INVARIANT MEAN AND SOME CORE THEOREMS FOR DOUBLE SEQUENCES

M. Mursaleen and S. A. Mohiuddine

Abstract

In this paper we define and characterize the class $\left(V_{2}^{\sigma}, V_{2}^{\sigma}\right)$ and establish a core theorem, where V_{2}^{σ} is the space of σ-convergent double sequences $x=\left(x_{j k}\right)$. We further determine a Tauberian condition for core inclusion and core equivalence.

1. Introduction

A double sequence $x=\left(x_{j k}\right)$ is said to be convergent in the Pringsheim sense (or P-convergent) if for given $\epsilon>0$ there exists an integer N such that $\left|x_{j k}-\ell\right|<\epsilon$ whenever $j, k>N$. We shall write this as

$$
\lim _{j, k \rightarrow \infty} x_{j k}=\ell
$$

where j and k tending to infinity independent of each other (cf[14]). We denote by c_{2}, the space of P-convergent sequences. Throughout this paper limit of a double sequence means limit in the Pringsheim sense.

A double sequence x is bounded if

$$
\|x\|=\sup _{j, k \geq 0}\left|x_{j k}\right|<\infty .
$$

Note that, in contrast to the case for single sequences, a convergent double sequence need not be bounded. By c_{2}^{∞}, we denote the space of double sequences which are bounded convergent and by ℓ_{2}^{∞} the space of bounded double sequences.

Let σ be a one-to-one mapping from the set \mathbb{N} of natural numbers into itself. A continuous linear functional φ on ℓ_{∞} is said to be an invariant mean or a

[^0]σ-mean [16] if and only if (i) $\varphi(x) \geq 0$ when the sequence $x=\left(x_{k}\right)$ has $x_{k} \geq 0$ for all k, (ii) $\varphi(e)=1$, where $e=(1,1,1, \cdots)$, and (iii) $\varphi(x)=\varphi\left(\left(x_{\sigma(k)}\right)\right)$ for all $x \in \ell_{\infty}$.

Throughout this paper we consider the mapping σ which has no finite orbits, that is, $\sigma^{p}(k) \neq k$ for all integers $k \geq 0$ and $p \geq 1$, where $\sigma^{p}(k)$ denotes the $p t h$ iterate of σ at k. Note that, a σ-mean extends the limit functional on c in the sense that $\varphi(x)=\lim x$ for all $x \in c$, (see [10]). Consequently, $c \subset V_{\sigma}$ the set of bounded sequences all of whose σ-means are equal. We say that a sequence $x=\left(x_{k}\right)$ is σ-convergent if and only if $x \in V_{\sigma}$.

The idea of σ-convergence for double sequences has recently been introduced in [2]. A double sequence $x=\left(x_{j k}\right)$ of real numbers is said to be σ-convergent to a number L if and only if $x \in V_{2}^{\sigma}$, where

$$
\begin{gathered}
V_{2}^{\sigma}=\left\{x \in \ell_{2}^{\infty}: \lim _{p, q \rightarrow \infty} \tau_{p q s t}(x)=L \text { uniformly in } s, t ; L=\sigma-\lim x\right\} \\
\tau_{p q s t}(x)=\frac{1}{(p+1)(q+1)} \sum_{j=0}^{p} \sum_{k=0}^{q} x_{\sigma^{j}(s), \sigma^{k}(t)}
\end{gathered}
$$

and $\tau_{-1, q, s, t}=\tau_{p,-1, s, t}=\tau_{-1,-1, s, t}=0$.
For $\sigma(n)=n+1$, the set V_{2}^{σ} is reduced to the set f_{2} of almost convergent double sequences [6]. The concept of almost convergence for single sequences was introduced by Lorentz [4]. Note that $c_{2}^{\infty} \subset V_{2}^{\sigma} \subset \ell_{2}^{\infty}$.

Definition 1.1. A matrix $A=\left(a_{m n j k}\right)$ is said to be σ-regular if $A x \in V_{2}^{\sigma}$ for $x=\left(x_{j k}\right) \in c_{2}^{\infty}$ with $\sigma-\lim A x=\lim x$, and we denote this by $A \in\left(c_{2}^{\infty}, V_{2}^{\sigma}\right)_{\text {reg }}$.

