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INVARIANT MEAN AND SOME CORE THEOREMS
FOR DOUBLE SEQUENCES

M. Mursaleen and S. A. Mohiuddine

Abstract. In this paper we define and characterize the class (V σ
2 , V σ

2 ) and
establish a core theorem, where V σ

2 is the space of σ-convergent double se-
quences x = (xjk). We further determine a Tauberian condition for core
inclusion and core equivalence.

1. INTRODUCTION

A double sequence x = (xjk) is said to be convergent in the Pringsheim
sense (or P -convergent) if for given ε > 0 there exists an integer N such that
|xjk − �| < ε whenever j, k > N . We shall write this as

lim
j,k→∞

xjk = �,

where j and k tending to infinity independent of each other (cf[14]). We denote by
c2, the space of P -convergent sequences. Throughout this paper limit of a double
sequence means limit in the Pringsheim sense.

A double sequence x is bounded if

‖ x ‖= sup
j,k≥0

|xjk| < ∞.

Note that, in contrast to the case for single sequences, a convergent double
sequence need not be bounded. By c∞2 , we denote the space of double sequences
which are bounded convergent and by �∞2 the space of bounded double sequences.

Let σ be a one-to-one mapping from the set N of natural numbers into itself.
A continuous linear functional ϕ on �∞ is said to be an invariant mean or a

Received July 28, 2007, accepted March 24, 2008.
Communicated by Sen-Yen Shaw.
2000 Mathematics Subject Classification: 40C05, 40H05.
Key words and phrases: Double sequences, P-convergence, Invariant mean, σ-convergence, σ-core,
Core theorems.

21



22 M. Mursaleen and S. A. Mohiuddine

σ-mean [16] if and only if (i) ϕ(x) ≥ 0 when the sequence x = (xk) has xk ≥ 0
for all k, (ii) ϕ(e) = 1, where e = (1, 1, 1, · · ·), and (iii) ϕ(x) = ϕ((xσ(k))) for all
x ∈ �∞.

Throughout this paper we consider the mapping σ which has no finite orbits,
that is, σp(k) �= k for all integers k ≥ 0 and p ≥ 1, where σp(k) denotes the pth

iterate of σ at k. Note that, a σ-mean extends the limit functional on c in the sense
that ϕ(x) = limx for all x ∈ c, (see [10]). Consequently, c ⊂ Vσ the set of bounded
sequences all of whose σ-means are equal. We say that a sequence x = (xk) is
σ-convergent if and only if x ∈ Vσ.

The idea of σ-convergence for double sequences has recently been introduced
in [2]. A double sequence x = (xjk) of real numbers is said to be σ-convergent
to a number L if and only if x ∈ V σ

2 , where

V σ
2 = {x ∈ �∞2 : lim

p,q→∞ τpqst(x) = L uniformly in s, t; L = σ- limx}

τpqst(x) =
1

(p + 1)(q + 1)

p∑
j=0

q∑
k=0

xσj(s),σk(t)

and τ−1,q,s,t = τp,−1,s,t = τ−1,−1,s,t = 0.
For σ(n) = n + 1, the set V σ

2 is reduced to the set f2 of almost convergent
double sequences [6]. The concept of almost convergence for single sequences was
introduced by Lorentz [4]. Note that c∞2 ⊂ V σ

2 ⊂ �∞2 .

Definition 1.1. A matrix A = (amnjk) is said to be σ-regular if Ax ∈ V σ
2 for

x = (xjk) ∈ c∞2 with σ-limAx = limx, and we denote this by A ∈ (c∞2 , V σ
2 )reg.

Definition 1.2. A matrix A = (amnjk) is said to be σ-multiplicative if Ax ∈
V σ

2 for x = (xjk) ∈ c∞2 with σ-limAx = α limx, and we denote this by A ∈
(c∞2 , V σ

2 )α, where α ∈ C. Note that if α = 1, then σ-multiplicative matrices are
reduced to σ-regular. The class of σ-multiplicative matrices was characterized by
Mursaleen and Mohiuddine [9].

