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REGULARITY AND VANISHING MOMENTS OF
MULTIWAVELETS∗

Kuei-Fang Chang, Sue-Jen Shih, and Chiou-Mei Chang

Abstract. We introduce the Wiener space and then consider wavelets
which are not necessarily compactly supported but have a decay condition
at infinity. Under the Wiener condition, several scaling functions and
their dual functions have the same rate of decay at infinity. Furthermore,
multiwavelets and their bi-orthogonal multiwavelets have the same rate
of decay at infinity and the same number of vanishing moments.

1. Introduction

Wavelet theory has been explored extensively in both theory and appli-
cations in the last decade. The main advantage of wavelets is due to their
time-frequency locations represented by the translates and dilates of a single
function. It is well known that an orthonormal wavelet with compact support
and certain regularity can not have any symmetry (see [2]). Geronimo et al.
[3] constructed two functions whose translates and dilates form an orthonor-
mal basis for L2(R). They are continuous, very good time-localized and of
certain symmetry. In this section, we first define a multiresolution analysis of
multiplicity r for any positive integer r (see [3]).

Definition 1.1. A multiresolution analysis of multiplicity r is a sequence
of closed subspaces {Vk}k∈Z of L2(R) satisfying the following properties:

( i ) Vk ⊂ Vk+1 for all k ∈ Z.

(ii)
⋂

k∈Z Vk = {0} and
⋃

k∈Z Vk is dense in L2(R).
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(iii) f ∈ Vk ⇐⇒ f(2·) ∈ Vk+1 for all k ∈ Z.

(iv) Let Bφ = {φα(· + l) : α = 1, · · · , r; l ∈ Z}. Then Bφ is a Riesz basis of
V0, i.e., Bφ is a basis of V0 and there exist positive constants R1 and R2

such that

R1

r∑
α=1

∑

l∈Z
|Cα(l)|2 ≤

∥∥∥∥∥
r∑

α=1

∑

l∈Z
Cα(l)φα(·+ l)

∥∥∥∥∥

2

2

≤ R2

r∑
α=1

∑

l∈Z
|Cα(l)|2

for any square summable {Cα(l)}l∈Z.

The Wiener class, denoted by M(R), is defined as the set of all continuous
functions on R satisfying the Wiener condition ‖f‖ := ‖f‖w + ‖f̂‖w < ∞,
where

‖f‖w :=
∑

k∈Z
max
x∈[0,1]

|f(x + k)| =
∑

k∈Z
‖fχk+[0,1]‖∞ < ∞.

Poisson summation formula is a beautiful result incorporating ideas from both
Fourier series and Fourier transforms, and it has had many applications to
number theory, partial differential equations and probability theory as well
as wavelets. The following theorem proves that every member of the Wiener
class enjoys Poisson summation formula (see [4, p. 246]).

Theorem 1.2. Suppose that f belongs to the Wiener class M(R). Then
the equalities ∑

k∈Z
f(x + k) =

∑

k∈R
f̂(k)e2πikx

and ∑

k∈Z
f(k)e−2θikξ =

∑

k∈Z
f̂(ξ + k)

hold pointwise, and all four series converge absolutely and uniformly on [0, 1].

We shall assume throughout that φj and ψj belong to M(R) for all j =
1, 2, · · · , r. Let V0 = span{Tnφj : j = 1, 2, · · · , r; n ∈ Z}, V1 = {D2f : f ∈ V0},
where Tn is the translation operator that translates by n and D2 is the dilation
operator that dilates by 2. We let W0 be the orthogonal complement of V0

in V1 and ψj ∈ W0 for j = 1, 2, · · · , r. Let φ and ψ be represented by the
following vectors

φ = (φ1, · · · , φr)T ; ψ = (ψ1, · · · , ψr)T ,

and let

Φ(w) :=
∑

k∈Z
φ̂(w + k)φ̂∗(w + k), Ψ(w) :=

∑

k∈Z
ψ̂(w + K)ψ̂∗(w + k),
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where φ∗ = φ
t
, ψ∗ = ψ

t
, Φ and Ψ are r × r matrices.

Using Poisson’s summation formula we get

Φ(w) =
∑

k∈Z

(∫

R
φ(y − k)φ∗(y)dy

)
e2πiwk =

∑

k∈Z
(φ ∗ φ∗)(k)e2πiwk,

and

Ψ(w) =
∑

k∈Z

(∫

R
ψ(y − k)ψ∗(y)dy

)
e2πiwk =

∑

k∈Z
(ψ ∗ ψ∗)(k)e2πiwk.