Definition 1.2. A matrix $A=\left(a_{m n j k}\right)$ is said to be σ-multiplicative if $A x \in$ V_{2}^{σ} for $x=\left(x_{j k}\right) \in c_{2}^{\infty}$ with $\sigma-\lim A x=\alpha \lim x$, and we denote this by $A \in$ $\left(c_{2}^{\infty}, V_{2}^{\sigma}\right)_{\alpha}$, where $\alpha \in \mathbb{C}$. Note that if $\alpha=1$, then σ-multiplicative matrices are reduced to σ-regular. The class of σ-multiplicative matrices was characterized by Mursaleen and Mohiuddine [9].

Definition 1.3. A matrix $A=\left(a_{m n j k}\right)$ is said to be strongly σ-regular if $A x \in c_{2}^{\infty}$ for $x=\left(x_{j k}\right) \in V_{2}^{\sigma}$ with $\lim A x=\sigma$ - $\lim x$, and we denote this by $A \in\left(V_{2}^{\sigma}, c_{2}^{\infty}\right)_{\text {reg }}$ (see [2]).

Now, we give some new definitions:
Definition 1.4. A matrix $A=\left(a_{m n j k}\right)$ is said to be V_{2}^{σ}-regular if $A x \in V_{2}^{\sigma}$ for $x=\left(x_{j k}\right) \in V_{2}^{\sigma}$ with $\sigma-\lim A x=\sigma-\lim x$, and we denote this by $A \in$ $\left(V_{2}^{\sigma}, V_{2}^{\sigma}\right)_{\text {reg }}$.

Definition 1.5. A matrix $A=\left(a_{m n j k}\right)$ is said to be σ-uniformly positive if

$$
\lim _{p, q \rightarrow \infty} \sup _{s, t} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \frac{1}{(p+1)(q+1)}\left|\sum_{m=0}^{p} \sum_{n=0}^{q} a_{\sigma^{m}(s), \sigma^{n}(t) j, k}\right|=1 .
$$

Definition 1.6. Let A and B be two V_{2}^{σ}-regular matrices and

$$
\begin{equation*}
y_{m n}=\sum_{j=0}^{\infty} \sum_{k=0}^{\infty} a_{m n j k} x_{j k} \text { and } y_{m n}^{\prime}=\sum_{j=0}^{\infty} \sum_{k=0}^{\infty} b_{m n j k} x_{j k} . \tag{*}
\end{equation*}
$$

Then A and B are said to be σ-absolutely equivalent on ℓ_{2}^{∞} whenever $\sigma-\lim \left(y_{m n}-\right.$ $\left.y_{m n}^{\prime}\right)=0$, i.e., either $\left(y_{m n}\right)$ and $\left(y_{m n}^{\prime}\right)$ both tend to the same σ-limit or neither of them tends to a σ-limit, but their difference tends to σ-limit zero.

For matrix transformations of double sequences and related methods, we refer to Altay - Basar [1], Hamilton [3], Patterson [12,13], Moricz [6], Mursaleen [11], Mursaleen - Edely [7], and Mursaleen - Savas [8], Robinson [15], and Zeltser [17].

In Section 2, we define the norm on V_{2}^{σ} such that it is a Banach space, and we characterize V_{2}^{σ}-regular matrices. In Section 3, we use V_{2}^{σ}-regular matrices to establish a core theorem. Since for all $x \in \ell_{2}^{\infty}, \sigma$-core $\{x\} \subseteq P$-core $\{x\}$, we find a Tauberian condition for the reverse inclusion in Section 4. In Section 5, we establish a core theorem for σ-absolutely equivalent matrices.

2. Characterization

First we define the norm on V_{2}^{σ}.
Theorem 2.1. V_{2}^{σ} is a Banach space normed by

$$
\begin{equation*}
\|x\|=\sup _{p, q, s, t}\left|\tau_{p q s t}(x)\right| \tag{2.1.1}
\end{equation*}
$$

Proof. It can be easily verified that (2.1.1) defines a norm on V_{2}^{σ}. We show that V_{2}^{σ} is complete.

