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INVARIANT MEAN AND SOME CORE THEOREMS
FOR DOUBLE SEQUENCES

M. Mursaleen and S. A. Mohiuddine

Abstract. In this paper we define and characterize the class (Vy7,Vy) and
establish a core theorem, where V7 is the space of o-convergent double se-
quences = = (z;5). We further determine a Tauberian condition for core
inclusion and core equivalence.

1. INTRODUCTION

A double sequence z = (z;)) is said to be convergent in the Pringsheim
sense (or P-convergent) if for given ¢ > 0 there exists an integer N such that
|z, — £ < e whenever j, k > N. We shall write this as

li =1
i gm k=
where j and & tending to infinity independent of each other (cf[14]). We denote by
co, the space of P-convergent sequences. Throughout this paper limit of a double
sequence means limit in the Pringsheim sense.
A double sequence x is bounded if

| z ||= sup |z < .
5,k>0
Note that, in contrast to the case for single sequences, a convergent double
sequence need not be bounded. By ¢5°, we denote the space of double sequences
which are bounded convergent and by ¢5° the space of bounded double sequences.
Let o be a one-to-one mapping from the set N of natural numbers into itself.
A continuous linear functional ¢ on ¢, is said to be an invariant mean or a
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o-mean [16] if and only if (i) ¢(x) > 0 when the sequence = = (z) has z; > 0
for all k, (ii) p(e) = 1, where e = (1,1,1,---), and (i) p(z) = @((z4(1))) for all
T €l

Throughout this paper we consider the mapping o which has no finite orbits,
that is, oP(k) # k for all integers & > 0 and p > 1, where o?(k) denotes the pth
iterate of o at k. Note that, a o-mean extends the limit functional on ¢ in the sense
that ¢(z) = limx for all z € ¢, (see [10]). Consequently, ¢ C V,, the set of bounded
sequences all of whose o-means are equal. We say that a sequence z = (xy) is
o-convergent if and only if x € V.

The idea of o-convergence for double sequences has recently been introduced
in [2]. A double sequence x = (x ;) of real numbers is said to be o-convergent
to a number L if and only if € V7, where

Vy ={z € (5" lim 7pgu(x) = L uniformly in s,t; L = o-limx}
P,g—00

P q
Tpgst () = (p—|—1 @+ 1) thﬂ(s ok ()
=0

J k=0
and T-1,q,s,t — Tp,—1,5t — T—1,—1,5t — 0.
For o(n) = n + 1, the set Vi is reduced to the set fo of almost convergent
double sequences [6]. The concept of almost convergence for single sequences was
introduced by Lorentz [4]. Note that ¢5° C Vi C £5°.

Definition 1.1. A matrix A = (amnjx) i said to be o-regular if Az € Vi for
x = (z;1) € ¢5° with o-lim Az = lim z, and we denote this by A € (¢5°, V) yeg.

Definition 1.2. A matrix A = (@) is said to be o-multiplicative if Az €
Vy for x = (zj;) € ¢§° with o-lim Az = alimz, and we denote this by A €
(¢3°, V5 )a, Where oo € C. Note that if a = 1, then o-multiplicative matrices are
reduced to o-regular. The class of o-multiplicative matrices was characterized by
Mursaleen and Mohiuddine [9].

Definition 1.3. A matrix A = (amn;r) IS said to be strongly o-regular if
Az € ¢§° for © = (xj;) € Vi with lim Az = o-lima, and we denote this by
A€ (V5,e5°)req (see [2]).

Now, we give some new definitions:

Definition 1.4. A matrix A = (amn;x) is said to be Vy-regular if Az € Vi
for + = (zj) € V5 with o-lim Az = o-limz, and we denote this by A €
(V207 V2J)7’eg-
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Definition 1.5. A matrix A = (amy;i) is said to be o-uniformly positive if

o o0
lim su
P,q—00 s,tij%kZ p—|—1 (¢+1)

om(s),0™(t)j,k| ™

[e=]

m=0 n=0

Definition 1.6. Let A and B be two Vi -regular matrices and

(*) Ymn = Z

—0

00 00
!/
QmnjkTjk and Ymn = Z menjkxjk-
7=0 k=0

iNgt

Then A and B are said to be o-absolutely equivalent on £5° whenever o- lim (¥, —
y, ) =0, i.e., either (y.,) and (y,,,) both tend to the same o-limit or neither of
them tends to a o-limit, but their difference tends to o-limit zero.

For matrix transformations of double sequences and related methods, we refer
to Altay - Basar [1], Hamilton [3], Patterson [12,13], Moricz [6], Mursaleen [11],
Mursaleen - Edely [7], and Mursaleen - Savas [8], Robinson [15], and Zeltser [17].