The matrices Φ(w), Ψ(w) are positive-semidefinite for all w. The following
is an extension of Geronimo et al. [3], which they proved in the compactly
supported case. Since the proof is similar, we omit it.

Theorem 1.3. The collection {Tkφj : j = 1, 2, · · · , r; k ∈ Z} forms
a Riesz basis for V0 if and only if Φ(w) is positive-definite for all w, and
{Tkψj : j = 1, 2, · · · , r; k ∈ Z} forms a Riesz basis for W0 if and only if Ψ(w)
is positive-definite for all w.

Assume that {Tnφj : j = 1, 2, · · · , r; n ∈ Z} and {Tnψj : j = 1, 2, · · · , r; n ∈
Z} are Riesz bases of V0 and W0, respectively. If we define

φ̃ = (φ̃1, · · · , φ̃r)T , ψ̃ = (ψ̃1, · · · , ψ̃r)T

by
ˆ̃
φ = Φ−1φ̂,

ˆ̃
ψ = Ψ−1ψ̂,(1.4)

where Φ = (Φij), Ψ = (Ψij) and Φ−1 = (Φ−1
jk ), Ψ−1 = (Ψ−1

jk ). Then by
Parseval’s identity, we have 〈φj, Tnφ̃k〉 = δj,kδn,0 (see [5]). Thus φ̃ is a dual
vector of φ. Similarly, we can prove that ψ̃ is a dual vector of ψ. Moreover,
we can show that φj is in M(R) for all j = 1, 2, · · · , r. Since Φ(w) is positive-
definite and periodically continuous for all w, all the entries of Φ−1(w) are in
M(R). By Poisson’s summation formula, we have

Φ−1(w) =
∑

n∈Z
ene−2πinw,(1.5)

where (en)n∈Z is a sequence of r× r matrices with entries in l2(Z). From (1.4)
and (1.5), we get

φ̃(x) =
∑

l∈Z
elφ(x− l).(1.6)
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This implies that φ̃j is in M(R) for all j = 1, 2, · · · , r. Similarly, we can prove
that ψ̃j is in M(R) for all j = 1, 2, · · · , r.

By definition of a multiresolution analysis of multiplicity r, we have the
equations

φ
(x

2

)
=

∑

n∈Z
Pnφ(x + n), ψ

(x

2

)
=

∑

n∈Z
Qnφ(x + n),(1.7)

where (Pn)n∈Z and (Qn)n∈Z are sequences of r × r matrices with entries in
l2(Z). Moreover, we can prove that the entries of (Pn)n∈Z and (Qn)n∈BbbZ

belong to l1(Z).

Theorem 1.8. Let φj, ψj belong to M(R) and satisfy Equations (1.6). If
Pn = (Pij(n)) and Qn = (Qij(n)), then {Pij(n)}n∈Z and {Qij(n)}n∈Z must be
in l1(Z) for all i, j = 1, 2, · · · , r.

Proof. Since

φi

(x

2

)
=

∑

n∈Z

r∑

l=1

Pil(n)φl(x + n),

we obtain
∫

R
φi

(x

2

)
φ̃j(x + k)dx =

∑

n∈Z

r∑

l=1

Pil(n)
∫

R
φl(x + n)φ̃j(x + k)dx

=
∑

n∈Z

r∑

l=1

Pil(n)δl,jδn,k = Pij(k).

This implies that

∑

k∈Z
|Pij(k)| =

∑

k∈Z

∣∣∣∣
∫

R
φi

(
x

2

)
φ̃j(x + k)dx

∣∣∣∣

≤
∫

R

∣∣∣∣φi

(x

2

)∣∣∣∣
∑

k∈Z

∣∣∣φ̃j(x + k)
∣∣∣ dx

≤ 2‖φi‖1‖φ̃j‖w < ∞.