Now, let $\left(x^{b}\right)$ be a Cauchy sequence in V_{2}^{σ}. Then for each $j, k,\left(x_{j k}^{b}\right)$ is a Cauchy sequence in \mathbb{R}. Therefore $x_{j k}^{b} \rightarrow x_{j k}$ (say). Put $x=\left(x_{j k}\right)$, given ϵ there exists an integer $N(\epsilon)=N$ say, such that, for each $b, d>N$

$$
\left\|x^{b}-x^{d}\right\|<\epsilon / 2
$$

Hence

$$
\sup _{p, q, s, t}\left|\tau_{p q s t}\left(x^{b}-x^{d}\right)\right|<\epsilon / 2,
$$

then for each p, q, s, t and $b, d>N$, we have

$$
\left|\tau_{p q s t}\left(x^{b}-x^{d}\right)\right|<\epsilon / 2 .
$$

Taking limit $d \rightarrow \infty$, we have for $b>N$ and for each p, q, s, t

$$
\begin{equation*}
\left|\tau_{p q s t}\left(x^{b}-x\right)\right|<\epsilon / 2 . \tag{2.1.2}
\end{equation*}
$$

Now for fixed b, the above inequality holds. Since for fixed $b, x^{b} \in V_{2}^{\sigma}$ we get

$$
\lim _{p, q \rightarrow \infty} \tau_{p q s t}\left(x^{b}\right)=\ell
$$

uniformly in s, t. For given $\epsilon>0$, there exist positive integers p_{0}, q_{0} such that

$$
\begin{equation*}
\left|\tau_{p q s t}\left(x^{b}\right)-\ell\right|<\epsilon / 2, \tag{2.1.3}
\end{equation*}
$$

for $p \geq p_{0}, q \geq q_{0}$ and for all s, t. Here p_{0}, q_{0} are independent of s, t but depend upon ϵ. Now by using (2.1.2) and (2.1.3) we get

$$
\begin{gathered}
\left|\tau_{p q s t}(x)-\ell\right|=\left|\tau_{p q s t}(x)-\tau_{p q s t}\left(x^{b}\right)+\tau_{p q s t}\left(x^{b}\right)-\ell\right| \\
\leq\left|\tau_{p q s t}(x)-\tau_{p q s t}\left(x^{b}\right)\right|+\left|\tau_{p q s t}\left(x^{b}\right)-\ell\right| \\
<\epsilon,
\end{gathered}
$$

for $p \geq p_{0}, q \geq q_{0}$ and for all s, t.
Hence $x=\left(x_{j k}\right) \in V_{2}^{\sigma}$ and V_{2}^{σ} is complete.
This completes the proof of theorem.
The class of strongly σ-regular matrices, i.e. $\left(V_{2}^{\sigma}, c_{2}^{\infty}\right)_{\text {reg }}$ has been characterized in [2].

Now we characterize the matrix class $\left(V_{2}^{\sigma}, V_{2}^{\sigma}\right)$ as well as $\left(V_{2}^{\sigma}, V_{2}^{\sigma}\right)_{\text {reg }}$. Let Z_{2}^{σ} be the subspace of V_{2}^{σ} such that $\lim _{p, q \rightarrow \infty} \tau_{p q s t}(x)=0$, uniformly in s, t, that is

$$
\begin{equation*}
Z_{2}^{\sigma}=\left\{x=\left(x_{j k}\right) \in V_{2}^{\sigma}: \lim _{p, q \rightarrow \infty} \tau_{p q s t}(x)=0, \text { uniformly in } s, t\right\} \tag{3}
\end{equation*}
$$

Note that every $y \in V_{2}^{\sigma}$ can be written as

$$
y=x+\ell E,
$$

where $x \in Z_{2}^{\sigma}, \ell=\lim _{p, q} \tau_{p q s t}(y)$ uniformly in s, t, and $E=\left(e_{j k}\right)$ with $e_{j k}=1$ for all j, k.

Theorem 2.2. A matrix $A=\left(a_{m n j k}\right) \in\left(V_{2}^{\sigma}, V_{2}^{\sigma}\right)$ if and only if
(i) $\|A\|=\sup _{m n} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty}\left|a_{m n j k}\right|<\infty$;
(ii) $a=\left(\sum_{j=0}^{\infty} \sum_{k=0}^{\infty} a_{m n j k}\right)_{m, n=1}^{\infty} \in V_{2}^{\sigma}$;
(iii) $A(\sigma-S) \in\left(\ell_{2}^{\infty}, V_{2}^{\sigma}\right)$;
where S is the shift operator.
Proof. (Sufficiency). Let the conditions hold and $y=\left(y_{j k}\right) \in V_{2}^{\sigma}$. Then

$$
\begin{equation*}
y=x+\ell E \tag{2.2.1}
\end{equation*}
$$

where $x=\left(x_{j k}\right) \in Z_{2}^{\sigma}, \ell=\lim _{p, q \rightarrow \infty} \tau_{p q s t}(y)$, uniformly in s, t and $E=\left(e_{j k}\right)$ with $e_{j k}=1$ for all j, k.