In Section 2, we define the norm on V4 such that it is a Banach space, and
we characterize Vi -regular matrices. In Section 3, we use Vi’ -regular matrices to
establish a core theorem. Since for all x € ¢5°, o-core{z} C P-core{x}, we find a
Tauberian condition for the reverse inclusion in Section 4. In Section 5, we establish
a core theorem for o-absolutely equivalent matrices.

2. CHARACTERIZATION

First we define the norm on V7.

Theorem 2.1. Vi is a Banach space normed by
(2.1.1) 2]l = sup [7pgst ()]

D,q,8,t

Proof. It can be easily verified that (2.1.1) defines a norm on V. We show
that V7 is complete.

Now, let (2*) be a Cauchy sequence in V. Then for each j, k, (x?k) is a
Cauchy sequence in R. Therefore x?k — x;j, (say). Put z = (zj;), given e there

exists an integer N (e) = N say, such that, for each b,d > N

|2° — 2% < €/2.
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Hence
supt \qust(xb — xd)\ < €/2,

p,q,S,
then for each p, ¢, s,t and b, d > N, we have
[Tpgst(2” — )| < €/2.
Taking limit d — oo, we have for b > N and for each p, ¢, s, t
(2.1.2) | Tpgst (2° — )| < €/2.
Now for fixed b, the above inequality holds. Since for fixed b, 2> € V5’ we get

. by
p,ginoo Tpgst(2”) =4

uniformly in s, ¢. For given e > 0, there exist positive integers py, go such that
(2.1.3) | Tpgst (%) — €] < €/2,

for p > po,q > qo and for all s,¢. Here pg, go are independent of s, ¢ but depend
upon e. Now by using (2.1.2) and (2.1.3) we get

‘qust(x) —{| = ‘qust(x) - qust(xb) + qust(xb) — /|

< [ Tpgst(x) — qust(xb)‘ + ‘qust(xb) —
<€,

for p > po, g > qo and for all s, ¢.
Hence x = (z;) € V5 and Vi is complete.
This completes the proof of theorem. ]

The class of strongly o-regular matrices, i.e. (V37, ¢5°),c, has been characterized
in [2].
Now we characterize the matrix class (Vy7, Vy) as well as (Vy, Vi) eq. Let
Z3 be the subspace of Vi’ such that lim 7., (z) = 0, uniformly in s, ¢, that is
p,q—00

(3) Z3 ={x = (xj;) € Vi : lim 7p44(x) =0, uniformly in s,t}.
p,q—00

Note that every y € V7 can be written as
y=x+LE,

where x € Z§, ¢ = lim 7,45 (y) uniformly in s, ¢, and E = (e;),) with e;;, = 1 for
pPq
all 5, k.

Theorem 2.2. A matrix A = (amn;i) € (V5 ,V5) if and only if
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o0

[e.9]
() |4l =sup >° 3 |amnj| < o003
=0

mn j=0k

(") a= Z Z Amnjk € VQJ;
J=0k=0 m,n=1

(iil) A(o—8) € (45°,Vg);

where S is the shift operator.
Proof. (Sufficiency). Let the conditions hold and y = (y;x) € V. Then
(2.2.1) y=z+IlE
where x = (xj;) € 25,4 = p,ginoo Tpgst(y), uniformly in s, ¢ and E = (e;;) with
ejr = 1 for all j, k.
Taking A-transform in (2.2.1) we get
Ay = Ax + (AE
(2.2.2) e €<§: iamnjk>oo
=0 k=0 m,n=1

If © = (zj,) € £5° then by (iii) we have A(ox — ) € Vi’. Since by (i) A is
bounded linear operator on ¢5°, we get AZ$ C V. Hence Ax € V.
Now from condition (ii) and (2.2.2), Ay € V. Therefore A € (Vy, V).

Necessity. Let A € (Vy,Vy). We know that ¢5° C Vi C ¢5° so we have
A € (¢5°,05°). Hence necessity of (i) follows. Since E € Vi’ then AE € V. This

is equivalent to
o o0 o
(% o) ez

j=0 k=0 m,n=1

that is, (ii) holds. For each z = (xj;) € ¢5°, ox — x € Vi because
ploz —z) = p(ox) — p(x) = 0
for all o-means . Hence A(ox — x) € V{7, that is, (iii) holds.