Consequently, the sequence {Pij(n)}n∈Z belongs to l1(Z) for all i, j = 1, 2, · · · , r.
Similarly, we can prove that {Qij(n)}n∈Z belongs to l1(Z) for all i, j =
1, 2, · · · , r. 2

Taking the Fourier transform of both sides of Equations (1.7) and letting

P (u) =
∑

v∈Z
Pve

2πivu, Q(u) =
∑

v∈Z
Qve

2πivu,

we obtain the relations
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φ̂(u) = P
(u

2

)
φ̂
(u

2

)
, ψ̂(u) = Q

(u

2

)
φ̂
(u

2

)
,(1.9)

where P, Q are r × r matrices with entries in C[0, 1] since {Pij(n)}n∈Z and
{Qij(n)}n∈Z belong to l1(Z).

2. Necessary Conditions for the Decay Rate and Regularity

In this section, we continue to use the notations in Section 1. First we
prove that φ̃j has the same decay rate as φj for all j = 1, 2, · · · , r. For this
purpose, a lemma is needed. Let σ(x) = (1 + |x|)ρ where ρ > 0 and ‖σf‖w =∑

k∈Zmax0≤x≤1 |σ(x + k)f(x + k)|.

Lemma 2.1. If the sequences {ak}k∈Z and {bk}k∈Z satisfy
∑

k∈Z σ(k)(|ak|
+|bk|) < ∞, then

∑
n∈Z σ(n)(|cn|) < ∞, where cn =

∑
k+l=n

akbl for all n ∈ Z.

Proof.
∑

n∈Z
σ(n)(|cn|) =

∑

n∈Z
σ(n)

∣∣∣∣∣
∑

k+l=n

akbl

∣∣∣∣∣

≤
∑

n∈Z

∑

k+1=n

σ(k)σ(n− k)|akbl|

≤
[∑

k∈Z
σ(k)|ak|

] [∑

l∈Z
σ(l)|bl|

]
< ∞. 2

Theorem 2.2. Suppose that φi belongs to M(R) with ‖σφi‖w < ∞ for
all i = 1, 2, · · · , r. Let aij(k) = φi ∗ φ∗j (k). Then

∑
k∈Z

σ(k)|aij(k)| < ∞ fol all

i, j = 1, 2, · · · , r.

Proof.

∑

k∈Z
σ(k)|aij(k)| =

∑

k∈Z
σ(k)

∣∣∣∣
∫

R
φi(x)φj(x + k)

∣∣∣∣ dx

≤
∑

k∈Z

∫

R
|(σφi)(x)| |(σφj)(x + k)|dx

≤
∑

k∈Z

∑

l∈Z

∫ 1

0

|(σφi)(x + l)| |(σφj)(x + k + l)|dx

≤ ‖σφi‖w‖σφj‖w < ∞. 2

Using Theorem 2.2 we can prove that ψi and φ̃i have the same decay rate.
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Theorem 2.3. If φi belongs to M(R) with ‖σφi‖w < ∞, then the function
φ̃i defined by Equation (1.4) satisfies ‖σφ̃i‖w < ∞ for all i = 1, 2, · · · , r.

Proof. By Poisson’s summation formula, we know that

Φ(w) =
∑

k∈Z
φ ∗ φ∗(k)e2θiwk.

Let Φij(w) =
∑

k∈Z
aij(k)e2πiwk, where aij(k) = φi ∗ φ∗j (k). Using Theorem 2.2,

we obtain a sequence {aij(k)}k∈Z satisfying
∑

k∈Z
σ(k)|aij(k)| < ∞

for all i, j = 1, 2, · · · , r. Since Φ(w) is positive-definite and periodically con-
tinuous for all w, we have det(Φ(w)) ≥ m for all w, where m > 0. If we let
Aij be the matrix obtained from Φ by deleting its i-th row and j-th column,
then

Φ−1
ij (w) =

(−1)i+jdet(Aji(w))
det(Φ(w))

≤ 1
m

(−1)i+jdet(Aji(w)).