Definition 1.3. A matrix A = (amnjk) is said to be strongly σ-regular if
Ax ∈ c∞2 for x = (xjk) ∈ V σ

2 with limAx = σ- limx, and we denote this by
A ∈ (V σ

2 , c∞2 )reg (see [2]).
Now, we give some new definitions:

Definition 1.4. A matrix A = (amnjk) is said to be V σ
2 -regular if Ax ∈ V σ

2

for x = (xjk) ∈ V σ
2 with σ- limAx = σ- limx, and we denote this by A ∈

(V σ
2 , V σ

2 )reg.
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Definition 1.5. A matrix A = (amnjk) is said to be σ-uniformly positive if

lim
p,q→∞ sup

s,t

∞∑
j=0

∞∑
k=0

1
(p + 1)(q + 1)

∣∣∣∣
p∑

m=0

q∑
n=0

aσm(s),σn(t)j,k

∣∣∣∣= 1.

Definition 1.6. Let A and B be two V σ
2 -regular matrices and

(∗) ymn =
∞∑

j=0

∞∑
k=0

amnjkxjk and y
′
mn =

∞∑
j=0

∞∑
k=0

bmnjkxjk.

Then A and B are said to be σ-absolutely equivalent on �∞2 whenever σ- lim(ymn−
y
′
mn) = 0, i.e., either (ymn) and (y

′
mn) both tend to the same σ-limit or neither of

them tends to a σ-limit, but their difference tends to σ-limit zero.

For matrix transformations of double sequences and related methods, we refer
to Altay - Basar [1], Hamilton [3], Patterson [12,13], Moricz [6], Mursaleen [11],
Mursaleen - Edely [7], and Mursaleen - Savas [8], Robinson [15], and Zeltser [17].

In Section 2, we define the norm on V σ
2 such that it is a Banach space, and

we characterize V σ
2 -regular matrices. In Section 3, we use V σ

2 -regular matrices to
establish a core theorem. Since for all x ∈ �∞2 , σ-core{x} ⊆ P -core{x}, we find a
Tauberian condition for the reverse inclusion in Section 4. In Section 5, we establish
a core theorem for σ-absolutely equivalent matrices.

2. CHARACTERIZATION

First we define the norm on V σ
2 .

Theorem 2.1. V σ
2 is a Banach space normed by

(2.1.1) ‖x‖ = sup
p,q,s,t

|τpqst(x)|

Proof. It can be easily verified that (2.1.1) defines a norm on V σ
2 . We show

that V σ
2 is complete.

Now, let (xb) be a Cauchy sequence in V σ
2 . Then for each j, k, (xb

jk) is a
Cauchy sequence in R. Therefore xb

jk → xjk (say). Put x = (xjk), given ε there
exists an integer N (ε) = N say, such that, for each b, d > N

‖xb − xd‖ < ε/2.
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Hence
sup

p,q,s,t
|τpqst(xb − xd)| < ε/2,

then for each p, q, s, t and b, d > N , we have

|τpqst(xb − xd)| < ε/2.

Taking limit d → ∞, we have for b > N and for each p, q, s, t

(2.1.2) |τpqst(xb − x)| < ε/2.

Now for fixed b, the above inequality holds. Since for fixed b, xb ∈ V σ
2 we get

lim
p,q→∞ τpqst(xb) = �

uniformly in s, t. For given ε > 0, there exist positive integers p0, q0 such that

(2.1.3) |τpqst(xb) − �| < ε/2,

for p ≥ p0, q ≥ q0 and for all s, t. Here p0, q0 are independent of s, t but depend
upon ε. Now by using (2.1.2) and (2.1.3) we get

|τpqst(x) − �| = |τpqst(x)− τpqst(xb) + τpqst(xb) − �|
≤ |τpqst(x) − τpqst(xb)|+ |τpqst(xb) − �|

< ε,

for p ≥ p0, q ≥ q0 and for all s, t.
Hence x = (xjk) ∈ V σ

2 and V σ
2 is complete.

