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ON THE EXISTENCE OF INVARIANT SUBSPACES
AND REFLEXIVITY OF N-TUPLES OF OPERATORS

Marek Ptak

Abstract. Recent results concerning the existence of a common non-
trivial invariant subspace and reflexivity for families of commuting linear
bounded Hilbert space operators will be presented; starting with the
families of linear transformations on finite dimensional space, through
families of isometries, jointly quasinormal operators and spherical isome-
tries, finishing with N -tuples of contractions with dominating spectra.

This paper is based On the notes for the series of lectures given in the De-
partment of Applied Mathematics, National Chiao Tung University, Hsinchu,
Taiwan, Republic of China in November and December of 1995.

1. Introduction

In what follows we will deal with N -tuples of commuting linear bounded
Hilbert space operators. Two problems will be considered:

(1) Existence of a Common Non-trivial Invariant Subspace – whether there
is a non-trivial (not equal to the whole space or the zero space) closed
subspace invariant for all operators from the N -tuple;
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(2) Reflexivity Problem–whether the lattice of all common invariant sub-
spaces for the N -tuple is so rich, that it determines the algebra gener-
ated by the N -tuple in the sense that any operators leaving invariant
all subspaces, which are invariant for the N -tuple, have to belong to the
smallest closed (in the weak operator topology) algebra containing the
N -tuple and the identity.

It is straightforward that if Reflexivity Problem has a positive answer then
so does the Existence of a Common Non-trivial Invariant Subspace Problem.

The second motivation for studying the Reflexivity Problem comes from
von Neumann algebras. The commutant of any von Neumann algebra is gen-
erated by all projections in the commutant. Since von Neumann algebra is
self–adjoint, it is generated by all its reducing projections. Thus, consider-
ing the N -tuple of operators and the smallest (non–selfadjoint) weak operator
topology closed algebra generated by them, it is natural to consider the set of
all invariant subspaces (invariant projections) instead of set of reducing projec-
tions. For a von Neumann algebra, we are considering the double–commutant,
the set of all operators which commute with all operators from the commutant,
in other words, which commute with all projections that reduce all operators
from the given von Neumann algebra. Moreover, the well–known double–
commutant theorem shows that the double–commutant of a von Neumann
algebra is equal to the algebra itself.

Thus, in the non–selfadjoint case, we can consider all operators which leave
invariant all subspaces which are invariant for a given N -tuple. Now, one can
ask whether such an operator belongs to the algebra generated by the given
N -tuple. In some sense we are asking whether this algebra fulfills the non–
selfadjoint version of the double commutant theorem.

The paper is generally based on the results from [2], [7]-[8], [13], [46]-[47],
[56]-[58]; however it also contains some new material.

1.1. The basic definition : invariant subspace, reflexive algebra,
reflexive space, reflexive operator, reflexive family.

Throughout this paper we will mostly deal with bounded operators on
a finite-dimensional or separable infinite-dimensional complex Hilbert space
H. Let S be a family of operators acting on a common Hilbert space H.
Then we denote by W(S) (respectively, A(S)) and S ′, the WOT ( = weak
operator topology)-closed (respectively, the weak star closed) subalgebra of
L(H) generated by S and the identity I and the commutant of S. The subspace
L ⊂ H is called invariant (respectively, hyperinvariant) for the family S if
TL ⊂ L for all operators T ∈ S (respectively, for all operators T ∈ S ′). Lat
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S will be the lattice of all (closed) invariant subspaces for S, and Alg Lat S is
as usual the algebra of all T ∈ L(H) such that Lat S ⊂ Lat T.

Let W be a WOT-closed algebra of operators containing the identity I. W
is said to be reflexive if it is determined by its lattice of invariant subspaces
in the sense that W =Alg Lat W. An individual operator T is called reflexive
if the operator algebra W(T ) it generates is reflexive. A family of operators S
is said to be reflexive if the algebra W(S) is reflexive.

Recall that an algebraA of operators has property A1(1) if for a given weak-
star continuous linear functional φ on L(H) and ε > 0, there are a, b ∈ H such
that ‖a‖ · ‖b‖ ≤ (1 + ε)‖φ‖ and φ(A) = (Aa, b) for all A ∈ A.

We say that a commutative set S ⊂ L(H) is doubly commuting (respec-
tively, almost doubly commuting) if ST ∗−T ∗S is a zero (respectively, compact)
operator for all S, T ∈ S with S 6= T . In particular, sets consisting of a single
operator are doubly commuting.

Let us recall an extension of the reflexivity concept originally due to A. I.
Loginov and V. I. Sulman [51]. The reflexive closure of an operator space S
⊂ L(H) is defined by RefS = {T ∈ L(H) : Tx ∈ Sx for all x ∈ H}. The
space S is called reflexive if S = RefS. When S is an algebra with identity,
then RefS = Alg LatS, and the current notion of reflexivity reduces to the
classical concept.

We will denote by C1(H) the ideal of trace-class operators on a Hilbert
space H. Recall that L(H)= C1(H)∗ and the duality is given by the form
< T, S >:= tr(TS) for T ∈ L(H), S ∈ C1(H).

1.2. Basic Theorems and Examples.

In this section we will present some basic theorems and examples about
reflexivity. The first result was proved in [66].

Theorem 1.2.1. Any algebra of normal operators is reflexive.

The following example shows that the problem is non-trivial even in the
finite-dimensional case.

Example 1.2.2. Let us consider the following algebras:

W1 =
{[

a b

0 a

]
: a, b ∈ C

}

and
W2 =

{[
a b

0 a

]
⊕ [a] : a, b ∈ C

}
.

One can easily see that W1 is not reflexive, but W2 is reflexive.
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In [66], it was also shown

Theorem 1.2.3. The shift operator is reflexive ((Sf)(z) = zf(z) for
f ∈ H2).

The result was extended in [34].

Theorem 1.2.4. Every isometry is reflexive.

The reflexive nilpotents in finite-dimensional spaces are completely char-
acterized [35].

Theorem 1.2.5. A nilpotent in the finite-dimensional space is reflexive
if and only if the two largest blocks in its Jordan decomposition differ no more
than one in size.

The following example shows that the question about reflexivity for N -
tuples is non-trivial.

Example 1.2.6. There is a pair {T1, T2} ⊂ L(H) of commuting operators
such that Ti is reflexive for i = 1, 2, but W(T1, T2) is not reflexive.

Let us consider H= C2 ⊕ C2 and define T1 =
[ 0 1
0 0

]⊕ [ 0 1
0 0

]
, T2 =

[ 1 0
0 1

]⊕[ 0 0
0 0

]
. It is straightforward that T1 and T2 commute. Moreover, T1 is reflexive

by Theorem 1.2.4 and T2 is reflexive as a normal operator (see Theorem 1.2.1).
It is easy to see that

W(T1, T2) =
{[

a b

0 a

]
⊕

[
c d

0 c

]
: a, b, c, d ∈ C

}
.

On the other hand, one can check that

Lat(T1T2, I − T2) = {L1 ⊕ L2 : L1 ∈ {{0}} ⊕ {0},C⊕ {0},C⊕ C}
and L2 is any subspace of C2}

Similarly,

Lat(T1(I − T2), T2) = {L1 ⊕ L2 : L1 is any subspace of C2

and L2 ∈ {{0} ⊕ {0},C⊕ {0},C⊕ C}}.
Hence

Lat(T1, T2) ⊂ Lat(T1T2, I − T2) ∩ Lat(T1(I − T2), T2)

= {{0} ⊕ {0} ⊕ {0} ⊕ {0}, {0} ⊕ {0} ⊕ C⊕ {0}, {0} ⊕ {0} ⊕ C⊕ C,

C⊕ {0} ⊕ {0} ⊕ {0},C⊕ {0} ⊕ C⊕ {0},C⊕ {0} ⊕ C⊕ C,

C⊕ C⊕ {0} ⊕ {0},C⊕ C⊕ C⊕ {0},C⊕ C⊕ C⊕ C}.
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The other inclusion is trivial. Now it is easy to see that

Alg Lat(T1, T2) =
{[

a b

0 s

]
⊕

[
c d

0 t

]
: a, b, c, d, s, t ∈ C

}
.

Hence AlgLat(T1, T2) is larger than W(T1, T2).
We will finish this section with a proposition from [5], which will allow

more substantial applications later.

Proposition 1.2.7. Every one-dimensional operator space is reflexive.

2. On The Reflexivity of N-Tuples of Operators on a
Finite-Dimensional Space.

In their paper [35], J. Deddens and P. Fillmore characterized reflexive
operators in terms of their Jordan Canonical Forms. In this section we will
present the multi-operator extensions of their results. We would like to stress
the role of rank-two operators.

The first step in the Deddens-Fillmore analysis is the reduction to the
nilpotent case. A similar procedure is possible in the multi operator setting,
but we have chosen to postpone the argument to Section 2.6 and concentrate
on commuting families of nilpotents in the main discussion.

However, in this section we are mostly dealing with finite-dimensional case
and we are oriented to the Hilbert space operators. Some part of the following
section, especially part of Theorem 2.1 below, does not need the Hilbert space
structure. So all operators can be considered on the vector space V . The
definition of reflexivity itself does not need the Hilbert space structure and all
subspaces in the finite-dimensional vector space are closed, so in the definition
of reflexivity of the algebra A the elements of LatA are allowed to be not
necessarily closed. This is a topological free version of reflexive algebras. For
finite-dimensional algebras they are equivalent. Since, in this section, we will
mostly deal with finite-dimensional spaces we will use a small letter to denote
an operator (linear transformation).

Analyzing the Deddens-Fillmore condition, as will be made in Section 2.1,
can lead us to the connection between block sizes and operators of rank two.

Theorem 2.1. Suppose A is an operator algebra generated by a commuting
family of nilpotents. Then, in order for A to be reflexive, it is necessary
that each rank-two member of A generates a one-dimensional ideal. If the
underlying vector space is a finite-dimensional Hilbert space and the generators
for A commute with each other’s adjoints, then this condition is also sufficient.
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As will be seen, for the necessity in the above theorem, the underlying
vector space need not even be finite-dimensional. The theorem is true in both
versions of reflexivity, topological and topological free.

It is possible to apply Theorem 2.1 directly to concrete examples. Thus,
one can see that the algebra








α β γ δ
α γ

α β
α


⊕




α β ε
α β

α


⊕

(
α γ

α

)
: α, β, γ, δ, ε,∈ C





(*)

is reflexive, but the algebra








α β γ δ
α γ

α β
α


⊕




α β ε
α β

α


⊕

(
α β

α

)
: α, β, γ, δ, ε,∈ C





(**)

is not reflexive (missing entries are assumed to be zero). In Section 2.5 we will
study such examples in more details in order to illustrate the full strength of
Theorem 2.1. In the process, we present the original and more easily applica-
ble version of the theorem. In order to simplify the notation, we concentrate
on doubly commuting pairs (a, b) of nilpotents. For our simultaneous Jor-
dan form, we consider direct sum decompositions of (a, b). As in the single
operator case, the sizes of these direct summands provide a complete set of
invariants for these pairs. We store this information in a finite “Jordan se-
quence” (m1, n1), · · · , (nk,mk); precise definitions are given in Section 2.5.

This leads to the following concrete version of Theorem 2.1 for pairs of
operators. It reduces to the Deddens-Fillmore result when b = 0.

Theorem 2.2. Suppose (a, b) is a doubly commuting pair of nilpotents
acting on a finite-dimensional Hilbert space with Jordan sequence (m1, n1), · · · ,
(mk, nk). Then the algebra A(a, b) generated by a, b is reflexive if and only if
for each index i,

(1) if mi ≥ 2, we call find j 6= i with mj ≥ mi − 1 and nj ≥ ni, and
(2) if ni ≥ 2, we can find j 6= i with nj ≥ ni − 1 and mj ≥ mi.
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2.1. The single operator case.

The present section is motivational, formal proofs being omitted as these
results are consequences of Theorem 2.5.2. We begin by recalling the Deddens-
Fillmole result. A nilpotent operator is said to be simple if its Jordan form
consists of a single block.

Theorem 2.1.1. Let a1, a2 be nilpotents of orders m1 ≥ m2 respectively.

(1) If m1 and m2 differ by at most one, then a1 ⊕ a2 is reflexive.
(2) If a1 is simple and m1 and m2 differ by more than one, then a1 ⊕ a2 is

not reflexive.

Let a be nilpotent. Apply the Jordan Canonical Form Theorem to write
a = ⊕k

i=1ai, where the direct summands are simple. It is convenient to assume
that k ≥ 2; this can always be accomplished by including a direct summand
acting on a zero-dimensional space (considered to have order zero) in the
decomposition. Theorem 2.1.1 immediately tells us whether a is reflexive
in terms of the orders m1, · · · , mk (not necessarily monotone) of the blocks
a1, · · · , ak. Indeed, it is clear that a is reflexive if and only if the following
condition holds:

(0) The orders of the two largest blocks differ by at most one.

It will be useful to have several alternate versions of (0). We aim for
characterizations which generalize naturally to the multi-operator case. One
of the difficulties we face is that there is no natural ordering on pairs of natural
numbers.

The following immediate restatement of (0) is the single-operator version
of the condition in Theorem 2.2:

(1) For each i, if mi ≥ 2 then there is some j 6= i with mj ≥ mi − 1.

