )nxn} are bounded,
by the uniform norm-to-norm continuity of J on bounded subsets of E we obtain
ψ(φ(x∗, xn)) → 0. From the property of the function ψ it follows that φ(x∗, xn) →
0. Utilizing Lemma 2.1 we derive xn → x∗. On account of the uniqueness of the
limit of {xn}, we know that x∗ = ΠF (S)x0.

Conversely, let xn → x∗ ∈ F (T ). Then {xn} is bounded. Since

φ(x∗, xn) = ‖x∗‖2 − 2〈x∗, Jxn〉+ ‖xn‖2

= 〈x∗, Jx∗ − Jxn〉 + 〈xn − x∗, Jxn〉
≤ ‖x∗‖‖Jx∗ − Jxn‖+ ‖xn − x∗‖‖xn‖,

from the uniform norm-to-norm continuity of J on bounded subsets of E , we ob-
tain φ(x∗, xn) → 0. Now, by the definition of asymptotically weakly suppressive
operator and property of ΠC , we get

φ(x∗, (ΠCT )nxn) ≤ φ(x∗, T (ΠCT )n−1xn) − φ((ΠCT )nxn, T (ΠCT )n−1xn)

≤ φ(x∗, T (ΠCT )n−1xn)

= φ(T (ΠCT )n−1x∗, T (ΠCT )n−1xn)

≤ knφ(x∗, xn) − ψ(φ(x∗, xn))

≤ knφ(x∗, xn).

From φ(x∗, xn) → 0 it follows that φ(x∗, (ΠCT )nxn) → 0. Thus from Lemma 2.1
we have (ΠCT )nxn → x∗, which together with xn → x∗, yields

(ΠCT )nxn − xn → 0.

This completes the proof.

In Theorem 3.1, put γn = 1 for all n ≥ 0. Then we have

x̃n = J−1(γnJxn + (1 − γn)J(ΠCT )nxn)

= J−1(Jxn + (1 − 1)J(ΠCT )nxn)

= xn,

for all n. Thus algorithm (3.1) reduces to algorithm (3.11). Meantime, observe that
in the proof of Theorem 3.1, the condition (ΠCT )nxn − xn → 0 is applied to the
verification of Jxn+1 − Jx̃n → 0. In the case when γn = 1, there is no doubt
that the condition (ΠCT )nxn − xn → 0 can be deleted because xn = x̃n. By the
careful analysis of the proof of Theorem 3.1, we conclude that Theorem 3.1 covers
[20, Theorem 2.1] as a special case.
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Theorem 3.2. Let E be a uniformly convex and uniformly smooth Banach
space, let C be a nonempty closed convex subset of E , let S : C → C be a
relatively nonexpansive mapping such that F (S) �= ∅ and let T : C → E be an
asymptotically weakly suppressive operator of class Cψ(t) with sequence {kn} ⊆
[1,∞) such that limn→∞ kn = 1. Let {γn}∞n=0 ⊆ [0, 1] and {αn}∞n=0 ⊆ (0, 1)
satisfy limn→∞ αn = 0. Suppose F (T ) �= ∅ and let the sequence {xn}∞n=0 in C be
defined by

(3.12)



x0 ∈ C chosen arbitrarily,

x̃n = J−1(γnJxn + (1 − γn)J(ΠCT )nxn),

yn = J−1(αnJx0 + (1 − αn)JSx̃n),

Cn = {v ∈ C : φ(v, yn) ≤ αnφ(v, x0) + (1− αn)φ(v, x̃n)},
Qn = {v ∈ C : 〈v − xn, Jx0 − Jxn〉 ≤ 0},

xn+1 = ΠCn∩Qnx0, n = 0, 1, 2, ....

Assume that S is uniformly continuous. If xn − (ΠCT )nxn → 0 (n → ∞), then
{xn} converges strongly to ΠF (S)x0, which is an element of F (T ); conversely, if
{xn} converges strongly to an element of F (T ), then xn−(ΠCT )nxn→0 (n→∞).