This completes the proof of theorem.

The class of strongly σ-regular matrices, i.e. (Vσ
2 , c∞2 )reg has been characterized

in [2].
Now we characterize the matrix class (V σ

2 , V σ
2 ) as well as (V σ

2 , V σ
2 )reg. Let

Zσ
2 be the subspace of V σ

2 such that lim
p,q→∞ τpqst(x) = 0, uniformly in s, t, that is

(3) Zσ
2 = {x = (xjk) ∈ V σ

2 : lim
p,q→∞ τpqst(x) = 0, uniformly in s, t}.

Note that every y ∈ V σ
2 can be written as

y = x + �E,

where x ∈ Zσ
2 , � = lim

p,q
τpqst(y) uniformly in s, t, and E = (ejk) with ejk = 1 for

all j, k.

Theorem 2.2. A matrix A = (amnjk) ∈ (V σ
2 , V σ

2 ) if and only if
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(i) ‖A‖ = sup
mn

∞∑
j=0

∞∑
k=0

|amnjk| < ∞;

(ii) a =

(
∞∑

j=0

∞∑
k=0

amnjk

)∞

m,n=1

∈ V σ
2 ;

(iii) A(σ − S) ∈ (�∞2 , V σ
2 );

where S is the shift operator.

Proof. (Sufficiency). Let the conditions hold and y = (yjk) ∈ V σ
2 . Then

(2.2.1) y = x + �E

where x = (xjk) ∈ Zσ
2 , � = lim

p,q→∞ τpqst(y), uniformly in s, t and E = (ejk) with
ejk = 1 for all j, k.

Taking A-transform in (2.2.1) we get

(2.2.2)

Ay = Ax + �AE

= Ax + �

( ∞∑
j=0

∞∑
k=0

amnjk

)∞

m,n=1

.

If x = (xjk) ∈ �∞2 then by (iii) we have A(σx − x) ∈ V σ
2 . Since by (i) A is

bounded linear operator on �∞2 , we get AZσ
2 ⊂ V σ

2 . Hence Ax ∈ V σ
2 .

Now from condition (ii) and (2.2.2), Ay ∈ V σ
2 . Therefore A ∈ (V σ

2 , V σ
2 ).

Necessity. Let A ∈ (V σ
2 , V σ

2 ). We know that c∞2 ⊂ V σ
2 ⊂ �∞2 so we have

A ∈ (c∞2 , �∞2 ). Hence necessity of (i) follows. Since E ∈ V σ
2 then AE ∈ V σ

2 . This
is equivalent to ( ∞∑

j=0

∞∑
k=0

amnjk

)∞

m,n=1

∈ V σ
2 ,

that is, (ii) holds. For each x = (xjk) ∈ �∞2 , σx − x ∈ V σ
2 because

ϕ(σx− x) = ϕ(σx)− ϕ(x) = 0

for all σ-means ϕ. Hence A(σx− x) ∈ V σ
2 , that is, (iii) holds.

Corollary 2.3. A = (amnjk) ∈ (V σ
2 , V σ

2 )reg if and only if conditions (i), (ii)
with σ- lima = 1, and (iii) hold.
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3. CORE THEOREM

Let us consider the following sublinear functionals defined on �∞2 :

L(x) = lim supx,

Q(x) = lim sup
p,q→∞

sup
s,t

1
(p + 1)(q + 1)

p∑
j=0

q∑
k=0

xσj (s),σk(t),

L∗(x) = lim sup
p,q→∞

sup
s,t

1
(p + 1)(q + 1)

p∑
j=0

q∑
k=0

xs+j,t+k.

For real bounded sequence x = (xjk), we have the following cores of x = (xjk):

P-core{x} = [−L(−x), L(x)] (see Patterson [12]),

M-core{x} = [−L∗(−x), L∗(x)] (see Mursaleen - Edely [7]),

σ-core{x} = [−Q(−x), Q(x)] (see Mursaleen-Mohiuddine [9]).