Next, suppose (0) holds, write m for the order of a, and consider the rank
of am−2. Each block of order m in the Jordan decomposition of a contributes
2 to this rank, while each block of order m − 1 contributes 1. Thus we must
have rank (am−2) > 2. A fortiori, the ranks of smaller powers of a must also
exceed 2. Moreover, the rank of any polynomial in a is determined by its term
of lowest degree. In other words, the only members of A(a) which are allowed
to have rank two are scalar multiples of am−1. Observing that no block of
am−1 can have rank two, we are led to the following version of (0):

(2) If c = ⊕k
i=1ci ∈ A(a) has rank two, then ci 6= 0 for two values of i.
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The following reformulation has the advantage of not depending on the
decomposition:

(3) If c ∈ A(a) has rank two, then cA(a) is one-dimensional.

Complete proofs of the equivalence of (0), (1), (2), (3) will follow from the
multioperator case considered in Section 2.5.

2.2. The role of rank-two operators.

In this section, we prove necessity in Theorem 2.1 and present some related
examples. There is no restriction on the dimension of the underlying vector
space. We also recall two basic properties of nilpotent operators.

Lemma 2.2.1. Let a be nilpotent and suppose c is a non-zero operator of
finite rank commuting with a. Then rank(a c) < rank(c).

Proof. We know that ran(a c) ⊆ ran(c). If this inclusion was not proper,
we would have ran(an c) = ran(c) for all n. But this is ruled out by the
nilpotence of a.

Given x in V and φ in the dual space V
′
, we write x · φ for the operator

on V defined by (x · φ)z = φ(z)x for z ∈ V . This is the zero operator if x = 0
or φ = 0. Otherwise x · φ has rank one, and it is clear that x spans its range
and it has the same kernel as φ. Moreover, every rank-one operator has this
form.

Lemma 2.2.2. If b is a nilpotent commuting with the rank-one operator
x · φ, then bx = 0.

Proof. Applying Lemma 2.2.1, we have (b x) · φ = b(x · φ) = 0 and the
conclusion follows since φ 6= 0.

Consider the simplest non-reflexive algebra
{(

λ µ
0 λ

)
: λ, µ ∈ C

}
. Note that

the identity operator, which is of rank two, does not generate a one dimensional
ideal. The following proposition (the necessity in Theorem 2.1) shows that this
is enough to prevent reflexivity.

Proposition 2.2.3. Suppose A is a reflexive algebra generated by commut-
ing nilpotents. Then each c ∈ A of rank two must generate a one-dimensional
ideal.

Proof. Assume that c ∈ A has rank two, but fails to generate a one-
dimensional ideal. Thus, there is some b ∈ A, such that b c is independent of
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c. Subtracting a multiple of the identity from b if necessary, we can assume that
b is a nilpotent whence rank (c b) = 1 by Lemma 2.2.1. Choose x ∈ V, φ ∈ V

′

with c b = x·φ. Write c = x·ψ+w ·ξ for appropriate w,ψ, ξ. Since b commutes
with c b = x · φ, we have bx = 0 by Lemma 2.2.2. Hence b c = b w · ξ = x · φ.
This forces ξ to be a scalar multiple of φ, so, changing w if necessary, we can
write c = x · ψ + w · φ.

We will complete the proof by showing that the rank-one operator x · ψ
belongs to Ref(A) but not to A. For the first assertion, note that for y 6∈ ker
φ, we have (x · ψ)y = ψ(y)

φ(y)
bcy, while for y ∈ ker φ, we get (x · ψ)y = cy.

Suppose, on the other hand, that x · ψ ∈ A. Then b commutes with x · ψ.
Moreover, since we already know that b commutes with c, we also learn that b
commutes with w · φ. But then Lemma 2.2.2 yields b x = bw = 0 which leads
to the contradiction b c = 0.

Example 2.2.4. The nilpotent matrices
( 0 1

0 0

)
and

( 0 0
1 0

)
generate the full

algebra of two-by-two matrices. Since this is a reflexive algebra whose rank-
two member

( 1 0
0 1

)
does not generate a one-dimensional ideal, it is not possible

to drop the commutativity hypothesis in Proposition 2.2.3.

Example 2.2.5. To see that the condition in Proposition 2.2.3 does not
guarantee reflexivity, fix a subspace S of L(V ) with dim V ≥ 2 and take

A=

{(
λI a
0 λI

)
: a ∈ S

}
. Then the algebra A is commutative and each of

its rank-two members generates a one-dimensional ideal. On the other hand,
if S is not reflexive (for example, the algebra mentioned before Proposition
2.2.3), then neither is A. See for example [5], [9].

For a more striking example, apply [5, Proposition 3.7] to get an operator
space T which is not 3-reflexive and take S to be a three-fold copy of T . Then
the resulting algebra A fails to be reflexive even though it has no rank-two
members.

2.3. Reflexivity of subdirect sums.

From now on to the end of Section 2, all underlying vector spaces are
assumed to be finite-dimensional. It is easy to see that a full direct sum
S=S1 ⊕ · · · ⊕ Sk of operator spaces is reflexive if and only if each of its direct
summands is reflexive, but in general there is no relationship between the re-
flexivity of S and its various subspaces. This is unfortunate, since algebras
generated by direct sums of operators are usually not full direct sums of alge-
bras. Proposition 2.3.2 below provides a tool for dealing with this situation.

A vector x ∈ V is called separating for the subspace S⊂ L(V ) if the map
s → s x is injective on S. It is easy to see that the existence of separating
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vectors survives the taking of direct sums. It follows that each singly generated
algebra has a separating vector. In particular, existence of separating vectors
does not guarantee reflexivity. We do, however, have the following basic result;
see [5, Propositions 2.9, 3.2] for a proof.

Proposition 2.3.1. Suppose a subspace S of L(V ) is reflexive and has a
separating vector. Then every subspace of S is reflexive.

The following proposition will be used to establish the sufficiency in The-
orem 2.1. An operator a = a1 ⊕ · · · ⊕ ak in L(V1) ⊕ · · · ⊕ L(Vk) is said to be
supported on Vi if aj = 0 for all j 6= i.

Proposition 2.3.2. For each i = 1, · · · , k, let Si ⊂ L(Vi) be an operator
space with a separating vector xi. Suppose T is a subspace of S1 ⊕ · · · ⊕ Sk,
and for each i, write T i = {a ∈ T : a is supported on Vi}. Then T is reflexive
if and only if each T i is reflexive.

Proof. We assume k ≥ 2 to avoid trivialities. Note first that x = x1⊕· · ·⊕
xk is a separating vector for S1 ⊕ · · · ⊕ Sk. For the necessity, observe that x
must also separate T , whence the reflexivity of each T i follows from that of
T by Proposition 2.3.1.

For the sufficiency, suppose c = c1⊕· · ·⊕ck ∈ Ref T . Since c x ∈ T (x), by
subtracting an appropriate member of T from c if necessary, we may as well
assume that c x = 0. We will show that c1 = 0 whence c = 0 by symmetry,
completing the proof.

Write c = c2 ⊕ · · · ⊕ ck and x = x2 ⊕ · · · ⊕ xk. Given y ∈ V1, we must
have (c1 ⊕ c(y ⊕ x) = (sy ⊕ ty)(y ⊕ x) for some operator sy ⊕ ty ∈ T . This is
equivalent to the two conditions

0 = c x = tyx and c1 y = sy y.

Since x is separating, we first see that ty = 0, which means that sy ⊕ 0 ∈ T 1.
The arbitrariness of y thus yields c1 ⊕ 0 ∈ Ref T 1. Since T 1 is reflexive, we
have c1 ⊕ 0 ∈ T 1. Since x1 ⊕ 0 separates T 1 and c1 x1 = 0, we get c1 = 0 as
desired.

We conclude this section with a trivial instance of Proposition 2.3.2.

Corollary 2.3.3. If a1, a2 are nilpotents of the same order, then a1 ⊕ a2

is reflexive.

Proof. Take Si to be the algebra generated by ai and T the algebra.
generated by a1 ⊕ a2. Apply Proposition 2.3.2, noting that T i = T 2 = {0}.
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2.4. Necessary and sufficient conditions for the reflexivity of doubly
commuting N-tuples of nilpotents.

The first two propositions in this section record well-known facts; the sec-
ond motivates our definition of simple N -tuple and is a special case of Propo-
sition 2.4.4 below.

Proposition 2.4.1. Let A ⊂ L(V ) be a commutative algebra having a
cyclic vector x. Then

(1) x is also a separating vector for A, and

(2) for each c ∈ A, the rank of c is equal to the dimension of the ideal cA.

Proof. To see (1), note that by the commutativity of A, if the cyclic vector
x belongs to the kernel of an operator in A, the whole space V is contained
in that kernel. For (2), observe that the map a → a x defines a vector space
isomorphism betweenA and V ; for each c ∈ A it maps the ideal cA to range(c).

Proposition 2.4.2. Let a ∈ L(V ) be nilpotent. Then the following are
equivalent:

(1) the trivial operators 0 and I are the only idempotents commuting with
a,

(2) the Jordan form of a is a single block,

(3) A(a) has a cyclic vector.

Suppose a = (a1, · · · , aN) and b = (b1, · · · , bN) are N -tuples of operators
acting on vector spaces V and W , respectively. Then we say a is similar to
b if there is an invertible operator s ∈ L(V,W ) satisfying bi = sais

−1 for
i = 1, · · · , N .

All operators in the remainder of this section act on finite-dimensional
Hilbert spaces. Recall that an N -tuple a = (a1, · · · , aN) of operators is doubly
commuting if aiaj = ajai and aia

∗
j = a∗jai for each i 6= j. The condition

is equivalent to requiring that the von Neumann algebras generated by the
individual operators commute with each other.

An N -tuple a = (a1, · · · , aN) of doubly commuting nilpotents is called
simple if there are no non-trivial idempotents commuting with all of them.

Example 2.4.3. Let ãi act on a Hilbert space Vi for i = 1, · · · , N and form
the tensor product space V = V1⊕ · · · ⊕VN . Define ai = I ⊕ · · · ⊕ ãi⊕ · · · ⊕ I.
Then a = (a1, · · · , aN) is doubly commuting.
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In order for a = (a1, · · · , aN) to be simple, it is necessary that the von
Neumann algebras generated by the ãi are factors. The condition fails to be
sufficient even when N = 1, not only because commuting projections may fail
to be central, but also because non-self-adjoint idempotents must be taken
into account.

Proposition 2.4.4. Let a = (a1, · · · , aN) be a doubly commuting N -tuple
of nilpotents acting on a Hilbert space V . Then the following are equivalent:

(1) a = (a1, · · · , aN) is simple,

(2) a = (a1, · · · , aN) takes the form of Example 2.4.3 with each ãi being
simple,

(3) A(a1, · · · , aN) has a cyclic vector.

Proof. (1) =⇒ (2). The precise meaning of (2) involves a unitary map
between the underlying Hilbert spaces. We argue by induction. If N = 1, there
is nothing to prove. If N ≥ 2, then the von Neumann algebra N (a1) generated
by a1 must be a type I factor. Thus there are Hilbert spaces V1 and K, and a
unitary map U : V → V1⊕K such that UN (a1)U−1 = L(V1)⊕C IK . There is
no harm in suppressing U and assuming N (a1) = L(V1) ⊕ C Ik, whence a1 =
ã1 ⊕ IK . By double commutativity, the von Neumann algebra N (a2, · · · , aN)
generated by a2, · · · , aN is contained in IV1 ⊕ L(K). In particular, ã1 must
be simple since q ⊕ IK will commute with each ai whenever q commutes with
ã1. The decomposition is completed by applying the inductive hypothesis to
N (a2, · · · , aN).

(2) =⇒ (3). For each i = 1, · · · , N , choose a cyclic vector xi for A(ãi) and
take x = x1 ⊕ · · · ⊕ xN .

(3) =⇒ (1). Suppose q is an idempotent commuting with a1, · · · , aN and
x is a cyclic vector for A(a). Then there is c ∈ A(a) with q x = c x. But then
ker(q − c) contains all of A(a)x, so q = c belongs to A(a). Since 0 is the only
operator which is simultaneously idempotent and nilpotent, we conclude that
q = 0 or I, as desired.

Proposition 2.4.5. Suppose a = (a1, · · · , aN) is a simple N -tuple of
doubly commuting nilpotents and c ∈ A(a).

(1) All rank-one members of A(a) are scalar multiples of one other.

(2) If rank(c) = 2, then cA(a) is two-dimensional.

(3) If rank(c) ≥ 2, then cA(a) contains a member of rank two.
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Proof. To establish (1), write ni for the order of ai, and set ak = ak1
1 · · · akN

N

for each N -tuple k = (k1, · · · , kN) of natural numbers. Suppose c =
∑

λka
k

has rank one. Lemma 2.2.1 tells us that aic = 0 for each i. But, in view of
Proposition 2.4.4 (2), we know that the operators ak for all k = (k1, · · · , kN)
with 0 ≤ ki ≤ ni − 1 are linearly independent. Thus, λk = 0 whenever
ki ≤ ni − 2. This forces c to be a scalar multiple of an1

1

1 · · · anN−1
N .

Part (2) is a consequence of Propositions 2.4.4 and 2.4.1(2).
We prove (3) inductively. Given rank(c) > 2, Proposition 2.4.1(2) yields

dim cA(a)> 2 as well. On the other hand, A(a) is spanned by its nilpotent
members and I. Thus there are nilpotent members b, d of A(a) such that
cb, cd are independent. By Part (1) of the present proposition, at least one of
these, say cd, has rank greater than one. Lemma 2.2.1 thus makes it possible
to apply the inductive hypothesis to cd.

In general, similarities destroy double commutativity. Note however that
tensor products of similarities on the underlying spaces Vi preserve double
commutativity of the operators ai of Example 2.4.3. This will be important
in the following proof.