Taking A-transform in (2.2.1) we get

$$
\begin{align*}
A y & =A x+\ell A E \\
& =A x+\ell\left(\sum_{j=0}^{\infty} \sum_{k=0}^{\infty} a_{m n j k}\right)_{m, n=1}^{\infty} . \tag{2.2.2}
\end{align*}
$$

If $x=\left(x_{j k}\right) \in \ell_{2}^{\infty}$ then by (iii) we have $A(\sigma x-x) \in V_{2}^{\sigma}$. Since by (i) A is bounded linear operator on ℓ_{2}^{∞}, we get $A Z_{2}^{\sigma} \subset V_{2}^{\sigma}$. Hence $A x \in V_{2}^{\sigma}$.

Now from condition (ii) and (2.2.2), $A y \in V_{2}^{\sigma}$. Therefore $A \in\left(V_{2}^{\sigma}, V_{2}^{\sigma}\right)$.
Necessity. Let $A \in\left(V_{2}^{\sigma}, V_{2}^{\sigma}\right)$. We know that $c_{2}^{\infty} \subset V_{2}^{\sigma} \subset \ell_{2}^{\infty}$ so we have $A \in\left(c_{2}^{\infty}, \ell_{2}^{\infty}\right)$. Hence necessity of (i) follows. Since $E \in V_{2}^{\sigma}$ then $A E \in V_{2}^{\sigma}$. This is equivalent to

$$
\left(\sum_{j=0}^{\infty} \sum_{k=0}^{\infty} a_{m n j k}\right)_{m, n=1}^{\infty} \in V_{2}^{\sigma}
$$

that is, (ii) holds. For each $x=\left(x_{j k}\right) \in \ell_{2}^{\infty}, \sigma x-x \in V_{2}^{\sigma}$ because

$$
\varphi(\sigma x-x)=\varphi(\sigma x)-\varphi(x)=0
$$

for all σ-means φ. Hence $A(\sigma x-x) \in V_{2}^{\sigma}$, that is, (iii) holds.
Corollary 2.3. $A=\left(a_{m n j k}\right) \in\left(V_{2}^{\sigma}, V_{2}^{\sigma}\right)_{\text {reg }}$ if and only if conditions (i), (ii) with $\sigma-\lim a=1$, and (iii) hold.

3. Core Theorem

Let us consider the following sublinear functionals defined on ℓ_{2}^{∞} :

$$
\begin{aligned}
L(x) & =\lim \sup x \\
Q(x) & =\limsup _{p, q \rightarrow \infty} \sup _{s, t} \frac{1}{(p+1)(q+1)} \sum_{j=0}^{p} \sum_{k=0}^{q} x_{\sigma^{j}(s), \sigma^{k}(t)} \\
L^{*}(x) & =\limsup _{p, q \rightarrow \infty} \sup _{s, t} \frac{1}{(p+1)(q+1)} \sum_{j=0}^{p} \sum_{k=0}^{q} x_{s+j, t+k}
\end{aligned}
$$

For real bounded sequence $x=\left(x_{j k}\right)$, we have the following cores of $x=\left(x_{j k}\right)$:

$$
\begin{aligned}
\text { P-core }\{x\} & =[-L(-x), L(x)] \text { (see Patterson [12]), } \\
\text { M-core }\{x\} & =\left[-L^{*}(-x), L^{*}(x)\right] \text { (see Mursaleen - Edely [7]) } \\
\sigma \text {-core }\{x\} & =[-Q(-x), Q(x)] \text { (see Mursaleen-Mohiuddine [9]). }
\end{aligned}
$$

The following theorem is a double sequence version of Thoerem 3 of Mishra Satpathy - Rath [5].

Theorem 3.1. For every $x \in V_{2}^{\sigma}$,

$$
\begin{equation*}
Q(A x) \leq Q(x)(\text { or } \sigma \text {-core }\{A x\} \subset \sigma \text {-core }\{x\}) \tag{3.1.1}
\end{equation*}
$$

if and only if
(i) A is V_{2}^{σ}-regular;
(ii) $\limsup _{p, q \rightarrow \infty} \sup _{s, t} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty}|\beta(p, q, j, k, s, t)|=1$;
where

$$
\beta(p, q, j, k, s, t)=\frac{1}{(p+1)(q+1)} \sum_{m=0}^{p} \sum_{n=0}^{q} a_{\sigma^{m}(s), \sigma^{n}(t) \cdot j . k}
$$