The following theorem is a double sequence version of Thoerem 3 of Mishra -
Satpathy - Rath [5].

Theorem 3.1. For every x ∈ V σ
2 ,

(3.1.1) Q(Ax) ≤ Q(x) (or σ-core{Ax} ⊂ σ-core{x})
if and only if

(i) A is V σ
2 -regular;

(ii) lim sup
p,q→∞

sup
s,t

∞∑
j=0

∞∑
k=0

|β(p, q, j, k, s, t)|= 1;

where

β(p, q, j, k, s, t) =
1

(p + 1)(q + 1)

p∑
m=0

q∑
n=0

aσm(s),σn(t).j.k.

Proof. (Necessity). Let (3.1.1) hold for all x = (xjk) ∈ V σ
2 . Then

−Q(−x) ≤ −Q(−Ax) ≤ Q(Ax) ≤ Q(x)

i.e.
σ- lim inf x ≤ −Q(−Ax) ≤ Q(Ax) ≤ σ- lim supx.

If x ∈ V σ
2 then we have

−Q(−Ax) = Q(Ax) = σ- limx
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i.e.
σ- lim(Ax) = σ- limx.

Hence A is V σ
2 -regular, i.e. (i) holds.

Now by [11, Lemma 2.1], there is x = (xjk) ∈ �∞2 such that ‖x‖ ≤ 1 and

(3.1.2)

lim sup
p,q→∞

sup
s,t

∞∑
j=0

∞∑
k=0

β(p, q, j, k, s, t)xjk

= lim sup
p,q→∞

sup
s,t

∞∑
j=0

∞∑
k=0

|β(p, q, j, k, s, t)|.

Hence if we define x = (xjk) by

xjk =

{
1 ; if j = k

0 ; otherwise;

then

1 = q(Ax) = lim inf
p,q→∞ sup

s,t

∞∑
j=0

∞∑
k=0

|β(p, q, j, k, s, t)|

≤ Q(Ax) ≤ Q(x) ≤ ‖x‖ ≤ 1

and hence (ii) is satisfied, where

q(x) = lim inf
p,q→∞ sup

s,t

p∑
j=0

q∑
k=0

xσj (s),σk(t)

/
(p + 1)(q + 1).

Sufficiency. We know that c∞2 ⊂ V σ
2 . Thus by Theorem 2 in [9]

Q(Ax) ≤ L(x).

Hence for z ∈ Zσ
2 , we get

Q(Ax + Az) ≤ L(x + z).

Taking infimum over z ∈ Zσ
2 , we get

inf
z∈Zσ

2

Q(Ax + Az) ≤ inf
z∈Zσ

2

lim sup
p,q→∞

(xpq + zpq) = W (x), say.

Thus

(3.1.3) sup
s,t

lim sup
p,q→∞

τpqst(Ax) + inf
z∈Zσ

2

inf
s,t

lim inf
p,q→∞ τpqst(Az) ≤ W (x).
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Since Az ∈ V σ
2 , we can write

Az = z̄ + �E,

where z̄ ∈ Zσ
2 , � = σ- limAz (= σ- lim z, since A is V σ

2 -regular).
Now operating τpqst on both sides, we have

τpqst(Az) = τpqst(z̄) + τpqst(�E).

By σ-regularity we have

(3.1.4). lim inf
p,q→∞ τpqst(Az) = lim

p,q→∞ τpqst(z̄) + � lim
p,q→∞

∞∑
j=0

∞∑
k=0

β(p, q, j, k, s, t)

By definition of Zσ
2

lim
p,q→∞ τpqst(z̄) = 0

uniformly in s, t. Also

lim
p,q→∞

∞∑
j=0

∞∑
k=0

β(p, q, j, k, s, t) = 1.