Proposition 2.4.6. Every N -tuple a = (a1, · · · , aN) of doubly commuting
nilpotents is similar to an orthogonal direct sum of simple N -tuples.

More precisely, there is a doubly indexed family {aij : i = 1, · · · , N ; j =
1, · · · , k} of nilpotents such that

(1) (a1j, · · · , aNj) is a simple N -tuple for each fixed j, and
(2) the original operators ai are simultaneously similar to the orthogonal

direct sums ⊕k
j=1aij,

Proof. The von Neumann algebras N (a1), · · · ,N (aN) commute, so any
self-adjoint Projection in the center of one of them wi11 automatically com-
mute with all of them. Doing a preliminary orthogonal decomposition we may
thus assume all theN (ai) to be factors. But then the proof of Proposition 2.4.4
((1) =⇒ (2)) a11ows us to write V = V1⊕· · ·⊕VN and ai = I⊕· · ·⊕ ãi⊕· · ·⊕I
except that the ãi need not be simple. Now the Jordan Canonical Form The-
orem tells us that each ãi is similar to an orthogonal direct sum of simple
operators. Putting these similarities together, we can assume that the ãi are
themselves orthogonal direct sums of simple operators. The proof is completed
by “splitting” these direct sums.

The sufficiency part of Theorem 2.1 can be stated as follows.

Theorem 2.4.7. Suppose a = (a1, · · · , aN) is an N -tuple of doubly com-
muting nilpotents acting on a finite-dimensional Hilbert space V . If every
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rank-two member of A(a) generates a one-dimensional ideal, then A(a) is
reflexive.

Proof. Apply Proposition 2.4.6 to write ai = ⊕k
j=1aij where, for each j,

the N -tuple (a1j, · · · , aNj) acting on Vj is simple. For each j, take Sj to be
A(a1j, · · · , aNj) and set T = {c ∈ A(a): c is supported on Vj}. Concentrating
on j = 1 to simplify the notation, observe that every member of T 1 takes the
form c1 ⊕ 0 with c1 belonging to the algebra S1. Applying Proposition 2.4.5
(2) and the hypothesis, we conclude that c1 cannot have rank two. By Part
(3) of the same Proposition, the rank of c1 cannot exceed one. Finally Part
(1) of the same Proposition implies that all such c1 are scalar multiples of
one another. By symmetry, each T j is one-dimensional, and hence reflexive
by Proposition 1.2.7. We complete the proof by applying Proposition 2.3.2 to
T = A(a1, · · · , aN).

2.5. Jordan forms for doubly commuting pairs of nilpotents.

In the plesent section, we will prove Theorem 2.2 and discuss some of its
applications. In order to simplify the notation we restrict attention to pairs
of operators, but generalization to arbitrary N -tuples is routine. The order of
a pair (a, b) of nilpotents is the pair of integers (order(a), order(b)).

We refer to the sequence of block sizes of a Jordan Canonical Form of an
operator as a Jordan sequence for the operator; up to permutation, Jordan
sequences provide a complete similarity invariant for single operators. Propo-
sition 2.4.6 allows us to extend this notion to doubly commuting operator
pairs.

Indeed, given a doubly commuting pair (a, b), apply Proposition 2.4.6 to
obtain direct sums ⊕k

i=1ai, ⊕k
i=1bi which are simultaneously similar to a, b

such that for each i, the doubly commuting pair (ai, bi) is simple and acts
on a Hilbert space Vi. Write (mi, ni) for the order of the simple pair (ai, bi).
The finite sequence (m1, n1), · · · , (mk, nk) is referred to as a Jordan sequence
of (a, b). Up to permutation, these sequences provide a complete similarity
invariant for doubly commuting pairs.

Lemma 2.5.1. Let (a, b) be a simple pair with order (m,n) and suppose
c ∈ A (a, b). Then

(1) rank(c) ≤ 1 if and only if c is a scalar multiple of am−1bn−1,

(2) rank(c) ≤ 2 if and only if c is a linear combination of am−2bn−1, am−1bn−2

and am−1bn−1.

Proof. (1) is a consequence of Propositions 2.4.5 and 2.4.1 (2).
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For the sufficiency of (2), observe that if c takes this form, then ac and bc
are both scalar multiples of am−1bn−1, so dim(cA(a, b)) ≤ 2. Thus rank(c) ≤ 2
by Proposition 2.4.1(2).

For the converse, suppose c =
∑m−1,n−1

i,j=0 λija
ibj has rank two. By Lemma

2.2.1, we have rank(ac) < rank(c) = 2. Applying part (1), ac =
∑m−1,n−1

i,j=0 λij

ai+1bj = αam−1bn−1 for some α ∈ C. Thus λij = 0 for i < m−2 and λm−2,j = 0
for j < n− 1. By symmetry, we have the desired form.

Lemma 2.5.1 admits a partial generalization in that every c ∈ A(a, b) of
rank r or less must be a linear combination of {am−ibn−j : 0 < i, 0 < j, i+ j ≤
r +1}. To see that the condition is not sufficient, note that if (a, b) is a simple
pair of order (2,2) then A(a, b) does not contain any members of rank three.

When b = 0, the first three conditions of the following theorem reduce to
the corresponding conditions of Section 2.2. The equivalence of (1) and (4) is
Theorem 2.2.

Theorem 2.5.2. Suppose (a, b) is a doubly commuting pair with corre-
sponding Jordan sequence (m1, n1), · · · , (mk, nk). Then the following are equiv-
alent:

(1) For each index i,

if mi ≥ 2, we can find j 6= i with mj ≥ mi − 1 and nj ≥ ni, and

if ni ≥ 2, we can find j 6= i with nj ≥ ni − 1 and mj ≥ mi.
(2) If c = ⊕k

i=1ci ∈ A(a, b) has rank 2, then ci 6= 0 for two values of i.
(3) If c ∈ A(a, b) has rank 2, then cA(a, b) is one-dimensional.
(4) A(a, b) is reflexive.

Proof. (1) =⇒ (2). Arguing contrapositively, assume for definiteness that
c = c1⊕0 in A(a, b) has rank two and is supported on V1. Write c =

∑
λhla

hbl.
On the one hand,

∑
λhla

h
1b

l
1 has rank two, so in view of Lemma 2.5.1(2), we

may as well assume that λm1−2,n1−1 6= 0. On the other hand, for j 6= 1, the
vanishing of cj forces mj ≤ m1 − 2 or nj ≤ n1 − 1. This means that (1) fails
for i = 1 and completes the proof.

(2) =⇒ (3). Suppose c ∈ A(a, b) has rank 2. By (2), we may assume
c = c1⊕c2⊕0 with c1, c2 of rank 1. By Lemma 2.2.1, we have a1 c1 = a2 c2 = 0,
so a c = 0. Similarly, bc = 0. Thus cA(a, b) is one-dimensional.

(3) ⇐⇒ (4). These are Theorems 2.4.7 and 2.2.3.
(3) =⇒ (1). Suppose m1 ≥ 2. By Lemma 2.5.1, the rank of the operator

am1−2
1 bn1−1

1 is precisely two and hence by Proposition 2.4.1(2), it generates
a two-dimensional ideal. The assumption (3) rules out the possibility that
am1−2bn1−1 be supported on V1 . In other words, mj > m1−2 and nj > n1−1
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for some j 6= 1. This establishes the first half of (1) when i = 1 and the rest
follows by symmetry.

It is convenient to call the pair (mi, ni) majorized if Condition (1) of The-
orem 2.5.2 is fulfilled for the index i. The discussion of examples is also
facilitated by calling a Jordan sequence reflexive if the corresponding operator
algebra is reflexive. As the first application of Theorem 2.5.2, we review the
examples given in the introduction to Section 2.

Example 2.5.3. The algebra denoted by (∗) is generated by a pair with
Jordan sequence (2,2), (3,1), (1,2), while a generating pair for the algebra (∗∗)
has Jordan sequence (2,2), (3,1), (2,1). It is easy to check that each term
in the first sequence is majorized, but the term (2,2) has no majorant in the
second sequence.

The next two results apply Theorems 2.1 and 2.2 to tensor products.

Proposition 2.5.4. Suppose a, b are nilpotent Then A(a⊕ b) is reflexive.

Proof. Suppose c = p(a⊕b) ∈ A(a⊕b) has rank two. Factor the polynomial
p to obtain p(X) = Xkq(X), with q(0) 6= 0. Then q(a⊕ b) is invertible, so in
fact (a⊕ b)k has rank two. But then (rank(ak))(rank(bk)) = 2. In particular,
either ak or bk has rank one. In either case, c(a⊕b) = (ak+1⊕bk+1)q(a⊕b) = 0.
Therefore, c generates a one-dimensional ideal and Theorem 2.1 applies.

The operators c, d appearing in the next result are not assumed to be
simple.

Corollary 2.5.5. Suppose c, d are nilpotent operators. If c and d are
reflexive, then the algebra A(c⊕I, I⊕d) is reflexive. If the two largest members
of the Jordan sequence of c or d are the same, then the algebra A(c⊕ I, I⊕d)
is reflexive. In all other cases, the algebra A(c⊕ I, I ⊕ d) is not reflexive.

Proof. The Jordan sequence of (c ⊕ I, I ⊕ d) is the kartesian product of
the Jordan sequences of c and d. Let m1 ≥ m2 and n1 ≥ n2 denote the two
largest terms in the Jordan sequences of c and d, respectively. All elements
of the Jordan sequence of (c ⊕ I, I ⊕ d) except (m1, n1) are majorized. The
remaining term (m1, n1) is majorized in precisely the following situations:

(1) m1 = m2 or
(2) n1 = n2 or
(3) m1 = m2 + 1 and n1 = n2 + 1.
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These correspond to the cases listed in the statement of our corollary.

Example 2.5.6. In the single operator case, there are always at least
three singleton sequences whose concatenations with a given Jordan sequence
produce reflexive sequences. For example, the singleton sequence 5 can be
lengthened to the reflexive sequellces 5, 4; 5, 5; and 5, 6. On the other
hand, the only two-term reflexive extension of the Jordan sequence (5,7) is
(5,7), (5,7). Even the three-term reflexive extensions of (5,7) are limited. For
example, only the first of the following four extensions of (5,7) is reflexive:

(4, 7), (5, 7), (5, 6); (4, 6), (5, 7), (5, 6); (5, 8), (5, 7), (5, 6); (6, 6), (5, 7), (8, 4).

Example 2.5.7. The Jordan sequence (1,10), (2, 9), (3, 8), (4, 7), (4,
6) represents a reflexive pair and it is minimal in the sense that none of its
proper subsequences is reflexive. This contrasts with the single operator case,
where discarding all but the two largest terms of a Jordan sequence does not
affect reflexivity.

2.6. Generalizations and non-nilpotent case.

The first topic of this section is a Hilbert space free version of Theorems
2.1 and 2.2.

The reader is referred to [3] for the background in ring theory, in particular
for the Wedderburn Structure Theory used below. We recall the relevant
definitions here. A left module over a ring is said to be simple if it has no
non-trivial submodules; it is semisimple if it can be expressed as a direct sum
of simple modules. A ring is simple if it has no non-trivial two-sided ideals; it
is semisimple if it is semisimple when regarded as a left module over itself.

We need the following well-known fact.

Proposition 2.6.1. An operator algebra is semisimple if and only if it is
similar to a von Neumann algebra.

Proof. Let B be a subalgebra of L(V ). From the ring-theoretic point of
view, the underlying vector space V is a (faithful, left) module over B. It
is clear from the definitions that simplicity and semisimplicity are invariant
under similarity. Since we are restricting attention to finite-dimensional vector
spaces, B is semisimple if and only if it is a direct sum of simple operator
algebras.

It is easy to check that the full algebra L(V ) is simple. The proof of the
sufficiency is completed by appealing to the known structure of von Neumann
algebras as direct sums of factors.
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For the converse, recall that the only finite-dimensional division algebra
over the complex numbers is C itself. Suppose first that B is a simple operator
algebra. The Wedderburn Structure Theorems then tell us that B is ring iso-
morphic to some full operator algebra L(W ); in fact, B is spatially isomorphic
(i.e. similar) to L(W ) ⊕ CIK for some auxiliary vector space K. The last
algebra can be made into a von Neumann algebra by introducing an appropri-
ate inner product on the underlying space W ⊕K. To complete the proof for
semisimple, B apply the preceding construction to its direct summands, taking
care to define the inner product to make its corresponding direct summands
of the underlying space mutually orthogonal.

An N -tuple a = (a1, · · · , aN) of operators, acting on a common vector
space, is called semisimple if the ai belong to mutually commuting semisimple
algebras.

A semisimple N -tuple a = (a1, · · · , aN) of nilpotents is called simple if only
the trivial idempotents commute with all of them.

The following are immediate consequences of Proposition 2.6.1.

Corollary 2.6.2. An N-tuple a = (a1, · · · , aN) of nilpotents is semisimple
if and only if it is similar to a doubly commuting N -tuple.

Proposition 2.6.3. Theorems 2.1, 2.2, 2.4.7, and 2.5.2 remain valid
when the assumption of double commutativity is replaced by semisimplicity.

Our final generalization of Theorem 2.1 removes the hypothesis of nilpo-
tence.

Theorem 2.6.4. In order for a commutative operator algebra A to be re-
flexive, it is necessary that for each rank-two member c, there is an idempotent
q ∈ A such that qc generates a one-dimensional ideal. If the underlying vector
space is finite-dimensional and A has a set of generators belonging to mutually
commuting semisimple algebras, then this condition is also sufficient.