Proof. (Necessity). Let (3.1.1) hold for all $x=\left(x_{j k}\right) \in V_{2}^{\sigma}$. Then

$$
-Q(-x) \leq-Q(-A x) \leq Q(A x) \leq Q(x)
$$

i.e.

$$
\sigma-\lim \inf x \leq-Q(-A x) \leq Q(A x) \leq \sigma-\lim \sup x
$$

If $x \in V_{2}^{\sigma}$ then we have

$$
-Q(-A x)=Q(A x)=\sigma-\lim x
$$

i.e.

$$
\sigma-\lim (A x)=\sigma-\lim x
$$

Hence A is V_{2}^{σ}-regular, i.e. (i) holds.
Now by [11, Lemma 2.1], there is $x=\left(x_{j k}\right) \in \ell_{2}^{\infty}$ such that $\|x\| \leq 1$ and

$$
\begin{align*}
& \limsup _{p, q \rightarrow \infty} \sup _{s, t} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \beta(p, q, j, k, s, t) x_{j k} \\
= & \limsup _{p, q \rightarrow \infty} \sup _{s, t} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty}|\beta(p, q, j, k, s, t)| \tag{3.1.2}
\end{align*}
$$

Hence if we define $x=\left(x_{j k}\right)$ by

$$
x_{j k}= \begin{cases}1 ; & \text { if } j=k \\ 0 ; & \text { otherwise }\end{cases}
$$

then

$$
\begin{aligned}
& 1=q(A x)=\liminf _{p, q \rightarrow \infty} \sup _{s, t} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty}|\beta(p, q, j, k, s, t)| \\
& \leq Q(A x) \leq Q(x) \leq\|x\| \leq 1
\end{aligned}
$$

and hence (ii) is satisfied, where

$$
q(x)=\liminf _{p, q \rightarrow \infty} \sup _{s, t} \sum_{j=0}^{p} \sum_{k=0}^{q} x_{\sigma^{j}(s), \sigma^{k}(t)} /(p+1)(q+1) .
$$

Sufficiency. We know that $c_{2}^{\infty} \subset V_{2}^{\sigma}$. Thus by Theorem 2 in [9]

$$
Q(A x) \leq L(x)
$$

Hence for $z \in Z_{2}^{\sigma}$, we get

$$
Q(A x+A z) \leq L(x+z)
$$

Taking infimum over $z \in Z_{2}^{\sigma}$, we get

$$
\inf _{z \in Z_{2}^{\sigma}} Q(A x+A z) \leq \inf _{z \in Z_{2}^{\sigma}} \limsup _{p, q \rightarrow \infty}\left(x_{p q}+z_{p q}\right)=W(x), \text { say }
$$

Thus

$$
\begin{equation*}
\sup _{s, t} \limsup _{p, q \rightarrow \infty} \tau_{p q s t}(A x)+\inf _{z \in Z_{2}^{\sigma}} \inf _{s, t} \liminf _{p, q \rightarrow \infty} \tau_{p q s t}(A z) \leq W(x) \tag{3.1.3}
\end{equation*}
$$

Since $A z \in V_{2}^{\sigma}$, we can write

$$
A z=\bar{z}+\ell E,
$$

where $\bar{z} \in Z_{2}^{\sigma}, \ell=\sigma-\lim A z\left(=\sigma-\lim z\right.$, since A is V_{2}^{σ}-regular).
Now operating $\tau_{p q s t}$ on both sides, we have

$$
\tau_{p q s t}(A z)=\tau_{p q s t}(\bar{z})+\tau_{p q s t}(\ell E) .
$$

By σ-regularity we have
(3.1.4). $\liminf _{p, q \rightarrow \infty} \tau_{p q s t}(A z)=\lim _{p, q \rightarrow \infty} \tau_{p q s t}(\bar{z})+\ell \lim _{p, q \rightarrow \infty} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \beta(p, q, j, k, s, t)$

By definition of Z_{2}^{σ}

$$
\lim _{p, q \rightarrow \infty} \tau_{p q s t}(\bar{z})=0
$$

uniformly in s, t. Also

$$
\lim _{p, q \rightarrow \infty} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \beta(p, q, j, k, s, t)=1 .
$$

From (3.1.4) we have

$$
\begin{equation*}
\liminf _{p, q \rightarrow \infty} \tau_{p q s t}(A z)=\ell \tag{3.1.5}
\end{equation*}
$$

uniformly in s, t. Using (3.1.5) and (3.1.3) we get

$$
Q(A x)+\ell \leq W(x)
$$

that is

$$
Q(A x) \leq W(x)
$$

As $W(x)=Q(x)$, we get

$$
Q(A x) \leq Q(x)
$$

This completes the proof of the Theorem.