Corollary 2.3. A = (amnjr) € (V57, V5 )reg if and only if conditions (i), (ii)
with o-lima = 1, and (iii) hold.
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3. Core THEOREM
Let us consider the following sublinear functionals defined on ¢5°:

L(z) =limsupz,

M“@
M=

1
Q(x) =limsupsup —————
() = s G D+ 1) -

1
L*(x) = limsupsup ——————
) = s G D) (g + 1) -

Loi(s),0k(t)s

0 k=0

<
I

M“@
M=

Ls+j,t+k-

<
Il
=)

k

Il
=)

For real bounded sequence = = (z;1), we have the following cores of z = (z;):
P-core{z} = [-L(—=x), L(x)] (see Patterson [12]),
M-core{z} = [-L*(—=x), L*(z)] (see Mursaleen - Edely [7]),
o-core{z} = [-Q(—z), Q(x)] (see Mursaleen-Mohiuddine [9]).

The following theorem is a double sequence version of Thoerem 3 of Mishra -
Satpathy - Rath [5].

Theorem 3.1. For every z € V7,
(3.1.1) Q(Az) < Q(z) (or o-core{Azx} C o-core{z})

if and only if
(i) Ais Vy-regular;

o0 o0
(i) limsupsup >° > [B(p, g, 4, k, 5, )| = 1;
p,q—00 S,t j:O k=0

where
1 p q
) 7-7k787t = I . 1) Aom(s),0™(t).5.k

m=0 n=0
Proof. (Necessity). Let (3.1.1) hold for all z = () € V. Then

—Q(—7) < —Q(-Az) < Q(Az) < Q(z)

o-liminfr < —Q(—Az) < Q(Az) < o-limsupz.

If © € Vi then we have

—Q(—Az) = Q(Az) = o-limz
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o-lim(Az) = o-limz.

Hence A is Vi -regular, i.e. (i) holds.
Now by [11, Lemma 2.1], there is = = (x ;) € ¢3° such that ||z|| < 1 and

[SSINeS)
limsupSUPZZﬁ(pa Q7.j7 ku S,t)fl'jk

o0 o0
= hmsupsupzz ‘/B(puqu.jvkusut)"

(3.1.2)

Hence if we define x = (z;1) by
1:ifj=k
Tjk = .
0 ; otherwise;

then o
1=¢q(Az) = liminfsupzz |B(p, .7,k 5,t)|

p,g—00 :
St j=0 k=0

P q
q(z) = liminfsupzZxaj(s)’ak(t)/(p +1)(g+1).

P,g—00 5t 4

Sufficiency. We know that ¢5° C V7. Thus by Theorem 2 in [9]
Q(Az) < L(x).
Hence for z € ZJ, we get
Q(Ax + Az) < L(z + ).
Taking infimum over z € Zg, we get

inf Q(Az+ Az) < inf limsup(z,q + 2pq) = W(x), say.
2€23 2€Z5 p,g—oo

Thus

(3.1.3) sup lim sup 7pqst (Az) + inf infliminf 7,4 (Az) < W(z).

s,t  p,q—0o0 ZEZQU s,t p,q—00

27
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Since Az € Vi, we can write
Az =Z+(E,

where z € Z9, { = o-lim Az (= o-lim 2, since A is Vi7-regular).
Now operating 7,,s: On both sides, we have

Tpgst (A2) = Tpgst (2) + Tpgst (LE).

By o-regularity we have

x x
(3.14). lminfry(dz) = lim rpge(z) +¢ lim Z; % B(p,q.j,k, s,t)
j: et

By definition of Zg
lim qust(z) =0
p,qg—00

uniformly in s, ¢. Also

o o.0]
Jim D> B,k )= 1.

§=0 k=0
From (3.1.4) we have
(3.1.5) I;%I_i)ngqst(Az) =/

uniformly in s, . Using (3.1.5) and (3.1.3) we get
Q(Az) + ¢ < W(x)

that is
Q(Az) < W(x).

As W(z) = Q(x), we get
Q(Az) < Q(x).

This completes the proof of the Theorem.

4. TAuUBERIAN CONDITION

Since o-core{xz} C P-core{z}, we find here the condition (Tauberian) for the
reverse inclusion.

Theorem 4.1. For xz = (z;1) € £5°, if

(411) lg?(xst - xa(s),a(t)) =0
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holds, then P-core{z} C o-core{x}.

Proof. By the definition of P-core and o-core, we have to show that L(z) <
Q(z). Let Q(x) = £. Then, for given e > 0, for all j, k, s, ¢ and for large p, q it
follows from the definition of () that

q
(4.1.2) D Ti(eyonry < L+ €/2.

p
(p+1 (g+1) /=0 k=0

J

Now we have

4.1.3)
( )5 >y
Tst = Tst — Loi(s) ak(t L AN L1 Loi(s),0%(t)
(p+1 (0+1) = &= (p+1 (@+1) ==
1 p
< |y — ———— x +0 +¢€/2.
> | Tst p+D(g+1) jz;% o (s),0%(t) /