Thus Φ−1
ij is bounded. Moreover, we have that Φ−1

ij is the finite linear combi-
nation of the entries of Φ(w). Let Φ−1

ij (w) =
∑

k∈Z
cij(k)e−2πiwk. Then by Lemma

2.1, ∑

k∈Z
σ(k)|cij(k)| < ∞

for all i, j = 1, 2, · · · , r. Using Equations (1.5) and (1.6), we have

φ̃(x) =
∑

l∈Z
e(l)φ(x− l),

where e(l) = (cij(l))r
i,j=1. Hence for all i = 1, 2, · · · , r, we obtain

‖σφ̃i‖w =
∑

m∈Z
max
0≤x≤1

|σ(x + m)
∑

l∈Z

r∑

k=1

cik(l)φk(x− l + m)|

≤
∑

m∈Z

∑

l∈Z

r∑

k=1

max
0≤x≤1

|(σφk)(x + m− l)| |σ(l)cik(l)|

≤
r∑

k=1

[
‖σφk‖w

(∑

l∈Z
σ(l)|cik(l)|

)]
< ∞. 2

Corollary 2.4. If φj satisfies a 2-scale dilation equation

φ
(x

2

)
=

∑

n∈Z
Pnφ(x + n),
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where Pn = (Pij(n)) for all i, j = 1, 2, · · · , r, and ‖σφi‖w < ∞ for all i =
1, 2, · · · , r, then

∑
n∈Z

σ(n)|Pij(n)| < ∞ for all i, j = 1, 2, · · · , r.

Proof. Since

Pij(n) =
∫

R
φi

(x

2

)
φ̃j(x + n)dx,

we have

∑

n∈Z
σ(n)|Pij(n)| ≤

∑

n∈Z
σ(n)

∫

R

∣∣∣∣φi

(x

2

)
φ̃j(x + n)

∣∣∣∣ dx

≤
∑

n∈Z

∫

R

∣∣∣∣σ(x)φi

(x

2

)∣∣∣∣ |σ(x + n)φ̃j(x + n)|dx

≤ ‖σφ̃j‖w

∫

R

σ(x)
σ(x

2
)
σ
(x

2

) ∣∣∣∣φi

(x

2

)∣∣∣∣ dx

≤ ‖σφ̃j‖w‖h‖∞
[
2

∫

R
σ(x)|φi(x)|dx

]

≤ ‖σφ̃j‖w‖h‖∞
[
2

∫ 1

0

∑

l∈Z
σ(x + l)|φi(x + l)|dx

]

≤ 2‖σφ̃j‖w‖h‖∞‖σφi‖w < ∞,

since h(x) = σ(x)

σ( x
2 )

is bounded. 2

In the following theorem, we will show that the function ψj has the same
decay rate as the function φj for all j = 1, 2, · · · , r.

Theorem 2.5. If φj and ψj belong to M(R) with ‖σφj‖w < ∞ for all
j = 1, 2, · · · , r, and satisfy Equations (1.7), then ‖σψj‖w < ∞ for all j =
1, 2, · · · , r.

Proof. Let Qn = (Qij(n)) and Pn = (Pij(n)) for all i, j = 1, 2, · · · , r. By
Theorem 1.8, we know that {Qij(n)}n∈Z and {Pij(n)}n∈Z belong to l1(Z) for
all i, j = 1, 2, · · · , r. Hence, we have

φj(x) =
∑

n∈Z

r∑

l=1

Pjl(n)φl(2x + n)

and

ψj(x) =
∑

n∈Z

r∑

l=1

Qjl(n)φl(2x + n).
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Since ‖σφj‖w < ∞, we have

‖σφj‖w =
∑

k∈Z
max
0≤x≤1

|σ(x + k)φj(x + k)|

=
∑

k∈Z
max
0≤x≤1

∣∣∣∣∣σ(x + k)
∑

n∈Z

r∑

l=1

Pjl(n)φl(2x + 2k + n)

∣∣∣∣∣

≤
r∑

l=1

∑

n∈Z
|Pjl(n)|

∑

k∈Z
max
0≤x≤1

|σ(x + k)φl(2x + 2k + n)|

≤
r∑

l=1

∑

n∈Z
σ(n)|Pjl(n)|

∑

k∈Z
max
0≤x≤1

|σ(2x + 2k + n)φl(2x + 2k + n)|

≤
r∑

l=1

∑

n∈Z
σ(n)|Pjl(n)|

∑

k∈Z
max
0≤x≤1

|(σφl)(2x + k)|

≤ 2
r∑

l=1

∑

n∈Z
σ(n)|Pjl(n)| ‖σφl‖w < ∞,

and so

‖σψj‖w =
∑

k∈Z
max
0≤x≤1

|σ(x + k)ψj(x + k)|

=
∑

k∈Z
max
0≤x≤1

∣∣∣∣∣σ(x + k)
∑

n∈Z

r∑

l=1

Qjl(n)φl(2x + 2k + n)

∣∣∣∣∣

≤
r∑

l=1

∑

n∈Z
|Qjl(n)|

∑

k∈Z
max
0≤x≤1

|σ(x + k)φl(2x + 2k + n)| < ∞,

since {Qij(n)}n∈Z belongs to l1(Z) for all i, j = 1, 2, · · · , r. Thus, we get
‖σψj‖w < ∞ for all j = 1, 2, · · · , r. 2

The following corollary is an application of Theorem 2.3.