Proof. All properties mentioned in this theorem hold for a full direct sum
of operator algebras if and only if they hold for each direct summand. Thus,
we may as well assume that A contains only the trivial idempotents. In the
latter situation, however, the theorem reduces to the Hilbert space free version
of Theorem 2.1.

Remark 2.6.5. In Proposition 2.5.4, we showed that the tensor product of
two nilpotent operators is always reflexive. As discussed in [50], the situation is
much more complicated when the hypothesis of nilpotence is dropped. From
the point of view of Theorem 2.6.4, the problem arises from the failure of
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idempotents in A(a ⊕ b) corresponding to points in σ(a ⊕ b) to be simple
tensor products of idempotents in A(a) and A(b).

3. Joint Spectra for N-tuples of Operators

This section and the following one deal with operators on infinite-dimensional
separable Hilbert spaces.

3.1. Left and right spectra.

Before we state definitions, we would like to recall well-known facts. The
first one can be found in [33] and the second one can be proved using similar
arguments as in [40, Theorem 1.1] and [22, Lemma 2.3], where the equivalence
was shown for one single operator.

Lemma 3.1.1. If T1, . . . , TN ∈ L(H) commute, then the following are
equivalent:

(1) There exists δ > 0 such that ‖T1x‖+ · · ·+ ‖TNx‖ ≥ δ‖x‖ for all x ∈ H.

(2) There exist S1, . . . , SN ∈ L(H) Such that S1 T1 + · · ·+ SN TN = I.

(3) There is no sequence {xn} ⊂ H with ‖xn‖ = 1 such that limn→∞‖Tixn‖ =
0 for i = 1, . . . , N .

Lemma 3.1.2. If T1, . . . , TN ∈ L(H) commute, then the following are
equivalent:

(1) There exists δ > 0 such that ‖T1x‖ + · · · + ‖TNx‖ ≥ δ‖x‖ for all x on
the orthogonal complement of some finite-dimensional subspace.

(2) There exist S1, . . . , SN ∈ L(H) such that S1 T1 + · · · + SN TN − I is a
projection on a finite-dimensional subspace.

(3) There exist S1, . . . , SN such that S1 T1 + · · · + SN TN − I is a compact
operator.

(4) If P is a projection such that T1P, . . . , TNP are compact, then P is finite-
dimensional.

(5) There is no orthonormal sequence {xn} with limn→∞‖Tixn = 0 for i =
1, . . . , N .

(6) There is no sequence {xn} with xn → 0 weakly and ‖xn‖ = 1 such that
limn→∞‖Tixn‖ = 0 for i = 1, . . . , N .
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For commuting operators T1, . . . , TN on H, we will call T1, . . . , TN joint
left invertible if there exist S1, . . . , SN such that S1 T1 + · · · + SN TN = I.
Recall that λ = (λ1, . . . , λN) belongs to the joint left spectrum σl(T1, . . . , TN)
(sometimes called joint approximate point spectrum) if and only if λ − T =
(λ1−T1, . . . , λN −TN) is not left invertible. The negations of the conditions in
Lemma 3.1.1 above give equivalent conditions for the left spectrum. If N = 1
then we obtain classical approximate point spectrum denoted by σap(T ).

Denote by C(H) the Calkin algebra and by π the quotient map π : L(H) →
C(H). Recall that the joint left essential spectrum σle(T1, . . . , TN) of T1, . . . , TN

is defined as the joint left spectrum of π(T1), . . . , π(TN). The negations of
the conditions in Lemma 3.1.2 above give equivalent conditions for left es-
sential spectrum. The most common definition is that λ = (λ1, . . . , λN) ∈
σle(T1, . . . TN), if and only if there exists an orthonormal sequence {xn} such
that limn →∞‖(Ti − λi)xn‖ = 0, for i = 1, . . . , N .

We will call T1, . . . , TN joint right invertible if there exist S1, . . . , SN such
that T1 S1 + . . . + TN SN = I. Recall that λ = (λ1, . . . , λN) ∈ σr(T1, . . . , TN)
if and only if λ − T = (λ1 − T1, . . . , λN − TN) is not right invertible. Simi-
larly as above, the joint right essential spectrum σre(T1, . . . , TN) of T1, . . . , TN

can be defined as the joint right spectrum of π(T1), . . . , π(TN). Recall the
well known equalities σr(T1, . . . , TN) = σl(T ∗1 , . . . , T ∗N) and σre(T1, . . . , TN) =
σle(T ∗1 , . . . , T ∗N). The union σl(T1, . . . , TN) ∪ σr(T1, . . . , TN) is called Harte
spectrum and denoted by σH(T1, . . . , TN).

Let us prove the following result which we will need later.

Proposition 3.1.3. If T1 ∈ L(H1), T2 ∈ L(H2), then

σle(T1)× σap(T2) ∪ σap(T1)× σle(T2) = σle(T1 ⊕ IH2 , IH1 ⊕ T2).

Proof. We begin the proof with the ‘⊂’ inclusion. By symmetry, it is
enough to show that if λ1 ∈ σle(T1) and λ2 ∈ σap(T2) then (λ1, λ2) ∈ σle(T1 ⊕
IH2 , IH1 ⊕ T2). But for λ1, λ2 as above, there exist orthonormal sequences
{x1

n} and {x2
n} of unit vectors with limn→∞‖(Ti − λi)xi

n‖ = 0 for i = 1, 2.
Hence, the sequence {x1

n ⊕ x2
n} is orthonormal and

‖(T1 ⊕ IH2 − λ1) (x1
n ⊕ x2

n)‖ = ‖((T1 − λ1)⊕ IH2)(x1
n ⊕ x2

n)‖
= ‖(T1 − λ1)x1

n ⊕ x2
n‖ = ‖(T1 − λ1)x1

n‖ → 0 (n →∞).

In the same way we can prove that

‖(I ⊕ T2 − λ2) (x1
n ⊕ x2

n)‖ → 0 (n →∞).

Thus (λ1, λ2) ∈ σle(T1 ⊕ IH2 , IH1 ⊕ T2).
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To prove ‘⊃’, let us assume that (λ1, λ2) is not in the set on the left hand
side. If λ1 6∈ σap(T1), then there is S1 ∈ L(H) such that S1(λ1 − T1)− I = 0.
Thus (S1⊕ I)(λ1−T1⊕ I)+0(λ2− I⊕T2)− I⊕ I = 0 is the projection on the
subspace {0}. Hence, by Lemma 3.1.2, (λ1, λ2) 6∈ σle(T1 ⊕ IH2 , IH1 ⊕ T2). If
λ2 6∈ σap(T2), we use the same argument. To finish the proof, let us assume that
λi 6∈ σle(Ti), i = 1, 2. Then, by Lemma 2.3 of [40], there are Si ∈ L(Hi), i =
1, 2 such that Si(λi − Ti) − IHi

= Pi, i = 1, 2, where Pi are projections on
finite-dimensional subspaces of Hi, i = 1, 2. Thus we have

(S1(λ1 − T1))⊕ IH2 − IH1 ⊕ IH2 = P1 ⊕ IH2

and −P1 ⊕ (S2(λ2 − T2)) + P1 ⊕ IH2 = −P1 ⊕ P2.

Hence
(S1 ⊕ IH2)(λ1 − T1 ⊕ IH2)− IH1 ⊕ IH2 = P1 ⊕ IH2

and (−P1 ⊕ S2)(λ2 − IH1 ⊕ T2)) + P1 ⊕ IH2 = −P1 ⊕ P2.

Thus

(S1⊕IH2)(λ1−T1⊕IH2)+(−P1⊕S2)(λ2−IH1⊕T2))−IH1⊕IH2 = −P1⊕P2.

But −P1 ⊕ P2 is compact, since P1, P2 are finite-dimensional projections.
So Lemma 3.1.2 implies that (λ1, λ2) 6∈ σle(T1 ⊕ IH2 , IH1 ⊕ T2).

3.2. Taylor spectrum.

Recall from [72]–[73] that the Koszul (cochain) complex K(T,H) for an
N -tuple T = (T1, · · · , TN) of commuting operators in L(H) with respect to H
is given by

0 → Λ0(H)
δ0(T )−→ Λ1(H)

δ1(T )−→ · · · δN−1(T )−− −→ ΛN(H)→ 0,

where Λp(H) denotes the set of all p-forms with coefficients in H and the
cochain mapping δp(T ) : Λp(H)→ Λp+1(H) is defined by

δp(T )
∑

|I|=p

′ xIsI :=
N∑

j=1

∑

|I|=p

′TjxIsj ∧ sI ,

Where {s1, · · · , sN} is a fixed basis of Λ1(C) and
∑
|I|=p

′ denotes that the sum

is taken over all I = (i1, · · · , ip) ∈ Np with 1 ≤ i1 < · · · < ip ≤ N, sI :=
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si1 ∧ · · · ∧ sip
. Let us notice that Λp(H) can be endowed with the natural

scalar product

 ∑

|I|=p

′ xIsI ,
∑

|I|=p

′ yIsI


 :=

∑

|I|=p

′ (xI , yI)

which gives us a canonical isomorphism with a direct sum of
(

N
p

)
copies of

H. Following [72]–[73], λ belongs to the Taylor spectrum σ(T ) ⊂ CN if, by
definition, the complex K(λ− T,H) is not exact, and λ belongs to the Taylor
essential spectrum σe(T ) ⊂ CN if, by definition, at least one of the cohomology
groups Hp(λ− T ) := ker δp(λ− T )/ran δp−1(λ− T ) has infinite-dimension.

It is known that σl(T1, · · · , TN)∪σr(T1, · · · , TN) ⊂ σ(T1, · · · , TN), but these
two sets are not always equal (see [32]). The same holds for the essential
spectra: σle(T1, · · · , TN)∪σre(T1, · · ·TN) ⊂ σe(T1, · · · , TN). If a single operator
T is considered, then σle(T ) ∪ σre(T ) = σe(T ), the essential spectrum of T .

Following [1], we can decompose σe(T ) =
⋃N

p=0 σp
e(T ), where σp

e(T ) is the
set of all λ ∈ CN such that the induced mapping

δ̂p(λ− T ) : Λp(H)/ranδp−1(λ− T ) → Λp+1(H)

has non-closed range or infinite-dimensional kernel.
The points of σp

e(T ) have the following property:

Lemma 3.2.1. Let T = (T1, · · · , TN) be an N -tuple of commuting op-
erators. If λ is a point in σp

e(T ), then there exists an orthonormal sequence
{ηn}∞n=1 in Λp(H) such that

δp−1(λ− T )δp−1(λ− T )∗ηn + δp(λ− T )∗δp(λ− T )ηn → 0(3.2.1)

for n →∞.

Proof. By the definition of σp
e(T ) and a standard argument, we can find

an orthonormal sequence {ηn}∞n=1 in Λp(H)ª ran δp−1(λ−T ) such that δp(λ−
T )ηn → 0. Obviously, this sequence satisfies (3.2.1).

We will need the following fact (see [31, Corollary 3.7]).

Lemma 3.2.2. Let T = (T1, · · · , TN) be an N -tuple of almost doubly
commuting operators. Then there is a compact operator K on Λp(H) such
that

δp−1(T )δp−1(T )∗ + δp(T )∗δp(T ) = K +
⊕

F

N∑

j=1

TF (j),
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where the orthogonal sum runs over all functions F : {1, · · · , N} → {0, 1},
card {j : F (j) = 0} = p and TF (j) = TjT

∗
j for F (j) = 0 and TF (j) = T ∗j Tj for

F (j) = 1. Moreover, if the N -tuple doubly commutes, then K = 0.

4. Functional Calculus for N-tuples of Contractions

4.1. H∞-type algebras as dual algebras.

In what follows, C(X) will stand for the algebra of all complex continuous
functions on a compact set X, and M(X) for the set of all complex Borel
measures on X. Recall that M(X) is a Banach space with the total variation
norm. If E is a subset of M(X) then Es will denote the set of all measures
on X singular to every measure in E. A subset B of M(X) is a band (see
[10]–[11]) if Bss = B.

Let us note that any band is a closed subspace of M(X). It is also almost
elementary that Es is a band for every E ⊂M(X) and Ess ⊃ E.

It is easy to see that Ess is the smallest band containing E, which we call
the band generated by E. For further details on bands, we refer to [29, Section
20]. If A is a function algebra on X and x ∈ X, then ν ∈ M(X) is called a
representing measure of x if

∫
u dν = u(x) for u ∈ A.

Let K1, · · · ,KN be compact subsets of the complex plane C and K =
K1×· · ·×KN . Denote by R(K) the uniform closure in C(K) of the algebra of
all rational functions with singularities off K, and by Gi (i = 1, · · · , N) the set
of all non-peak points of R(Ki). Let G = G1×· · ·×GN . For a set E ⊂ CN , ∂E
will stand for its topological boundary. We have

Lemma 4.1.1. int G = int K.

Proof. If z = (z1, · · · , zN) 6∈ G then there exists i such that zi is a peak-
point of R(Ki), and hence zi ∈ ∂Ki. So z ∈ ∂K. Consequently, G ⊃ int K.
On the other hand, we also have G ⊂ K, which implies int G ⊂ int K.

If µ is a positive measure on K, then by H∞(µ) we mean the weak-star
closure of R(K) in L∞(µ). ‖ · ‖∞ or ‖ · ‖H∞(µ) will always denote the supnorm
or the essential supnorm in function algebras. Denote by MG the band of
measures generated by all representing measures of points in G, by B∞(G)
the weak-star closure of R(K) in the dual of MG and by ‖·‖B∞ the dual norm
in B∞(G). Many details on B∞(G)-type algebras can be found in [29]. We
will denote by ϑ the volume measure on CN restricted to G.
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For any open set Ω ⊂ CN , we will denote by H∞(Ω) the algebra of all
bounded analytic functions on Ω.