4. Tauberian Condition

Since σ-core $\{x\} \subseteq$ P-core $\{x\}$, we find here the condition (Tauberian) for the reverse inclusion.

Theorem 4.1. For $x=\left(x_{j k}\right) \in \ell_{2}^{\infty}$, if

$$
\begin{equation*}
\lim _{s, t}\left(x_{s t}-x_{\sigma(s), \sigma(t)}\right)=0 \tag{4.1.1}
\end{equation*}
$$

holds, then P-core $\{x\} \subseteq \sigma$-core $\{x\}$.
Proof. By the definition of P-core and σ-core, we have to show that $L(x) \leq$ $Q(x)$. Let $Q(x)=\ell$. Then, for given $\epsilon>0$, for all j, k, s, t and for large p, q it follows from the definition of Q that

$$
\begin{equation*}
\frac{1}{(p+1)(q+1)} \sum_{j=0}^{p} \sum_{k=0}^{q} x_{\sigma^{j}(s), \sigma^{k}(t)}<\ell+\epsilon / 2 . \tag{4.1.2}
\end{equation*}
$$

Now we have

$$
\begin{gather*}
x_{s t}=x_{s t}-\frac{1}{(p+1)(q+1)} \sum_{j=0}^{p} \sum_{k=0}^{q} x_{\sigma^{j}(s), \sigma^{k}(t)}+\frac{1}{(p+1)(q+1)} \sum_{j=0}^{p} \sum_{k=0}^{q} x_{\sigma^{j}(s), \sigma^{k}(t)} \tag{4.1.3}\\
\leq\left|x_{s t}-\frac{1}{(p+1)(q+1)} \sum_{j=0}^{p} \sum_{k=0}^{q} x_{\sigma^{j}(s), \sigma^{k}(t)}\right|+\ell+\epsilon / 2 .
\end{gather*}
$$

Since (4.1.1) holds, for given $\epsilon>0$ we have $\left|x_{s t}-x_{\sigma^{j}(s), \sigma^{k}(t)}\right|<\epsilon / 2$ for all $j, k \geq 0$. Thus

$$
\begin{aligned}
& \left|x_{s t}-\frac{1}{(p+1)(q+1)} \sum_{j=0}^{p} \sum_{k=0}^{q} x_{\sigma^{j}(s), \sigma^{k}(t)}\right| \\
& =\frac{1}{(p+1)(q+1)}\left|(p+1)(q+1) x_{s t}-\sum_{j=0}^{p} \sum_{k=0}^{q} x_{\sigma^{j}(s), \sigma^{k}(t)}\right| \\
& \leq \frac{1}{(p+1)(q+1)}(p+1)(q+1)\left|x_{s t}-x_{\sigma^{j}(s), \sigma^{k}(t)}\right|, j, k=\cdots \\
& \quad<\epsilon / 2
\end{aligned}
$$

Taking $\lim \sup _{s, t}$ in (4.1.3), we get $L(x) \leq \ell+\epsilon$, since ϵ is arbitrary. Hence $L(x) \leq$ $Q(x)$. This complete the proof.

In case $\sigma(n)=n+1$ in Theorem 4.1, we have
Corollary 4.2. For $x=\left(x_{j k}\right) \in \ell_{2}^{\infty}$, if

$$
\begin{equation*}
\lim _{s, t}\left(x_{s t}-x_{s+1, t+1}\right)=0 \tag{4.2.1}
\end{equation*}
$$

holds, then P-core $\{x\} \subseteq M$-core $\{x\}$.
Corollary 4.3. If the condition (4.1.1) holds and x is σ-convergent, then x is convergent.

Corollary 4.4. If the condition (4.2.1) holds and x is almost convergent, then x is convergent.

5. Core Theorems for Absolutely Equivalent Matrices

First we prove the following useful lemma.
Lemma 5.1. For $x, y \in \ell_{2}^{\infty}$, if σ - $\lim |x-y|=0$, then σ-core $\{x\}=$ σ-core $\{y\}$.