From (3.1.4) we have

(3.1.5) lim inf
p,q→∞ τpqst(Az) = �

uniformly in s, t. Using (3.1.5) and (3.1.3) we get

Q(Ax) + � ≤ W (x)

that is
Q(Ax) ≤ W (x).

As W (x) = Q(x), we get
Q(Ax) ≤ Q(x).

This completes the proof of the Theorem.

4. TAUBERIAN CONDITION

Since σ-core{x} ⊆ P-core{x}, we find here the condition (Tauberian) for the
reverse inclusion.

Theorem 4.1. For x = (xjk) ∈ �∞2 , if

(4.1.1) lim
s,t

(xst − xσ(s),σ(t)) = 0
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holds, then P-core{x} ⊆ σ-core{x}.

Proof. By the definition of P-core and σ-core, we have to show that L(x) ≤
Q(x). Let Q(x) = �. Then, for given ε > 0, for all j, k, s, t and for large p, q it
follows from the definition of Q that

(4.1.2)
1

(p + 1)(q + 1)

p∑
j=0

q∑
k=0

xσj (s),σk(t) < � + ε/2.

Now we have
(4.1.3)

xst = xst− 1
(p + 1)(q + 1)

p∑
j=0

q∑
k=0

xσj(s),σk(t)+
1

(p + 1)(q + 1)

p∑
j=0

q∑
k=0

xσj (s),σk(t)

≤
∣∣∣∣xst − 1

(p + 1)(q + 1)

p∑
j=0

q∑
k=0

xσj (s),σk(t)

∣∣∣∣+� + ε/2.

Since (4.1.1) holds, for given ε > 0 we have |xst − xσj(s),σk(t)| < ε/2 for all
j, k ≥ 0. Thus ∣∣∣∣xst − 1

(p + 1)(q + 1)

p∑
j=0

q∑
k=0

xσj(s),σk(t)

∣∣∣∣
=

1
(p + 1)(q + 1)

∣∣∣∣(p + 1)(q + 1)xst −
p∑

j=0

q∑
k=0

xσj(s),σk(t)

∣∣∣∣
≤ 1

(p + 1)(q + 1)
(p + 1)(q + 1)|xst − xσj (s),σk(t)|, j, k = · · ·

< ε/2.

Taking limsup
s,t

in (4.1.3), we get L(x) ≤ � + ε, since ε is arbitrary. Hence L(x) ≤
Q(x). This complete the proof.

In case σ(n) = n + 1 in Theorem 4.1, we have

Corollary 4.2. For x = (xjk) ∈ �∞2 , if

(4.2.1) lim
s,t

(xst − xs+1,t+1) = 0

holds, then P-core{x} ⊆ M-core{x}.

Corollary 4.3. If the condition (4.1.1) holds and x is σ-convergent, then x is
convergent.
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Corollary 4.4. If the condition (4.2.1) holds and x is almost convergent, then
x is convergent.

5. CORE THEOREMS FOR ABSOLUTELY EQUIVALENT MATRICES

First we prove the following useful lemma.

Lemma 5.1. For x, y ∈ �∞2 , if σ- lim |x − y| = 0, then σ-core{x} =
σ-core{y}.

Proof. If σ- lim |x − y| = 0 then σ- lim(x − y) = σ- lim(−x + y) = 0. By
definition of σ-core, we have

Q(x − y) = −Q(−x + y) = 0.

Since Q is sublinear,

0 = −Q(−x + y) ≤ −Q(−x) − Q(y).

Therefore,
Q(y) ≤ −Q(−x).

Also
−Q(−x) ≤ Q(x),

this implies that Q(y) ≤ Q(x). By an argument similar as above, we can show that

Q(x) ≤ Q(y).

This completes the proof.

Theorem 5.2. Let A = (amnjk) be a V σ
2 -regular matrix. Then, Q(Ax) ≤ Q(x)

for all x = (xjk) ∈ �∞2 if and only if there is a V σ
2 -regular matrix B = (bmnjk)

such that B is a σ-uniformly positive and σ-absolutely equivalent with A on � ∞
2 .