We will consider three algebras: H∞(ϑ), B∞(G) and H∞(int K).
Observe that for f ∈ B∞(G) and z ∈ G we can define f(z) as the value

of f on a representing measure νz of z. By the weak-star density of R(K) in
B∞(G), this value does not depend on the choice of the representing measure.
So the elements of B∞(G) can be regarded as functions on G and, by Lemma
4.1.1, also as functions on int K.

The first result we are interested in is

Proposition 4.1.2. If f ∈ B∞(G), then f is a bounded analytic function
on int K. Thus B∞(G) ⊂ H∞(int K).

Proof. Let us consider an arbitrary point z0 ∈ intK and a small open
polydisc ∆ centerd at z0 and included in intK . Denote by m the normalized
Lebesgue measure on the Shilov boundary of ∆, and by Pz and Cz, respectively,
the N-dimensional Poisson and Cauchy kernels for z. Then m is a representing
measure for z0 (with respect to the algebra R(K)). The measure Cz dm is
absolutely continuous with respect to m, and consequently is in MG.

On the other hand, every u ∈ R(K) is analytic on ∆, so u(z) =
∫

uCz dm
for u ∈ R(K), z ∈ ∆, and by the weak-star density of R(K) in B∞(G), also
h(z) =

∫
hCz dm for h ∈ B∞(G), z ∈ ∆. Hence, by Cauchy theorem, h is

analytic near z0. Moreover, f is bounded since

sup{|f(z)| : z ∈ G}
= sup{| < f, νz > | : z ∈ G, νz is a representing measure for z}
≤ sup{| < f, ν > | : ν ∈MG} = ‖f‖B∞(G).

Lemma 4.1.3. Let Ω be a bounded connected open set with the boundary
of C2 class. The space H∞(Ω) is isometrically embedded in H∞(ϑ).

Proof. For any f ∈ H∞(Ω), by [48, Proposition 8.5.1] there is a se-
quence {fn} ⊂ R(Ω) converging to f a.e. [ϑ] and ‖fn‖H∞(Ω). Thus {fn} ⊂
R(Ω) ⊂ H∞(ϑ) converging weak-star to f in H∞(ϑ). The equality of the
norms ‖f‖H∞(Ω) = ‖f‖H∞(ϑ) is the consequence of the equality of the norms
‖fn‖H∞(Ω) = ‖fn‖H∞(ϑ).

Now we state two lemmas which contain some results of Bekken: Corol-
laries 5.6 and 5.7 of [10]. The two-dimensional case, and their generalizations
to an arbitrary N can be found in the last paragraph of [11].
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Lemma 4.1.4. If f ∈ H∞(ϑ), then there is a sequence {fn} ⊂ R(K) such
that ‖fn‖H∞(ϑ) ≤ ‖f‖H∞(ϑ) and fn → f [ϑ] a.e.

Lemma 4.1.5. If µ is a measure in MG, then the inclusion map H∞(ϑ+
|µ|) → H∞(ϑ) is an isometric isomorphism.

From the above two inclusions, we would like to construct identity isomor-
phism between B∞(G) and H∞(ϑ).

The space L1(ϑ) is a closed subspace of MG, so we can define a mapping
Ψ: B∞(G) → H∞(ϑ) such that for every f ∈ B∞(G), Ψ(f) is a functional
on L1(ϑ) defined as < Ψ(f), g >=< f, gdϑ >. Note that Ψ on R(K) is the
identity. As a consequence of Lemmas 4.1.4 and 4.1.5, we get

Proposition 4.1.6.

(1) The mapping Ψ : B∞(G) → H∞(ϑ) gives an isometric isomorphism
between B∞(G) and H∞(ϑ).

(2) This isomorphism is also a homeomorphism in the weak-star topologies.

(3) If f ∈ B∞(G), then there is a sequence {fn} ⊂ R(K) such that ‖fn‖H∞(ϑ)

≤ ‖f‖B∞(G) and fn → f weak-star in (MG)∗.

Proof. By Lemma 4.1.5, the mapping Ψ is an isometry, and its weak-star
continuity follows immediately from the definition.

To prove (3), let us take an arbitrary f ∈ B∞(G). Then, by Lemma 4.1.4,
there is a sequence {fn} ⊂ R(K) such that ‖fn‖H∞(ϑ) ≤ ‖f‖H∞(ϑ) = ‖f‖B∞(G)

and fn → f [ϑ] a.e. By Banach-Alaoglu theorem, the sequence {fn} has an
adherent point g ∈ B∞(G). Hence there is a subnet {fnα

} converging to g.
Thus, by the weak-star continuity of Ψ, a subnet of {Ψ(fnα

)} converges weak-
star to Ψ(g). Since H∞(ϑ) ⊂ L∞(ϑ) and this space satisfies the sequence
condition thus there is a sequence fnk

such that {Ψ(fnk
)} converges weak-star

to Ψ(g). Hence Ψ(f) = Ψ(g). Since Ψ is an isometry, we obtain f = g and
(3) is proved.

By a similal argument as above, we show that Ψ is onto, and so we get (1).
The statement (2) is a consequence of the following lemma (see [23], Theorem
2.7).

Lemma 4.1.7. Let X and Y be Banach spaces and let Ψ be a continuous
(in the weak-star topologies) linear map from X∗ into Y ∗ with trivial kernel
and norm closed range. Then Ψ(X∗) is weak-star closed and Ψ is a weak-star
homeomorphism of X∗ onto Ψ(X∗).

The following remark is important for the remaining sections of the paper.
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Remark 4.1.8. Lemma 4.1.3 shows that H∞(DN) can be isometrically
embedded in H∞(ϑ). Proposition 4.1.2 implies the inclusion B∞(DN) ⊂
H∞(DN). Hence, Proposition 4.1.6 allows us to identify the algebra B∞(DN)
with H∞(DN) and consider H∞(DN) as a dual algebra.

After the identification in the above remark, the algebra H∞(DN) will be
the most interesting from our point of view and the supremum norm will be
denoted by ‖ · ‖∞.

4.2. Representation of A(DN).

Recall that the algebra homomorphism Φ : A(DN) → L(H) is a repre-
sentation if ‖Φ(f)‖ ≤ ‖f‖ for f ∈ A(DN). Now, let us consider a pair of
commuting contractions T1, T2. For any polynomial p of two variables, we
define the operator p(T1, T2) in the natural way:

Φ : 7−→ p(T1, T2).(4.2.1)

By Ando’s Theorem ([71], Theorem I.6.4) the pair T1, T2 has a unitary
dilation. More precisely, there is a space K⊃ H and a pair of unitary operators
U1, U2 ∈ L(K) such that

T n
1 T m

2 x = PH Un
1 Um

2 x for x ∈ H, n,m = 0, 1, 2, . . .

The pair U1, U2 has a spectral measure E on the two-dimensional torus T2 (see
[12] for a product of spectral measures) such that

Un
1 Um

2 =
∫

T2
zn
1 zm

2 dE(z1, z2) for n,m = 0, 1, 2, . . . .

Hence, for any polynomial p of two-variables, and x, y ∈ H we have

‖(p(T1, T2)x, y)| = |(p(U1, U2)x, y)| = |
∫

T2
p(z1, z2)dE(z1, z2)| ≤ ‖p‖∞ ‖x‖ ‖y‖.

Thus we have the von Neumann inequality ‖p(T1, T2)‖ ≤ ‖p‖∞. Since the poly-
nomials are dense in the bidisc algebra A(D2), by the von Neumann inequality,
we can extend Φ to A(D2). Then we also have

(4.2.2) ‖h(T1, T2)‖ ≤ ‖h‖∞ for h ∈ A(D2).

The multiplication property Φ(uv) = Φ(u)Φ(v) is easy to see for two poly-
nomials, and by (4.2.2) it is also fulfilled for any two functions in A(D2).
Hence Φ is a representation. (Since the polynomials are weak-star dense in
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H∞(D2), the multiplication property can also be proved directly for H∞(D2),
as in Proposition 4.3.3 below.)

Now, let us consider an N -tuple T = (T1, . . . , TN) ⊂ L(H) of doubly
commuting (i.e. TiTj = TjTi, TiT

∗
j = T ∗j Ti for i 6= j) contractions. It has

unitary dilations by [71]. Thus, the representation Φ : H∞(DN) → L(H) can
be constructed as above, and (4.2.2) is also fulfilled for a doubly commuting
N -tuple T = (T1, . . . , TN).

Let T = (T1, . . . , TN) ⊂ L(H)N be a commuting N -tuple and K ⊂ CN . A
compact set K is called a (common) spectral set for T = (T1, . . . , TN) if for
every rational function u of N variables with singularities off K there exists a
naturally defined operator u(T1, · · · , TN) such that

‖u(T1, . . . , TN)‖ ≤ sup{|u(λ1, . . . , λn)| : (λ1, . . . , λN) ∈ K}.
Let us assume that DN is a spectral set for a given N -tuple of c.n.u. (com-

pletely non-unitary) contractions T = (T1, . . . , TN). It is known that R(DN)
is equal to the polydisc algebra A(DN). We define a representation

Φ : A(DN) 3 u 7−→ u(T1, . . . , TN) ∈ L(H).

Now we will work on extending the above representations.

4.3. Extension to H∞-type algebras.

Having the representation Φ : A(DN) → L(H), it is a consequence of stan-
dard techniques that for every x, y ∈ H there exists a complex, Borel, regular
measure µx,y on DN such that (Φ(u)x, y) =

∫
u dµx,y for u ∈ A(DN). We say

that φ is absolutely continuous (a.c.) if it has a system of elementary measure
{µx,y}x,y∈H such that each element of the system is absolytely continuous with
respect to some (positive) representing measure νa, z ∈ DN . By [41, VI.1.2,
II.7.5], the above definition is equivalent to that one, which uses the terminol-
ogy of bands of measures. Namely, we can say that Φ is absolutely continuous
if it has a system of elementary measures {µx,y : x, y ∈ H} which belong to
MG. We will say that the N -tuple T = (T1, · · · , TN) is absolutely continuous
(a.c.) if the representation generated by T (assuming that it exists) is a.c.

Having the representation constructed above Φ : A(DN) → L(H) and using
[44, Proposition] (see also [44, Sec. 2], [45, Sec. 3]), we can decompose Φ and
H into orthogonal sums as follows

(4.3.1) Φ =
M⊕

i=1

Φi, H=
M⊕

i=1

Hi,

where Φi (i = 0, · · · ,M) is the restriction of Φ to the subspace Hi which
reduces all the values of Φ. Moreover, we get
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(1) Φ0 is an absolutely continuous representation,
(2) Ti|Hi

(i = 1, · · · , N) is a unitary operator with singular spectral measure,

(3) Tki
|Hi

, Tli |Hi (i = N, . . . ,M) are unitary operators for some ki, li(ki 6=
li).

So we get

Lemma 4.3.1. If T1 is c.n.u. and T2 is a.c., then the pair {T1, T2} is a.c.

Lemma 4.3.2. If the N -tuple T = (T1, . . . , TN) is c.n.u., then it is a.c.

Now we show an extension property of absolutely continuous representa-
tions.

Proposition 4.3.3. If Φ : A(DN) → L(H) is an absolutely continuous
representation, then

(1) Φ can be extended to a homomorphism, denoted also by Φ, of the algebra
H∞(DN) into L(H) such that

(4.3.2) ‖Φ(h)‖ ≤ ‖h‖∞ for h ∈ H∞(DN), and

(2) Φ is continuous with respect to the weak-star topologies.

Proof. (1) By Section 4.1, the algebra H∞(D2) can be identified with
B∞(DN), the closure of polynomials in (MDN )∗. Thus, for every h ∈ H∞(DN)
and x, y ∈ H, we choose an elementary measure µx,y ∈MDN and put

(Φ(h)x, y) := 〈h, µx,y〉 ,

where 〈h, µx,y〉 denotes the value of the functional h on µx,y. We can ask
whether Φ is well-defined. If we take another elementary measure µ

′
x,y, then

for µ ∈ A(DN) we have

〈u, µx,y − µ
′
x,y〉 = 〈u, µx,y〉 − 〈u, µ

′
x,y〉 = (Φ(u)x, y)− (Φ(u)x, y) = 0.

Let {uk} be a net in A(DN) converging to h ∈ H∞(D2) in the weak-star
topology. Then

〈h, µx,y − µ
′
x,y〉 = lim

k
〈uk, µx,y − µ

′
x,y〉 = 0 .

Hence the extension Φ is well-defined and linear, and we have

|(Φ(h)x, y)| = |〈h, µx,y〉| ≤ ‖h‖∞‖µx,y‖ ≤ ‖h‖∞‖x‖ ‖y‖ ,
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which gives the inequality

‖Φ(h)‖ ≤ ‖h‖∞ for h ∈ H∞(DN) .

We show first the multiplicativity of Φ for u ∈ A(DN), h ∈ H∞(DN). Take a
net {vk} ⊂ A(DN) which converges weak-star in (MDN )∗ to h. Then

(Φ(uh)x, y) = 〈uh, µx,y〉 = 〈h, uµx,y〉 = lim〈vk, uµx,y〉
= lim〈vku, µx,y〉 = lim(Φ(vku)x, y) = lim(Φ(vk)Φ(u)x, y)

= lim〈vk, µΦ(u)x,y〉 = 〈h, µΦ(u)x,y〉 = (Φ(h)Φ(u)x, y).