Proof. First, Let us show that Cn is closed and convex for each n ≥ 0. From
the definition of Cn, it is obvious that Cn is closed for each n ≥ 0. We prove that
Cn is convex. Similarly to the proof of Theorem 3.1, since

φ(v, yn) ≤ αnφ(v, x0) + (1− αn)φ(v, x̃n)

is equivalent to

2αn〈v, Jx0〉+2(1−αn)〈v, Jx̃n〉−2〈v, Jyn〉 ≤ αn‖x0‖2+(1−αn)‖x̃n‖2−‖yn‖2,

we know that Cn is convex. Next, let us show that F (S) ⊂ Cn for each n ≥ 0.
Indeed, we have, for each w ∈ F (S)

φ(w, yn) = φ(w, J−1(αnJx0 + (1− αn)JSx̃n))

= ‖w‖2 − 2〈w, αnJx0 + (1 − αn)JSx̃n〉+‖αnJx0 + (1−αn)JSx̃n‖2

≤ ‖w‖2−2αn〈w, Jx0〉−2(1−αn)〈w, JSx̃n〉+αn‖x0‖2+(1−αn)‖Sx̃n‖2

≤ αnφ(w, x0) + (1 − αn)φ(w, Sx̃n)

≤ αnφ(w, x0) + (1 − αn)φ(w, x̃n).

So w ∈ Cn for all n ≥ 0 and F (S) ⊂ Cn. Similarly to the proof of Theorem 3.1, we
also obtain F (S) ⊂ Qn for all n ≥ 0. Consequently, F (S) ⊂ Cn∩Qn for all n ≥ 0.
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Therefore, the sequence {xn} generated by (3.12) is well defined. As in the proof
of Theorem 3.1, we can obtain φ(xn+1, xn) → 0. Since xn+1 = ΠCn∩Qnx0 ∈ Cn,
from the definition of Cn we also have

φ(xn+1, yn) ≤ αnφ(xn+1, x0) + (1 − αn)φ(xn+1, x̃n).

As in the proof of Theorem 3.1, we can deduce from xn+1 − xn → 0 and xn −
(ΠCT )nxn → 0 that

xn+1 − (ΠCT )nxn → 0

and hence

(3.13) lim
n→∞φ(xn+1, x̃n) = 0.

Since xn+1 = ΠCn∩Qnx0 ∈ Cn, from the definition of Cn, we also have

φ(xn+1, yn) ≤ αnφ(xn+1, x0) + (1 − αn)φ(xn+1, x̃n).

It follows from (3.13) and αn → 0 that

(3.14) lim
n→∞φ(xn+1, yn) = 0.

Utilizing Lemma 2.1 we have

(3.15) lim
n→∞ ‖xn+1 − yn‖ = lim

n→∞ ‖xn+1 − xn‖ = lim
n→∞ ‖xn+1 − x̃n‖ = 0.

Since J is uniformly norm-to-norm continuous on bounded subsets of E we have

(3.16) lim
n→∞ ‖Jxn+1−Jyn‖ = lim

n→∞ ‖Jxn+1−Jxn‖ = lim
n→∞ ‖Jxn+1−Jx̃n‖ = 0.

Note that

‖JSx̃n − Jyn‖ = ‖JSx̃n − (αnJx0 + (1 − αn)JSx̃n)‖
= αn‖Jx0 − JSx̃n‖.

Therefore, from αn → 0 we have

lim
n→∞ ‖JSx̃n − Jyn‖ = 0.

Since J−1 is also uniformly norm-to-norm continuous on bounded subsets of E∗,
we obtain

(3.17) lim
n→∞ ‖Sx̃n − yn‖ = 0.
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It follows that

(3.18) ‖xn−Sxn‖ ≤ ‖xn−xn+1‖+‖xn+1−yn‖+‖yn−Sx̃n‖+‖Sx̃n−Sxn‖.
Since S is uniformly continuous, it follows from (3.15) and (3.17) that xn−Sxn→0.

Next, let us show that {xn} converges strongly to ΠF (S)x0, which is an element
of F (T ). Indeed, assume that {xni} is a subsequence of {xn} such that xni ⇀ x̃ ∈
E . Then x̃ ∈ F (S). Next let us show that x̃ = ΠF (S)x0 and convergence is strong.
Put x = ΠF (S)x0. From xn+1 = ΠCn∩Qnx0 and x ∈ F (S) ⊂ Cn ∩Qn, we have
φ(xn+1, x0) ≤ φ(x, x0). Now from weakly lower semicontinuity of the norm, we
derive

φ(x̃, x0) = ‖x̃‖2 − 2〈x̃, Jx0〉 + ‖x0‖2

≤ lim inf
i→∞

(‖xni‖2 − 2〈xni , Jx0〉 + ‖x0‖2)

= lim inf
i→∞

φ(xni , x0)

≤ lim sup
i→∞

φ(xni , x0)

≤ φ(x, x0).

It follows from the definition of ΠF (S)x0 that x̃ = x and hence

lim
i→∞

φ(xni , x0) = φ(x, x0).