Proof. If $\sigma-\lim |x-y|=0$ then $\sigma-\lim (x-y)=\sigma-\lim (-x+y)=0$. By definition of σ-core, we have

$$
Q(x-y)=-Q(-x+y)=0
$$

Since Q is sublinear,

$$
0=-Q(-x+y) \leq-Q(-x)-Q(y)
$$

Therefore,

$$
Q(y) \leq-Q(-x)
$$

Also

$$
-Q(-x) \leq Q(x)
$$

this implies that $Q(y) \leq Q(x)$. By an argument similar as above, we can show that

$$
Q(x) \leq Q(y)
$$

This completes the proof.
Theorem 5.2. Let $A=\left(a_{m n j k}\right)$ be a V_{2}^{σ}-regular matrix. Then, $Q(A x) \leq Q(x)$ for all $x=\left(x_{j k}\right) \in \ell_{2}^{\infty}$ if and only if there is a V_{2}^{σ}-regular matrix $B=\left(b_{m n j k}\right)$ such that B is a σ-uniformly positive and σ-absolutely equivalent with A on $\ell{ }_{2}^{\infty}$.

Proof. Let there be a V_{2}^{σ}-regular matrix B such that B is σ-uniformly positive and σ-absolutely equivalent with A on ℓ_{2}^{∞}. Then, by $(*)$ in Definition 1.6 and σ-absolutely equivalence of A and B, we have

$$
\begin{aligned}
& \sigma-\lim \left|y_{m n}-y_{m n}^{\prime}\right| \\
= & \lim _{p, q \rightarrow \infty} \sup _{s, t}\left|\sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \frac{1}{(p+1)(q+1)} \sum_{m=0}^{p} \sum_{n=0}^{q}\left[a_{\sigma^{m}(s), \sigma^{n}(t) j, k}-b_{\sigma^{m}(s), \sigma^{n}(t) j, k}\right] x_{j k}\right| \\
\leq & \|x\| \lim _{p, q \rightarrow \infty} \sup _{s, t} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \frac{1}{(p+1)(q+1)}\left|\sum_{m=0}^{p} \sum_{n=0}^{q}\left[a_{\sigma^{m}(s), \sigma^{n}(t) j, k}-b_{\sigma^{m}(s), \sigma^{n}(t) j, k}\right]\right| \\
= & 0
\end{aligned}
$$

uniformly in s, t. Now, by Lemma 5.1, σ-core $\{A x\}=\sigma$-core $\{B x\}$ for all $x \in \ell_{2}^{\infty}$.
By Theorem 3.1, we have $Q(A x) \leq Q(x)$, since x is arbitrary.
Conversely, let $Q(A x) \leq Q(x)$ for all $x \in \ell_{2}^{\infty}$. Then by Theorem 3.1, A is σ-uniformly positive.

Now we define a matrix $B=\left(b_{m n j k}\right)$ as

$$
b_{m n j k}=\frac{1}{2}\left(a_{m n j k}+a_{m, n, j+1, k+1}\right)
$$

for all $m, n, j, k \in \mathbb{N}$. Then it is easy to see that B is V_{2}^{σ}-regular since A is V_{2}^{σ}-regular, and

$$
\begin{equation*}
\sigma-\lim (A x)=\sigma-\lim (B x) \tag{5.2.1}
\end{equation*}
$$

Further

$$
\begin{align*}
& \lim _{p, q \rightarrow \infty} \sup _{s, t} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \frac{1}{(p+1)(q+1)}\left|\sum_{m=0}^{p} \sum_{n=0}^{q} b_{\sigma^{m}(s), \sigma^{n}(t) j, k}\right| \\
\leq & \frac{1}{2}\left[\lim _{p, q \rightarrow \infty} \sup _{s, t} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \frac{1}{(p+1)(q+1)}\left|\sum_{m=0}^{p} \sum_{n=0}^{q} a_{\sigma^{m}(s), \sigma^{n}(t) j, k}\right|\right. \tag{5.2.2}\\
& \left.+\lim _{p, q \rightarrow \infty} \sup _{s, t} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \frac{1}{(p+1)(q+1)}\left|\sum_{m=0}^{p} \sum_{n=0}^{q} a_{\sigma^{m}(s), \sigma^{n}(t) j+1, k+1}\right|\right] .
\end{align*}
$$

Since B is V_{2}^{σ}-regular, we have by (5.2.2) that

$$
\lim _{p, q \rightarrow \infty} \sup _{s, t} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \frac{1}{(p+1)(q+1)}\left|\sum_{m=0}^{p} \sum_{n=0}^{q} b_{\sigma^{m}(s), \sigma^{n}(t) j, k}\right| \leq 1 .
$$

Thus B is σ-uniformly positive. Further, it follows from (5.2.1) that A and B are σ-absolutely equivalent.