Corollary 2.6. Under the hypotheses of Theorem 2.3, the function ψ̃j

defined by Equation (1.4) satisfies the condition ‖σψ̃j‖w < ∞ for all j =
1, 2, · · · , r.

We extend the result of Corollary 2.4 to the following.

Corollary 2.7. Under the hypotheses of Theorem 2.5, we have
∑

n∈Z
σ(n)|Qij(n)| < ∞

for all i, j = 1, 2, · · · , r.
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Next, we want to show that φ̃j and ψj have the same regularity as φj for
all j = 1, 2, · · · , r. We let Cρ(R) be the set of functions f which satisfy the
condition ‖σf̂‖1 < ∞ (see [2, p. 216]).

Theorem 2.8. Suppose that φj and ψj belong to M(R) with ‖σφ̂j‖w < ∞
for all j = 1, 2, · · · , r, and satisfy Equation (1.7). Then φ̃j and ψj belong to
the class Cρ(R)

⋂M(R).

Proof. Let Φ−1(w) = (Φ−1
ij (w)). Then {Φ−1

ij (w)} is bounded for all i, j =
1, 2, · · · , r. By (1.4), we have

ˆ̃
φj =

r∑

i=1

Φ−1
ji φ̂i ,

and thus

‖σ ˆ̃
φj‖w =

∥∥∥∥∥
r∑

i=1

Φ−1
ji σφ̂i

∥∥∥∥∥
w

≤ Mj

r∑

i=1

‖σφ̂‖w < ∞,

where Mj = max
1≤i≤r

|Φ−1
ji |. Hence φ̃j ∈ Cρ(R). Next, by (1.7), we have that

ψ̂j(u) =
∑

v∈Z

r∑

i=1

Qji(v)φ̂i

(u

2

)
eπivu,

where {Qij(v)}v∈Z belongs to l1(Z) for all i, j = 1, 2, · · · , r. Thus

‖σψ̂j‖w =
∑

k∈Z
max
0≤x≤1

|σψ̂j(x + k)|

=
∑

k∈Z
max
0≤x≤1

∣∣∣∣∣σ(x + k)
∑

v∈Z

r∑

i=1

eπiv(x+k)Qji(v)φ̂i

(
x + k

2

)∣∣∣∣∣

≤
∑

v∈Z

r∑

i=1

|Qji(v)|
∑

k∈Z
max
0≤x≤1

∣∣∣∣σ(x + k)φ̂i

(
x + k

2

)∣∣∣∣

≤
∑

v∈Z

r∑

i=1

|Qji(v)|
∑

k∈Z
max
0≤x≤1

∣∣∣σ(x + k)φ̂i(x + k)
∣∣∣

≤
r∑

i=1

∑

v∈Z
|Qji(v)| ‖σφ̂i‖w < ∞,

since {Qij(v)}v∈Z is absolutely convergent. Thus ψj ∈ Cρ(R). 2

The following is a corollary to Theorem 2.8.

Corollary 2.9. Under the hypotheses of Theorem 2.8, the function ψ̃j

defined by Equation (1.4) has the same regularity as φj, that is, ψ̃j ∈ Cρ(R)
for all j = 1, 2, · · · , r.
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Finally, we want to show that the function ψ̃j defined by Equation (1.4)
has the same number of vanishing moments as ψj, for all j = 1, 2, · · · , r.

Definition 2.10. Let σ(x) = (1 + |x|)k, k > m + 1, and let Dm be
the space {f : σ|f | is bounded on R}. A function f in Dm has N vanishing
moments if f satisfies

Mp(f) =
∫

R
xpf(x)dx = 0 for all 0 ≤ p ≤ N, but

∫

R
xN+1f(x)dx 6= 0,

where p is a positive integer and N ≤ m.

Theorem 2.11. Let ψj(x) ∈ DN , and let ψj and ψ̃j have N1 and N2

vanishing moments, respectively, for all j = 1, 2, · · · , r, where N,N2 ≤ N .
Then N1 = N2.