So we have limi→∞ ‖xni‖ = ‖x‖. Utilizing the Kadec-Klee property of E , we
conclude that {xni} converges strongly to ΠF (S)x0. Since {xni} is an arbitrarily
weakly convergent subsequence of {xn}, we know that {xn} converges strongly to
x = ΠF (S)x0. Now, by the definition of asymptotically weakly suppressive operator
and property of ΠC , we have for x∗ ∈ F (T )

φ(x∗, (ΠCT )nxn)

≤ φ(x∗, T (ΠCT )n−1xn) − φ((ΠCT )nxn, T (ΠCT )n−1xn)

≤ φ(x∗, T (ΠCT )n−1xn)

= φ(T (ΠCT )n−1x∗, T (ΠCT )n−1xn)

≤ knφ(x∗, xn) − ψ(φ(x∗, xn)),

and hence
ψ(φ(x∗, xn))

≤ knφ(x∗, xn)− φ(x∗, (ΠCT )nxn)

= kn(‖x∗‖2 − 2〈x∗, Jxn〉 + ‖xn‖2)− (‖x∗‖2

−2〈x∗, J(ΠCT )nxn〉+ ‖(ΠCT )nxn‖2)

= (kn − 1)‖x∗‖2 − 2(kn − 1)〈x∗, Jxn〉+ 2〈x∗, J(ΠCT )nxn − Jxn〉
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+(kn − 1)‖xn‖2 + ‖xn‖2 − ‖(ΠCT )nxn‖2

≤ (kn − 1)‖x∗‖2 + 2(kn− 1)‖x∗‖‖xn‖ + 2‖x∗‖‖J(ΠCT )nxn − Jxn‖
+(kn − 1)‖xn‖2 + (‖xn‖ − ‖(ΠCT )nxn‖)(‖xn‖ + ‖(ΠCT )nxn‖)

≤ (kn − 1)‖x∗‖2 + 2(kn− 1)‖x∗‖‖xn‖ + 2‖x∗‖‖J(ΠCT )nxn − Jxn‖
+(kn − 1)‖xn‖2 + ‖xn − (ΠCT )nxn‖(‖xn‖ + ‖(ΠCT )nxn‖).

Since kn → 1, (ΠCT )nxn − xn → 0 and {xn} and {(ΠCT )nxn} are bounded,
by the uniform norm-to-norm continuity of J on bounded subsets of E we obtain
ψ(φ(x∗, xn)) → 0. From the property of the function ψ it follows that φ(x∗, xn) →
0. Utilizing Lemma 2.1 we derive xn → x∗. On account of the uniqueness of the
limit of {xn}, we know that x∗ = ΠF (S)x0.

Conversely, let xn → x∗ ∈ F (T ). Then {xn} is bounded. Since

φ(x∗, xn) = ‖x∗‖2 − 2〈x∗, Jxn〉+ ‖xn‖2

= 〈x∗, Jx∗ − Jxn〉 + 〈xn − x∗, Jxn〉
≤ ‖x∗‖‖Jx∗ − Jxn‖+ ‖xn − x∗‖‖xn‖,

from the uniform norm-to-norm continuity of J on bounded subsets of E , we ob-
tain φ(x∗, xn) → 0. Now, by the definition of asymptotically weakly suppressive
operator and property of ΠC , we get

φ(x∗, (ΠCT )nxn) ≤ φ(x∗, T (ΠCT )n−1xn) − φ((ΠCT )nxn, T (ΠCT )n−1xn)

≤ φ(x∗, T (ΠCT )n−1xn)

= φ(T (ΠCT )n−1x∗, T (ΠCT )n−1xn)

≤ knφ(x∗, xn) − ψ(φ(x∗, xn))

≤ knφ(x∗, xn).

From φ(x∗, xn) → 0 it follows that φ(x∗, (ΠCT )nxn) → 0. Thus from Lemma 2.1
we have (ΠCT )nxn → x∗, which together with xn → x∗, yields

(ΠCT )nxn − xn → 0.

This completes the proof.

In Theorem 3.2, put γn = 1 for all n ≥ 0. Then we have

x̃n = J−1(γnJxn + (1 − γn)J(ΠCT )nxn)

= J−1(Jxn + (1 − 1)J(ΠCT )nxn)

= xn,
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for all n. Thus under the lack of the uniform continuity of S it follows from (3.18)
that xn − Sxn → 0. By the careful analysis of the proof of Theorem 3.2, we see
that Theorem 3.2 covers [20, Theorem 2.2] as a special case.
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