This completes the proof.
When $\sigma(n)=n+1$ in Lemma 5.1 and Theorem 5.2, we have the following corollaries:

Corollary 5.3. Let $x, y \in \ell_{2}^{\infty}$. If $f_{2}-\lim |x-y|=0$ then

$$
\text { M-core }\{x\}=\text { M-core }\{y\} .
$$

Corollary 5.4. Let A be a $\left(f_{2}, f_{2}\right)_{\text {reg-matrix. Then }} L^{*}(A x) \leq L^{*}(x)$ for all $x \in \ell_{2}^{\infty}$ if and only if there is a $\left(f_{2}, f_{2}\right)_{\text {reg-matrix }} B$ such that

$$
\lim _{p, q \rightarrow \infty} \sup _{s, t} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} \frac{1}{(p+1)(q+1)}\left|\sum_{m=0}^{p} \sum_{n=0}^{q} b_{s+m, t+n, j, k}\right|=1
$$

and B is f_{2}-absolutely equivalent with A on ℓ_{2}^{∞}.

For $\left(f_{2}, f_{2}\right)_{\text {reg }}$-matrices, see Mursaleen [11].

References

1. B. Altay and F. Başar, Some new spaces of double sequences, J. Math. Anal. Appl., 309 (2005), 70-90.
2. C. Çakan, B. Altay and Mursaleen, The σ-convergence and σ-core of double sequences, Appl. Math. Lett., 19 (2006), 1122-1128.
3. H. J. Hamilton, Transformations of multiple sequences, Duke Math. J., 2 (1936), 29-60.
4. G. G. Lorentz, A contribution to theory of divergent sequences, Acta Math., $\mathbf{8 0}$ (1948), 167-190.
5. S. L. Mishra, B. Satapathy and N. Rath, Invariant mean and σ-core, J. Indian Math. Soc., 60 (1994), 151-158.
6. F. Moricz and B. E. Rhoades, Almost convergence of double sequences and strong regularity of summability matrices, Math. Proc. Camb. Phil. Soc., 104 (1988), 283-294.
7. Mursaleen and Osama H. H. Edely, Almost convergence and a core theorem for double sequences, J. Math. Anal. Appl., 293 (2004), 532-540.
8. Mursaleen and E. Savaş, Almost regular matrices for double sequences, Studia Sci. Math. Hung., 40 (2003), 205-212.
9. Mursaleen and S. A. Mohiuddine, Double σ-multiplicative matrices, J. Math. Anal. Appl., 327 (2007), 991-996.
10. Mursaleen, On some new invariant matrix methods of summability, Quart. J. Math. Oxford, 34 (1983), 77-86.
11. Mursaleen, Almost strongly regular matrices and a core theorem for double sequences, J. Math. Anal. Appl., 293 (2004), 523-531.
12. R. F. Patterson, Double sequence core theorems, Internat. J. Math. Math. Sci., 22 (1999), 785-793.
13. R. F. Patterson, Comparison theorems for four dimensional regular matrices, Southeast Asian Bull. Math., 26 (2002), 299-305.
14. A. Pringsheim, Zur theorie der zweifach unendlichen Zahlenfolgen, Math. Z., 53 (1900), 289-321.
15. G. M. Robinson, Divergent double sequences and series, Trans. Amer. Math. Soc., 28 (1926), 50-73.
16. P. Schaefer, Infinite matrices and invariant means, Proc. Amer. Math. Soc., 36 (1972), 104-110.
17. M. Zeltser, Matrix transformations of double sequences, Acta Comment. Univ. Tartu Math., 4 (2000), 39-51.

M. Mursaleen
Department of Mathematics,
Aligarh Muslim University,
Aligarh-202002,
India
E-mail: mursaleenm@gmail.com

S. A. Mohiuddine

Department of Mathematics,
Aligarh Muslim University,
Aligarh-202002,
India
E-mail: mohiuddine@gmail.com

[^0]: Received July 28, 2007, accepted March 24, 2008.
 Communicated by Sen-Yen Shaw.
 2000 Mathematics Subject Classification: 40C05, 40H05.
 Key words and phrases: Double sequences, P-convergence, Invariant mean, σ-convergence, σ-core, Core theorems.