Proof. Since ψ̃j has N2 vanishing moments, we have

∫

R
xpψ̃j(x)dx = 0 for all 0 ≤ p ≤ N2 but

∫

R
xN2+1ψ̃j(x)dx 6= 0.(2.12)

By Equations (1.4), we obtain

∫

R
xpψ̃j(x)dx =

∫

R
xp

(
r∑

i=1

∑

l∈Z
dji(l)ψi(x− l)

)
dx

=
r∑

i=1

∑

l∈Z
dji

∫

R
xpψi(x− l)dx = 0

for all 0 ≤ p ≤ N1, since {dji(l)}l∈Z is absolutely convergent and ψj has the N1

vanishing moments. By (2.12), we have N1 ≤ N2. On the other hand, using
Equations (1.4) again we can get

ψj(x) =
r∑

i=1

∑

k∈Z
bji(k)ψ̃i(x + k), where bij(k) = ψi ∗ ψ∗j (k).

Similarly, we can prove that N2 ≤ N1. Hence N1 = N2. 2

Finally, we want to construct a multiresolution analysis of multiplicity 2
(see [6]).

Example 2.13. Let T n,r(Z) denote the space of cardinal B-spline func-
tions of degree n on R with integer knots of multiplicity r. Write V0 =
T n,r(Z)∩L2(R) for some integers n, r with 1 ≤ r ≤ n + 1. Let Nn,r

k denote
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the B-spline in T n,r(Z) with support on [tk, tk+n+1] and knots xk, · · · , xk+n+1,
where for j ∈ Z we define xk = j, jr ≤ k ≤ (j + 1)r − 1. In particular, we
assume that N3,2

0 and N3,2
1 belong to T 3,2(Z). It was shown (see [6]) that N3,2

0

and N3,2
1 are in C1(R) with support [0, 2] and the Fourier transformed vector

is

N̂2
3 (w) =

2
(2πiw)4

(
−15
2

+ 6πiw + (6 + 8πiw)e−2πiw + 3
2
e−4πiw

3
2

+ (6− 12πiw)e−2πiw − ( 15
2

+ 6πiw)e−4πiw

)
.

Thus, N̂2
3 (w) = O(w−2) as w → ∞. N3,2

0 and N3,2
1 belong to M(R). This

implies that N2
3 satisfies a 2-scale dilation equation. Also, N̂(w) = P (w

2
)N̂(w

2
),

where

P 2
3 (z) =

1
144

(
9z−1 + 128 + 9z 53z−1 + 80 + z
z−1 + 80 + 53z 9z−1 + 128 + 9z

)

and z = e−2πiw. Since Φ(w) =
∑

k∈Z N̂(w + k)N̂∗(w + k), we have

Φ2
3(z) =

1
560

(
9z−1 + 128 + 9z 53z−1 + 80 + z
z−1 + 80 + 53z 9z−1 + 128 + 9z

)
.

We know that Φ(w) is Hermitian and positive-semidefinite so that Φ(u) is
positive-definite since det Φ(w) = 1

560
( 53

2
cos(4πw) + 2160 cos 2πw + 9210) > 0

for all w. Hence, Φ(w) is positive-definite for all w. By Theorem 1.3, the
collection {N3,2

0 (· + k), N3,2
1 (· + k) : k ∈ Z} is a Riesz basis of V0. The dual

vector Ñ 2
3 of N2

3 can be defined by

Ñ2
3 := (Ñ3,2

0 , Ñ3,2
1 )T = Φ−1N 2

3

with (N3,2
j , TnÑ3,2

k ) = δj,kδn,0. In order to construct a compactly supported
spline wavelet of multiplicity 2 in W0 (see [5]), we first construct functions
gi, i = 0, 1, having support [0, 3] in the space U := {f ∈ T 7,2( 1

2
Z): f (i)(k) =

0, k ∈ Z, j = 0, 1} by defining

gi(x) =
4∑

j=0

cjN
7,2
i+j(2x),

where cj can be calculated from g
(j)
i (k) = 0, i, j = 0, 1, k ∈ Z. Applying the

differentiation recurrence relation for B-spline, we then define ψi ∈ W0, i =
0, 1, by letting

ψi(x) = g
(4)
i (x) =

8∑

j=0

djN
3,2
i+j(2x),

for some constants dj. The functions ψi, i = 0, 1, are also in M(R)∩C(R) and
ψ̂i(w) = O(w−2) as w →∞. 2

313
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