Proof. Let there be a V σ
2 -regular matrix B such that B is σ-uniformly positive

and σ-absolutely equivalent with A on �∞2 . Then, by (∗) in Definition 1.6 and
σ-absolutely equivalence of A and B, we have

σ- lim |ymn − y
′
mn|

= lim
p,q→∞ sup

s,t

∣∣∣∣
∞∑

j=0

∞∑
k=0

1
(p+1)(q+1)

p∑
m=0

q∑
n=0

[aσm(s),σn(t)j,k − bσm(s),σn(t)j,k]xjk

∣∣∣∣
≤ ‖x‖ lim

p,q→∞ sup
s,t

∞∑
j=0

∞∑
k=0

1
(p+1)(q+1)

∣∣∣∣
p∑

m=0

q∑
n=0

[aσm(s),σn(t)j,k − bσm(s),σn(t)j,k]
∣∣∣∣

= 0
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uniformly in s, t. Now, by Lemma 5.1, σ-core{Ax} = σ-core{Bx} for all x ∈ �∞2 .
By Theorem 3.1, we have Q(Ax) ≤ Q(x), since x is arbitrary.
Conversely, let Q(Ax) ≤ Q(x) for all x ∈ �∞2 . Then by Theorem 3.1, A is

σ-uniformly positive.
Now we define a matrix B = (bmnjk) as

bmnjk =
1
2
(amnjk + am,n,j+1,k+1)

for all m, n, j, k ∈ N. Then it is easy to see that B is V σ
2 -regular since A is

V σ
2 -regular, and

(5.2.1) σ- lim(Ax) = σ- lim(Bx).

Further

(5.2.2)

lim
p,q→∞ sup

s,t

∞∑
j=0

∞∑
k=0

1
(p + 1)(q + 1)

∣∣∣∣
p∑

m=0

q∑
n=0

bσm(s),σn(t)j,k

∣∣∣∣
≤ 1

2

[
lim

p,q→∞ sup
s,t

∞∑
j=0

∞∑
k=0

1
(p + 1)(q + 1)

∣∣∣∣
p∑

m=0

q∑
n=0

aσm(s),σn(t)j,k

∣∣∣∣
+ lim

p,q→∞ sup
s,t

∞∑
j=0

∞∑
k=0

1
(p + 1)(q + 1)

∣∣∣∣
p∑

m=0

q∑
n=0

aσm(s),σn(t)j+1,k+1

∣∣∣∣
]
.

Since B is V σ
2 -regular, we have by (5.2.2) that

lim
p,q→∞ sup

s,t

∞∑
j=0

∞∑
k=0

1
(p + 1)(q + 1)

∣∣∣∣
p∑

m=0

q∑
n=0

bσm(s),σn(t)j,k

∣∣∣∣≤ 1.

Thus B is σ-uniformly positive. Further, it follows from (5.2.1) that A and B are
σ-absolutely equivalent.

This completes the proof.

When σ(n) = n + 1 in Lemma 5.1 and Theorem 5.2, we have the following
corollaries:

Corollary 5.3. Let x, y ∈ �∞2 . If f2- lim |x − y| = 0 then

M-core{x} = M-core{y}.

Corollary 5.4. Let A be a (f2, f2)reg-matrix. Then L∗(Ax) ≤ L∗(x) for all
x ∈ �∞2 if and only if there is a (f2, f2)reg-matrix B such that

lim
p,q→∞ sup

s,t

∞∑
j=0

∞∑
k=0

1
(p + 1)(q + 1)

∣∣∣∣
p∑

m=0

q∑
n=0

bs+m,t+n,j,k

∣∣∣∣= 1



32 M. Mursaleen and S. A. Mohiuddine

and B is f2-absolutely equivalent with A on �∞2 .

For (f2, f2)reg-matrices, see Mursaleen [11].
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