We get the general case by repeating the procedure for h, g ∈ H∞(D2).
(2) since L(H) is the dual of C1(H), it is enough to check whether the

functional H∞(D2) 3 h 7−→ tr(Φ(h)C) is weak-star continuous for every
C ∈ C1(H). Let {λi}∞i=1 be the set of singular numbers of C, and {yi}∞i=1 be
the corresponding orthonormal basis in H (see VI.17 of [61]). Then, there is
a collection of elementary measures {µCyi,yi

} ⊂ MDN such that

tr(Φ(h)C) =
∞∑

i=1

(Φ(h)Cyi, yi) =
∞∑

i=1

∫
h dµCyi,yi

,

and ‖µCyi,yi
‖ ≤ ‖Cyi‖ ‖yi‖ = ‖Cyi‖ .

Since C ∈ C1(H), by VI.17 and VI.20 of [41] we have

∞∑

i=1

‖µCyi,yi
‖ ≤

∞∑

i=1

‖Cyi‖ =
∞∑

i=1

|λi| < ∞ .

Hence µ :=
∑∞

i=1 µCyi,yi
is a measure of bounded variation and µ ∈ MDN ,

since µCyi,yi
∈MDN for i = 1, 2, · · ·. It implies that the mapping

H∞(D2) 3 h 7−→
∫

h dµ

is a weak-star continuous functional. By (4.3.3), we have tr(Φ(h)C) =∫
h dµ which completes the proof.

Let us sum up our functional calculus results.

Theorem 4.3.4. Assume that T = (T1, . . . , TN) ⊂ L(H) is an absolutely
continuous N -tuple of commuting contractions and that

( i ) T = (T1, T2) is a pair of contractions (N = 2) or
(ii) T = (T1, . . . , TN) is a doubly commuting N -tuple or
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(iii) DN is a spectral set for T = (T1, . . . , TN).

Then there is an algebra homomorphism Φ : H∞(DN) → A(T ) such that

(1) Φ(1) = I and Φ(pi) = Ti for i = 1, . . . , N , where pi(z1, . . . , zN) = zi,

(2) ‖Φ(h)‖ ≤ ‖h‖∞ for all h ∈ H∞(DN),

(3) Φ is weak-star continuous,

(4) the range of Φ is weak-star dense in A(T ), and

(5) if Φ is an isometry, then it is a weak-star homeomorphism onto A(T ).

Proof. We only need to show (4) and (5). To see (4), it is enough to
notice that polynomials in T are weak-star dense in A(T ). The claim (5) is a
consequence of [16, Theorem 2.7]

Having the N -tuple T = (T1, . . . , TN) of commuting contractions and the
representation Φ : A(DN) → A(T ) constructed in Section 4.2, we can define the
adjoint representation Φ∗ of A(DN) generated by T ∗ = (T ∗1 , . . . , T ∗N) Moreover,
we have

Lemma 4.3.5.

(1) If the representation Φ is a.c., then Φ∗ is a.c. and we can extend Φ∗ to
H∞(DN),

(2) If T = (T1, . . . , TN) is an a.c. N -tuple of commuting contractions and
f ∈ H∞(DN), then for any vectors x, y we have

(f(T1, . . . , TN)y, x) = (y, f∼(T ∗1 , . . . , T ∗N)x), where f∼(z) = f(z̄) for z ∈ DN .

Proof. Let u ∈ A(DN), and let µy,x be an elementary measure of Φ for
y, x ∈ H absolutely continuous with respect to a representing measure νz for
some z ∈ DN . It is obvious that u∼ ∈ A(DN).

For a complex measure µ on DN , denote by µ∼ the Borel measure µ∼(·) =
µ(Π(·)), where Π : z → z is a homeomorphism of DN onto itself. Then, for
µ ∈ A(DN) we have

(u(T ∗1 , . . . , T ∗N)x, y) = (x, u(T ∗1 , . . . , T ∗N)∗y) = (x, u∼(T1, . . . , TN)y)

= (u∼(T1, . . . , TN)y, x) =
∫

u∼dµy,x =
∫

u∼dµy,x =
∫

u dµ∼y,x .

So ηx,y := µ∼y,x is an elementary measure of Φ∗ for vectors x, y ∈ H. Since
µy,x is absolutely continuous with respect to νz the measure ηx,y is absolutely
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continuous with respect to ν∼z , and an easy calculation shows that ν∼z is a
representing measure for z ∈ DN , which finishes the proof of (1).

Next, to see (2), by (1) we can extend Φ∗ to H∞(DN) and can easily see
that f∼ ∈ H∞(DN). Let, as in (1), µy,x and µ∼y,x be elementary measures of Φ
and Φ∗, respectively. Notice that σz := νz +ν∼z is positive and symmetric with
respect to the adjoint. Let dµy,x = hy,xdσz. Then dµ∼y,x = h∼y,xdσz. Hence, the
following finishes the proof:

(f(T1, . . . , TN)y, x) =
∫

f dµy,x =
∫

f(λ)hy,x(λ)dσz(λ)

=
∫

f(λ)hy,x(λ)dσz(λ) =
∫

f∼(λ)h∼y,x(λ)dσz(λ)

=
∫

f∼dµ∼y,x = (f∼(T ∗1 , . . . , T ∗N)x, y) = (y, f∼(T ∗1 , . . . , T ∗N)x).

Now we will try to find some conditions when the functional calculus is
isometric. Recall that a set E contained in the closed unit polydisc DN is
dominating for the algebra H∞(DN) of all bounded analytic functions on DN

if for all h ∈ H∞(DN) we have ‖h‖∞ = supz∈E∩DN |h(z)|.
We will assume the dominancy of some type of the spectra. In various

situations we will assume that various spectra are dominating for the alge-
bra H∞(DN): Taylor spectrum σ(T ), Taylor essential spectrum σe(T ), left
essential spectrum σle(T ), and right essential spectrum σre(T ).

The following known idea gives an isometric functional calculus in various
situations.

Lemma 4.3.6. Suppose that the assumptions of Theorem 4.3.4 are satis-
fied. Assume also that E ⊂ σ(T ) is dominating for H∞(DN). If f ∈ H∞(DN),
then |f‖∞ ≤ ‖f(T )‖.

Proof. Let λ ∈ E ∩ DN ⊂ σ(T ) ∩ DN . Then, by [65], f(λ) ∈ σ(f(T )) and
‖f‖∞ ≤ r(f(T )) ≤ ‖f(T )‖, which completes the proof of the lemma.

5. Dual Algebras and its Application to Invariant Subspace
Problem and Reflexivity

We shall also need the language of dual algebras. Recall that L(H) =
C1(H)∗, where C1(H) is the ideal of trace-class operators and the duality is
given by the form < T, S >:= tr(TS) for T ∈ L(H), S ∈ C1(H). Hence
every ultraweakly closed subalgebra, A of L(H) is a dual Banach space with
predual space QA∼= C1(H)/⊥A via < T, [S] >:= tr(TS) for T ∈ A, [S] ∈
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C1(H)/⊥A. (Usually we will write Q instead of QA.) Thus, for a rank-one
operator x⊗ y(z 7−→ (z, y)x), we have < T, [x⊗ y] >= (Tx, y).

5.1. The role of rank-one operators.

We start by recalling a well-known result (see [16, Prop. 2.5]).

Proposition 5.1.1. Let X, Y be Banach spaces. A linear mapping Φ :
X∗ → Y ∗ is continuous in weak-star topology in both spaces if and only if there
exists a map φ : Y → X such that < y,Φα >=< φ(y), α > for all y ∈ Y and
α ∈ X∗. Moreover φ = Φ∗.

Let the assumptions of Theorem 4.3.4 be fulfilled and assume that our
functional calculus Φ : H∞(DN) → A(T ) is isometric. Since Φ is weak-
star continuous and onto A(T ), there is the mapping φ : C1(H)/⊥A(T ) →
L1(DN)/⊥H∞(DN). Let Pλ be a reproducing kernel for a point λ ∈ DN . Then
Pλ ∈ L1(DN) and < h, Pλ >= h(λ) for h ∈ H∞(DN). We will denote by
[Cλ] = φ−1([Pλ]). Moreover, < h(T ), [Cλ] >=< h, φ−1([Pλ]) >= h(λ) for
λ ∈ DN and h ∈ H∞(DN).

To show the role of rank-one operators we will restrict ourselves to a very
simple situation. We will consider only a single operator instead of N -tuple
and we will aim in showing the existence of non-trivial invariant subspaces
instead of the reflexivity.

Let us assume that Φ : H∞ → A(T ) is an isometry and a weak-star
homeomorphism. Thus we have a mapping φ : C1(H)/⊥A(T ) → L1/⊥H∞.
Assume also that for any [L] ∈ Q there are x, y ∈ H such that [L] = [x ⊗ y].
We will show that this gives an invaliant subspace for T . Let us consider
[C0] = φ−1([P0]) and assume that [C0] = [x⊗ y] for some x, y ∈ H. Thus, for
any h ∈ H∞, we have

h(0) =< h, [P0] >=< h(T ), [C0] >=< h(T ), x⊗ y >= (h(T )x, y).

If h(λ) ≡ 1, then 1 = (x, y) and x 6= 0, y 6= 0. Now take h(λ) = λg(λ) for g ∈
H∞. Then 0 = (Tg(T )x, y), which means that y ⊥ M := span{T nTx, n ≥ 0}.
Thus M 6= H since y 6= 0, and if ker T = {0}, then M 6= {0}. If ker T 6= {0},
then ker T is a non-trivial invariant subspace or T is a zero operator. Hence
ker T or M is a non-trivial invariant subspace.
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5.2. Approximation in predual spaces.

In this section we state some sufficient approximation conditions to show
the reflexivity. If Ω ⊂ CN , then acoΩ denotes the closure of the absolutely
convex hull of Ω.

Lemma 5.2.1. Assume that E is dominating for H∞(DN). Then aco{[Cλ]Q:
λ ∈ E ∩ DN} contains the closed unit ball about the origin in Q.

Proof. If f ∈ H∞(DN), then

‖Φ(f)‖ ≤ ‖f‖∞ = sup
λ∈E

|f(λ)| = sup
λ∈E

〈Φ(f), [Cλ]〉.

Now the result follows from the next proposition (see [16, Proposition 2.8].

Proposition 5.2.2. Let X be a complex Banach space, and let E be a
subset of the closed unit ball B of X such that for all φ in X∗, ‖φ‖ = supx∈E <
x, φ >. Then the closure of the absolutely convex hull of E is the entire unit
ball B.

We shall need the well-known fact from [17] that every dual algebra with
property X0,1 is reflexive. Recall that A has property X0,1 if the unit ball of
QA is contained in χ

0,1, the set of all those [L] ∈ QA such that there exist
sequences {xn}∞n=1, {yn}∞n=1,⊂ H with ‖xn‖ ≤ 1, ‖yn‖ ≤ 1 for all n, which
fulfill the conditions:

lim
n→∞

‖xn ⊗ yn]− [L]‖Q = 0,(5.2.1)

lim
n→∞

‖[xn ⊗ w]‖Q = 0 for all w ∈ H,(5.2.2)

and lim
n→∞

‖[w ⊗ yn]‖Q = 0 for all w ∈ H,(5.2.3)

since χ
0,1 is absolutely convex and closed (see [17]), it suffices to show that

χ
0,1, contains all [Cλ], λ ∈ σe(T )∩DN , in order to prove the reflexivity of A(T ).

6. Reflexivity of Isometries

6.1. Wold-type model for pairs of doubly commuting isometries and
partial results.

In [69, Theorem 3]), it was shown that for any pair {V1, V2} ⊂ L(H)
of doubly commuting isometries, there are subspaces Huu,Hus,Hsu,Hss such
that
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(1) H = Huu ⊕Hus ⊕Hsu ⊕Hss, where all summands reduce V1 and V2,
(2) V1|Huu

and V2|Huu
are unitary operators,

(3) V1|Hus
is a unitary operator, V2|Hus

is a shift,
(4) V1|Hsu

is a shift, V2|Hsu
is a unitary operator, and

(5) V1|Hss
, V2|Hss

are shifts.

The above decomposition we will call the Wold-type decomposition. Using
the above decomposition the following partial result was shown in [56].

Theorem 6.1.1. Every pair {V1, V2} of doubly commuting isometries on
a Hilbert space H is reflexive and has property A1(1).

The above results can be easily extended to N -tuples.

6.2. General case.

Let us state a result from [13].

Theorem 6.2.1. Every commuting family of isometries V = (Vα)α∈J is
reflexive and has property A1(1).

For the proof, we need some function theory results. Let (Ω,
∑

, µ) be a
measure space with µ(Ω) = 1 and F be a Hilbert space. For x, y ∈ L2(µ,F),
we can define x·y ∈ L1(µ) by (x·y)(ω) = 〈x(ω), y(ω)〉. We can ask whether for
any f ∈ L1(µ) there are x ∈ H ⊂ L2(µ,F), y ∈ L2(µ,F) such that f = x · y.
This is always possible if H = L2(µ,F) unless F= {0}. For another example,
consider L1 on T. If f ∈ L1(µ), f ≥ 0 and logf ∈ L1, then f = |g|2 for g ∈ H2.

We will say that H ⊂ L2(µ,F) has the approximate factorization propert,
if for all h ∈ L1(µ) with h ≥ 0 and for all ε > 0 there exists x ∈ H ⊂ L2(µ,F)
such that |h − x · x| < ε. The proof of the above theorem is based on the
following function theory result from [13].

Theorem 6.2.2. Assume that H ⊂ L2(µ,F) has the approximate factor-
ization property. Then for all h ∈ L1(µ) and for all ε > 0 there exists x ∈ H
such that ‖x(ω)‖2 ≥ h(ω) a.e. and ‖x‖2 ≤ ‖h‖1 + ε.