Since (4.1.1) holds, for given € > 0 we have (st — () okl < €/2 for all
4,k > 0. Thus

Z Loi(s),0*(t)

k=0

Tst —

q

P
(p+1 (a+1) =

1 P g
- m‘(p + 1)(q + 1)x8t - Z Z$Jj(8)’0k(t)

< (p+1)(g+1)|rs—=, k=
_(p+1)(q+1)(p )g+ Dzst — i (), ok )| I

< €/2.
Taking limsup in (4.1.3), we get L(z) < £+ ¢, since € is arbitrary. Hence L(z) <
t

Q(zx). This (Szbmplete the proof. [ ]
In case o(n) =n+ 1 in Theorem 4.1, we have
Corollary 4.2. For z = (z ;) € £5°, if

(4.2.1) h;{l(%st — ZTsq1441) =0

holds, then P-core{z} C M-core{x}.

Corollary 4.3. If the condition (4.1.1) holds and x is o-convergent, then z is
convergent.
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Corollary 4.4. If the condition (4.2.1) holds and z is almost convergent, then
x IS convergent.
5. CorRe THEOREMS FOR ABSOLUTELY EQUIVALENT MATRICES
First we prove the following useful lemma.

Lemma 5.1. For z,y € £5°, if o-lim|x — y| = 0, then o-core{z} =
o-core{y}.

Proof. If o-lim |z — y| = 0 then o-lim(x — y) = o-lim(—z + y) = 0. By
definition of o-core, we have

Qx—y)=-Q(-z+y)=0.

Since @ is sublinear,

0=-Q(—z+y) <-Q(—z) — Q(y).

Therefore,
Qy) < —Q(—x).
Also
—Q(—z) < Q(x),
this implies that Q(y) < Q(x). By an argument similar as above, we can show that
Q(z) < Qy).
This completes the proof. ]

Theorem 5.2. Let A = (amn;k) be a Vy-regular matrix. Then, Q(Ax) < Q(x)
for all z = (z;;) € £5° if and only if there is a V-regular matrix B = (bp;i)
such that B is a o-uniformly positive and o-absolutely equivalent with A on ¢ 5°.

Proof. Let there be a V7 -regular matrix B such that B is o-uniformly positive
and o-absolutely equivalent with A on ¢5°. Then, by (x) in Definition 1.6 and
o-absolutely equivalence of A and B, we have

o-lm |y, — y;nn\

oo 00 p q
= lim sup Z ZZ Agm(s),om(t)j k_bam( ),0m(t)7, k]%k
paze st |5 P +1 ) msono
oo 00 1 p q
< ||z lim su < m n —b,m n
_H Hp,q—>oo SthjZ:kZ;(p_*_l q+1 mz:onzg om(s),0™(t)j,k o ()J(t)jk]

=0
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uniformly in s, ¢. Now, by Lemma 5.1, o-core{ Az} = o-core{ Bz} for all = € £°.
By Theorem 3.1, we have Q(Azx) < Q(x), since z is arbitrary.
Conversely, let Q(Az) < Q(z) for all z € £°. Then by Theorem 3.1, A is
o-uniformly positive.
Now we define a matrix B = (byn;k) S

1
bmnjk = _(amnjk + am,n,j—i—l,k—f—l)
2

for all m,n,j,k € N. Then it is easy to see that B is Vi-regular since A is
Vy’-regular, and

(5.2.1) o-lim(Ax) = o-lim(Bx).
Further
oo 00 p q
lim su m n
p,q—00 SFZZ p+1 q_|_1 ZZJ( J(tjk
Jj=0 k=0 m=0n=0
1 [ I p
52.2) < —[ lim sup — Aom (s),0m (£)5,k
(522) 2pq—>oos,tj:0k:0(p+1 (g+1) ;;0( 7" (07,

q

|

Agm (s),0m(t)j+1,k+1
=0

Since B is Vi -regular, we have by (5.2.2) that

om(s),0m(t)], k| <

}Jlinoosupzzg G+ q+1

Thus B is o-uniformly positive. Further, it follows from (5.2.1) that A and B are
o-absolutely equivalent.
This completes the proof. ]

m=0 n=0

When o(n) = n+ 1 in Lemma 5.1 and Theorem 5.2, we have the following
corollaries:

Corollary 5.3. Let z,y € £5°. If fo-lim |z —y| = 0 then
M-core{x} = M-core{y}.

Corollary 5.4. Let A be a (f2, f2)reg-matrix. Then L*(Az) < L*(z) for all
x € £3° if and only if there is a (fo, fg)reg-matrix B such that

s+m,t+n,j,k | =

=0n=0
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and B is fy-absolutely equivalent with A on £5°.

For (fa, fa)reg-matrices, see Mursaleen [11].
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