Corollary 6.2.3. Assume that H ⊂ L2(µ,F) has the approximate fac-
torization property. Then for every f ∈ L1(µ) and every ε > 0, there exists
x ∈ H and y ∈ L2(µ,F) such that x · y = f and ‖x‖ · ‖y‖ < ‖f‖1 + ε.

Proof. Assume first that ‖f‖ = 1. We are applying the above theorem with
h = |f |. Thus there is x ∈ H such that ‖x(ω)‖2 ≥ f(ω) and ‖x‖2 ≥ ‖f‖1 + ε.
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Let us define y ∈ L2(µ,F) by y(ω) = f(ω)x(ω)

‖x(ω)‖2 for ω such that x(ω) 6= 0 and

y(ω) = 0 otherwise. Then ‖y‖2 =
∫ |f(ω)2‖x(ω)‖2

‖x(ω)‖4 dµ ≤ ∫ ‖x(ω)‖4
‖x(ω)‖4 dµ ≤ 1 and

‖x‖ ‖y‖ ≤ √‖f‖1 + ε ≤ ‖f‖1 + ε. Moreover, (x · y)(ω) = 〈x(ω), y(ω)〉 =
〈x(ω), f(ω)x(ω)

‖x(ω)‖2 〉 = f(ω) if x(ω) 6= 0. If x(ω) = 0 then f(ω) = 0 too.

The next step in the proof will be a construction of an extension of
V = (Vα)α∈J to a set of unitary operators. We can assume that V is a
semigroup. We define a relation ρ ⊂ (V × H)2 such that (Vα, h)ρ(Vβ, k)
if and only if Vαk = Vβh. It is easy to see that ρ is an equivalence rela-
tion. Then V ×H/ρ is a prehilbert space with operations: [Vα, h] + [Vβ, k] =
[VαVβ, Vβh + Vαk], λ[Vα, h] = [Vα, λh] and scalar product ([Vα, h], [Vβ, k]) =
(Vβh, Vαk), which gives a norm ‖[Vα, h]‖ = ‖h‖.

Let K be an completion of V ×H/ρ and note that we can embed H in K
isometrically by h 7−→ [Vα, Vαh] (note that the embedding does not depend
on Vα). Let us take T commuting with V = (Vα)α∈J . Then we can define
T̃ ∈ L(K) by T̃ [Vα, h] = [Vα, Th]. Since T commutes with V, T̃ does not
depend on any particular choice of the representative from [Vα, h]. Hence we
can construct Ṽα for all Vα ∈ V and denote by Ṽ = (Ṽα)α∈J . Moreover, since
T commutes with V = (Vα)α∈J , T̃ commutes with Ṽ = (Ṽα)α∈J .

We can easily check that Ṽβ is a unitary operator and Ṽ ∗
β [Vα, h] = [VβV α, h].

The extension is minimal: since [Vβ, k] = Ṽ ∗
β [Vα, Vαk], Ṽ ∗

β [Vα, Vαk] are linearly
dense in K and hence ∪V ∗

βH is dense in K.
The important step in the proof is the following result from [43].

Theorem 6.2.4. Assume that V is a family of commuting isometries. If
T ∈ AlgLat(V ) then T ∈ V ′. Moreover the operator T̃ (which is defined since
T ∈ V ′) is in the double commutant Ṽ

′′
of Ṽ .

Theorem 6.2.5. If B = {T ∈ L(H) : T ∈ V
′
and T̃ ∈ Ṽ ′′}, then B has

property A1(1).

Proof of Theorem 6.2.1. It is obvious that V ⊂ AlgLat(V ). Moreover, by
Theorem 6.2.4, AlgLat(V ) ⊂ B. Thus AlgLat(V ) is reflexive and has property
A1(1). Hence W(V), as a subalgebra, is reflexive and has property A1(1) by
[42, Proposition 2.5].

Proof of Theorem 6.2.5. For simplicity, we assume that the underlying
space is separable. We know that

⋃
α∈I Ṽ ∗

αH is dense in K. By the spectral
theory, there is a measure space (Ω,

∑
, µ) (Ω = TI) and a measurable function

fα with |fα| = 1 a.e. on the set Ω = σ1 ⊃ σ2 ⊃ · · · such that there is a unitary
operator U : K→ ⊕j≥1L

2(µ|σj) with UṼαU∗ = Mfα
. The space ⊕j≥1L

2(µ|σj)
can be identified with L2(µ,F), whele F is a separable Hilbert space.
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We would like to prove that H has the approximate factorization property.
Assume that K = L2(µ,F) and that h ∈ L1(µ) with h ≥ 0. Then there is
y ∈ K (say, in L2(µ|σ1)) such that h = y · y (if h ∈ L1(µ), h ≥ 0, then√

h ∈ L2(µ) and h =
√

h · √h) and ‖y‖2 = ‖h‖1. There is y1 = [Vα, k] such
that ‖y − y1‖ ≤ ε and ‖y1‖ ≤ ‖y‖ + 1. Then x = Ṽα[Vα, k] = [Vα, Vαk] ∈ H.
Since Ṽα is the multiplication operator by the function fα with |fα| = 1, thus
Ṽαy1 · Ṽαy1 = y1 · y1. We have

‖h− x · x‖1 = ‖h− Vαy1 · Vαy1‖1 = ‖h− y1 · y1‖1

≤ ‖h− y · y‖1 + ‖y · y − y1 · y1‖1 ≤ ‖y · y − y · y1‖1 + ‖y · y1 − y1 · y1‖1

≤ ‖y‖2 ‖y − y1‖2 + ‖y1‖1 ‖y − y1‖2 ≤ (‖h‖1 + ‖h‖1 + 1)ε.

Thus H has the approximate factorization property.
Now we can start the main part of the proof. Take ε > 0 and let φ : B → C

be weak-star continuous. Then φ can be represented as φ(T ) =
∞∑

n=0
(Txn, yn)

with
∞∑

o=0
‖xn‖ ‖yn‖ < ‖φ‖ + ε

2
for some xn, yn ∈ H ⊂ K = L2(µ,F). If we

define f =
∞∑

n=0
xn · yn ∈ L1(µ), then ‖f‖1 ≤ ‖φ‖+ ε

2
. By Corollary 6.2.3, there

is x ∈ H and z ∈ K such that x · z = f and ‖x‖ ‖z‖ ≤ ‖f1‖ + ε
2

< ‖φ‖ + ε.
Define y = PHz. If T ∈ B, then T̃ ∈ Ṽ ′′ and T = Mu|H (Mu, multiplication
operator). Then

φ(T )=
∞∑

n=0

(uxn, yn) =
∞∑

n=0

∫
(u(ω)x(ω), y(ω))dµ(ω)

=
∫ ∞∑

n=0

u(ω)(x(ω), y(ω))dµ(ω) =
∫

u(ω)f(ω)dµ(ω)

=
∫

u(ω)(x(ω), z(ω))dµ(ω) =
∫

(u(ω)x(ω), z(ω))dµ(ω)

= (ux, z) = (Tx, z) = (Tx, y).

Hence φ(T ) = (Tx, y).

7. Reflexivity of Jointly Quasinormal Operators and
Spherical Isometries

An operator T is called quasinormal if T commutes with T ∗T . W. Wogen
[75] proved that individual quasinormal operators are reflexive. Following A.
Lubin [52], we call a commutative family S of operators jointly quasinormal
if S and T ∗T commute for any S, T ∈ S. Commutative families of normal
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operators or isometries are automatically jointly quasinormal, as are doubly
commuting families of quasinormal operators. Example 7.2 below exhibits a
commutative pair of quasinormal operators which is not jointly quasinormal.

Theorem 7.1. Every jointly quasinormal family S of operators is reflexive
and has property A1(1).

Proof. Since the underlying Hilbert space is separable, we may as well
assume the family S to be countable. Write Z for the commutative von Neu-
mann algebra generated by {T ∗T : T ∈ S}. By direct integral theory (see
[70]), Z is the diagonal, algebra corresponding to a direct integral decompo-
sition of the underlying Hilbert space H =

∫ ⊕
Λ H(λ)dµ(λ). Here µ is a finite

regular Borel measure on Λ and we have Z =
∫ ⊕
Λ Z(λ)dµ(λ), where each Z(λ)

consists of scalar multiples of IH(λ). For the simplicity of notation, we assume
that H(λ) ≡ H and the corresponding field of measurable vectors is the con-
stant field. Each T ∈ S is decomposable, and by our choice of Z, we know
that T ∗(λ)T (λ) i.s a scalar multiple of the identity for almost all λ. Discarding
a set of measure zero if necessary, we can assume T (λ) to be a scalar multiple
of an isometry for each T ∈ S and λ ∈ Λ.

For each fixed λ, the algebra W(T (λ) : T ∈ S) is generated by a family
of commuting isometries. By Theorem 6.2.1, it is reflexive and has property
A1(1). Hence, by [6, Proposition 5.6], W(Z ∪ S) is reflexive, and by [42,
Theorem 3.6], has property A1(1). Thus its subalgebra W(S) is reflexive and
has property A1(1) by [42, Proposition 2.5].

Example 7.2. Write U for the forward bilateral shift relative to an or-
thonormal basis {en}∞n=−∞. Denote by P and Q the projections onto the
spaces spanned by {en : n ≥ 0} and {en : n ≤ 0}, respectively. Set S = UP
and T = U∗Q. The quasinormality of S and T follows from the fact that
P and Q are invariant under U and U∗ respectively. It is easy to check
that ST = 0 = TS. On the other hand, while T ∗TS = QUP = 0, we have
ST ∗T = UPQ 6= 0. Thus {S, T} is a commuting pair of quasinormal operators
which is not jointly quasinormal.

An N -tuple V = (V1, . . . , VN) is called a spherical isometry if
∑N

i=1 V ∗
i Vi =

I. One consequence of Theorem 7.1 is the following

Proposition 7.3. Every N -tuple V = (V1, · · · , VN) of doubly commuting
spherical isometries is reflexive.

Proof. First, we will show that each Vi, i = 1, · · · , N , is quasinormal. This
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follows from the following equalities

ViV
∗

i Vi = Vi(I −
∑

j 6=i

V ∗
j Vj) = Vi −

∑

j 6=i

ViV
∗

j Vj

= Vi −
∑

j 6=i

V ∗
j VjVi = (I −

∑

j 6=i

V ∗
j Vj)Vi = V ∗

i ViVi .

Now, since V is a doubly commuting set of quasinormal operators, it is also
jointly quasinormal and the conclusion follows from Theorem 7.1.

8. Reflexivity and Invariant Subspace Results for Contractions

The Dual Algebra Technique has had great achievements in showing the
existence of non-trivial invariant subspace or reflexivity for a single operator.
Recall some of them [14], [16–17], [23–28], [54], [63–64], [74]. The most strik-
ing result we will discuss is in Section 9. Let us present the following two
results which give the inspiration for the results for an N -tuple of contractions
presented in this section. Instead of presenting them in the full strength, we
show them in the form so that the theorems below can be seen as their N -tuple
generalizations.

Theorem [63]. Let T be a C0 contraction. If the intersection of the left
essential spectrum with the open disc σle(T ) ∩ D is dominating for H∞, then
W(T ) is reflexive.

The next is a stronger one.

Theorem [15]. Let T be a completely non-unitary contraction. If the
intersection of the essential spectrum with the open disc σe(T )∩D is dominating
for H∞, then W(T ) is reflexive.

8.1. Results with dominancy of left and right spectra.

We start with the following

Theorem 8.1.1. Let {T1, T2} ⊂ L(H) be a pair of commuting contrac-
tions. Assume also that T1 ∈ C0. If the intersection of the left spectrum with
the open bidisc σl(T1, T2) ∩ D2 is dominating for H∞(D2), then {T1, T2} has a
common non-trivial invariant subspace.

If T2 is not a.c., we can decompose T2 for an absolutely Continuous part
and a singular unitary part. If the subspace on which T2 is a singular unitary
operator is not equal to {0}, then since this subspace is hyperinvariant for
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T2 (unless the space H is one-dimensional), we have a non-trivial invariant
subspace for the pair {T1, T2}. Thus we can assume that T2 is a.c.

Assume now that σl(T1, T2)\σle(T,T2) 6= ∅ and take λ = (λ1, λ2) ∈ σl(T1, T2)
\σle(T1, T2). Then, by Lemmas 3.1.1 and 3.1.2, there is a sequence xn in some
finite-dimensional subspace F of H such that ‖xn‖ = 1 and limn→∞‖(λi −
Ti)xn‖ = 0 for i = 1, 2. Since the ball in the finite-dimensional space is com-
pact, there is x ∈ H with ‖x‖ = 1 and ‖(λi − Ti)x‖ = 0 for i = 1, 2. Then
ker (λi − Ti) is a non-trivial hyperinvariant subspace for Ti for i = 1, 2, or
T1 = λ1 I and T2 = λ2 I. Thus the pair {T1, T2} has a common non-trivial
invariant subspace unless the space H is one-dimensional.

Hence we can also assume that σl(T1, T2) = σle(T1, T2). In this case, The-
orem 8.1.1 is reduced to the following reflexivity result.

Theorem 8.1.2. Let {T1, T2} ⊂ L(H) be a pair of commuting contrac-
tions. Assume also that T1 ∈ C0. and T2 is absolutely continuous. If the
intersection of the left essential spectrum with the open bidisc σle(T1, T2) ∩ D2

is dominating for H∞(D2), then the algebra W(T1, T2) is reflexive.

Now, let us discuss the related results. First, Theorem 8.1.1, for N = 2,
generalizes the following

Theorem [4]. Let T = (T1, · · · , TN) be an N -tuple of C00 contractions and
DN be a spectral set for T . If the intersection of the left essential spectrum
with the open polydisc σle(T ) ∩ DN is dominating for H∞(DN), then T =
(T1, · · · , TN) has a common non-trivial invariant subspace.

By symmetry Theorem 8.1.2 can be stated in the following way.

Theorem 8.1.2’. Let {T1, T2} ⊂ L(H) be a pair of commuting con-
tractions. Assume also that T1 ∈ C·0 and T2 is absolutely continuous. If
σre(T1, T2) ∩ D2 is dominating for H∞(D2), then the algebra W(T1, T2) is re-
flexive.

Thus the above results overlap with

Theorem [39]. Let T = (T1, · · · , TN) be an N -tuple of commuting com-
pletely non-unitary contractions and DN be a spectral set for T . Assume also
that there are i, j ∈ {1, · · · , N} such that Ti ∈ C0. and Tj ∈ C·0. If the inter-
section of the Harte spectrum with the open polydisc σH(T )∩DN is dominating
for H∞(DN), then W(T ) is reflexive.

In the end, let us quote the related result with dominancy of the left
essential spectrum, which will find its generalization in Section 8.2.
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Theorem [47]. Let T = (T1, . . . , TN) be an N -tuple of doubly commuting
completely non-unitary contractions. If the intersection of the left essential
spectrum with the open polydisc σle(T ) ∩ DN is dominating for H∞(DN), then
W(T ) is reflexive.

Now, we can start

Proof of Theorem 8.1.2. We can construct the representation Φ : A(D2) →
L(H) generated by T = (T1, T2) as in Section 4.2. Moreover, by Lemma
4.3.1, T is a.c., and thus we can extend Φ to H∞(D2). By Lemma 4.3.5, since
σle(T ) is dominating for H∞(D2), we see that Φ is an isometry and a weak-
star homeomorphism. Hence, as it was mentioned in Section 5.2, to show
reflexivity of A(T1, T2) it is enough to check (5.2.1)–(5.2.3).

The first two lemmas are true not only for N = 2 but also for an arbitrary
N and since they might be of independent interest we present them as follows.

Lemma 8.1.3. Assume T = (T1, . . . , TN) generates an a.c. isometric
representation. Let λ = (λ1, . . . , λN) ∈ σle(T1, · · · , TN) ∩ DN and let {xn} be
an orthonormal sequence with limn→∞ ‖(Ti − λi)xn‖ = 0 for all i = 1, . . . , N .
Then

lim
n→∞

‖[xn ⊗ xn]− [Cλ]‖Q = 0.

Proof. The Hahn-Banach theorem implies that there is fn ∈ H∞(DN) such
that ‖fn(T )‖ = ‖fn‖∞ = 1 and ‖[xn⊗xn]− [Cλ]‖Q= 〈fn(T ), [xn⊗xn]− [Cλ]〉.
The Gleason property for a polydisc shows that there are gn

i such that fn(z) =
fn(λ) +

∑N
i=1(zi − λi)gn

i (z) and ‖gn
i ‖∞ ≤ Mλ‖fn‖∞ = Mλ for z ∈ DN . Hence

‖[xn ⊗ xn]−[Cλ]‖Q = 〈fn(λ) +
N∑

i=1

gn
i (T )(Ti − λi), [xn ⊗ xn]− [Cλ]〉

= 〈fn(λ), [xn ⊗ xn]〉 − 〈fn(λ), [Cλ]〉

+
N∑

i=1

〈gn
i (T )(Ti − λi), [xn ⊗ xn]〉+

N∑

i=1

〈gn
i (T )(Ti − λi), [Cλ]〉

= fn(λ)(xn, xn)− fn(λ) +
N∑

i=1

(gn
i (T )(Ti − λi)xn, xn)

+
N∑

i=1

gn
i (λ)(λi − λi) ≤

N∑

i=1

‖gn
i (T )‖ ‖(Ti − λi)xn‖

≤ Mλ

N∑

i=1

‖(Ti − λi)xn‖ → 0.
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Thus, the proof is completed.

Lemma 8.1.4. Assume T = (T1, . . . , TN) generates an a.c. isometric
representation. Let λ = (λ, . . . , λN) ∈ σle(T1, . . . , TN) ∩ DN and let xn be an
orthonormal sequence such that limn→∞‖(Ti−λi)xn‖ = 0 for all i = 1, . . . , N .
Then limn→∞‖[xn ⊗ y]‖Q = 0 for any fixed y ∈ H.

Proof. Via Hahn-Banach theorem, there is fn ∈ H∞(D2) such that ‖fn(T )‖ =
‖fn‖∞ = 1 and ‖[xn ⊗ y]‖Q= 〈fn(T ), xn ⊗ y〉 = |(fn(T )xn, y)|. As above, the
Gleason property shows that there are gn

i such that fn(z) = fn(λ)+
∑N

i=1(zi−
λi)gn

i (z) and ‖gn
i ‖∞ ≤ Mλ‖fn‖∞ = Mλ for z ∈ DN . Now,

‖[xn ⊗ y]‖Q= fn(λ)(xn, y) +
N∑

i=1

(gn
i (T )(Ti − λi)xn, y)

≤ ‖fn‖∞(xn, y) +
N∑

i=1

‖gn
i (T )‖ ‖T i − λi)xn‖ ‖y‖

≤ |(xn, y)|+
N∑

i=1

‖gn
i ‖∞‖(Ti − λi)xn‖ ‖y‖

≤ |(xn, y)|+ Mλ‖y‖
N∑

i=1

‖(Ti − λi)xn‖ → 0

since xn is an orthonormal sequence and ‖(Ti−λi)xn‖ → 0 for i = 1, 2, . . . , N .

It is an easy observation that in [63, Lemma 3.4] the assumption c.n.u. is
not essential, only the absolute continuity of T is needed. Moreover, weaker
assumptions for the sequence {xn} are sufficient. So we have

Lemma 8.1.5. Assume that T ∈ L(H) is an a.c. contraction generating
all isometric functional calculus. If {xn} is a sequence since that xn → 0
weakly, ‖xn‖ = 1 and ‖(T − λ)xn‖ → 0, then ‖[y ⊗ xn]‖QT

→ 0 for all y ∈ H.

The last approximation lemma will be proved for N = 2

Lemma 8.1.6. Assume that T1, T2 generate an a.c. isometric represen-
tation and T n

1 → 0 strongly. If {xn} is a sequence such that xn → 0 weakly,
‖xn‖ = 1 and ‖(T2 − λ2)xn‖ → 0, then ‖[y ⊗ xn]‖Q → 0 for all y ∈ H.

Proof. By [71, Theorem II.2.1], choose V1 ∈ L(K) a minimal isometric
dilation of T ∗1 . Then V1 is a unilateral shift of certain multiplicity and T1 =
V ∗

1 |H. On the other hand, by the commutant lifting theorem of Sz-Nagy
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and Foias (see [71], [55, p. 484]), there is an operator W2 (not necessarily
an isometry) preserving the norm of T ∗2 such that the pair {V1, W2} dilates
{T ∗1 , T ∗2 }. Let ε > 0. Choose M > 0 such that ‖(I − PkerV ∗M

1
)y‖ ≤ ε

3
and

denote y1 = (PkerV ∗M
1

y, y2 = (I − PkerV ∗M
1

)y. By Hahn-Banach theorem, for
each n, there is fn ∈ H∞(D2) such that

‖[y ⊗ xn]‖Q = 〈fn(T1, T2), [y ⊗ xn]〉 = |(fn(T1, T2)y, xn)|, ‖fn‖ = 1.

For each n we can decompose fn as follows

fn(z1, z2) =
M−1∑

k=0

ank(z2)zk
1 + zM

1 hn(z1, z2).

The functions ank are measurable. Moreover, since ank(z2) is the k-th Fourier
coefficient of fn(·, z2), we have |ank(z2)| ≤ 1 for z2 ∈ D. Thus ‖ank‖ ≤ 1 and
consequently ‖hn‖ ≤ M + 1. It is easy to check that the negative Fourier
coefficients of every ank vanish. Hence, for every n, k, we get ank ∈ H∞(D)
and hn ∈ H∞(D2).

Applying the Lebesgue-type decomposition (4.3.1) to space K, we get via
an easy calculation on elementary measures, H ⊂ K0. So, by the minimality
of V1, we have K = K0 and hence the pair {V1,W2} is a.c. By Lemma 4.3.5,
{V ∗

1 ,W ∗
2 } is also a.c. By [45, Proposition], the representation generated by T2

is a.c. and the same is true for W ∗
2 .

The above facts give us the existence of the functional calculus for all the
above mentioned pairs and single operators. So, applying Lemma 4.3.5 to the
pairs {T1, T2} and {V ∗

1 ,W ∗
2 }, we have

‖[y ⊗ xn]‖Q= |(fn(T1, T2)y, xn)| = |(y, f∼n (T ∗1 , T ∗2 )xn)|
≤ |(y, f∼n (V1,W2)xn)| = |(fn(V ∗

1 ,W ∗
2 )y, xn)|

≤ |(fn(V ∗
1 ,W ∗

2 )y1, xn)|+ |(fn(V ∗
1 ,W ∗

2 )y2, xn)|

≤
M−1∑

k=0

|(ank(W ∗
2 )V ∗k

1 y1, xn)|

+|(V ∗M
1 hn(V ∗

1 ,W ∗
2 )y1, xn)|+ ‖fn‖ ‖y2‖ ‖xn‖.

(8.1.1)

The vector y1 is defined such that V ∗M
1 y1 = 0, and thus the second component

is equal to 0. Observe that for all k,

|(ank(W ∗
2 )V ∗k

1 y1, xn)| ≤ ‖[V ∗k
1 y1 ⊗ xn]‖QW∗

2
.

On the other hand, by [71, Theorem II.2.3], W ∗
2 is an extension of T2. Thus not

only ‖(W ∗
2 − λ2)xn‖ → 0, but also W ∗

2 generates an isometric representation,
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since T2 does. Hence, Lemma 8.1.5 shows that ‖[V ∗k
1 y1 ⊕ xn]‖QW∗

2
→ 0(n →

∞). Hence we can choose n0 such that for all n > n0 we have ‖[V ∗k
1 y1 ⊕

xn]‖QW∗
2
≤ ε

3M
for k = 0, 1, . . . , M − 1. Now come back to the estimation of

‖[y ⊕ xn]‖Q. Using (8.1.1) and the estimation of ‖y2‖, we obtain for n > n0,

‖[y ⊕ xn]‖Q ≤
M−1∑

k=0

‖[V ∗k
1 y1 ⊕ xn]‖QW∗

2
+ ‖fn‖ ‖y2‖ ‖xn‖ ≤ ε.

The proof of the lemma is finished.

The next part of this section deals with pairs of operators which extend
the case of doubly commuting operators. For any pair {T1, T2} of commuting
contractions we can construct a minimal isometric dilation {V1, V2} of the
pair {T ∗1 , T ∗2 } (see [71]). One can see that V ∗

i is a coisometric extension of
Ti, i = 1, 2. We call {V ∗

1 , V ∗
2 } a joint coisometric extension of {T1, T2}. It can

be seen that it is minimal in the standard meaning; for the details, see [53]. We
say that a pair {T1, T2} ⊂ L(H) is diagonally extendable if there exists a Hilbert
space K ⊃ H and a minimal joint coisometric extension {B1, B2} ⊂ L(H) of
{T1, T2} such that, for either j = 1 or j = 2, if K is decomposed as K = Sj⊕Rj,
relative to which the matrix for Bj has the form

Bj =

(
S∗j 0
0 Rj

)
,

where S∗j ∈ L(Sj) is a (unilateral) backward shift and Rj ∈ L(Rj) is a unitary
operator, then the matrix for Bk, for k 6= j, relative to the decomposition
K = Sj ⊕Rj has the form

Bk =

(
As 0
0 Ar

)

for some As ∈ L(Sj) and Ar ∈ L(Rj).
Let us recall the result of [53, Theorem 2.5] and [68, Lemma 1] as

Proposition 8.1.7. With the above notation, a pair {T1, T2} ⊂ L(H) is
diagonally extendable if any of the following conditions holds

(a) R1 has no part of uniform multiplicity ℵ0,

(b) R2 has no part of uniform multiplicity ℵ0,

(c) T1 and T2 doubly commute.
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Now we will present the following

Theorem 8.1.8. Let {T1, T2} ⊂ L(H) be a pair of commuting con-
tractions. Assume also that {T1, T2} ⊂ L(H) is diagonally extendable. If
σl(T1, T2) ∩ D2 is dominating for H∞(D2), then the pair {T1, T2} has a com-
mon non-trivial invariant subspace.

We can reduce this result to Theorem 8.1.9 below just as Theorem 8.1.1
to Theorem 8.1.2.

Theorem 8.1.9. Let {T1, T2} ⊂ L(H) be a pair of a.c. commuting con-
tractions. Assume also that {T1, T2} ⊂ L(H) is diagonally extendable. If
σle(T1, T2) ∩ D2 is dominating for H∞(D2), then the algebra W(T1, T2) is re-
flexive.

For pairs of operators, the above theorem is a generalization of Theorem
[47] quoted in the beginning of the section. The proof is based on the same
considerations as the proof of Theorem 8.1.2. using Lemma 8.1.10 below
instead of Lemma 8.1.6.

Lemma 8.1.10. Let {T1, T2} be a diagonally extendable pair of contrac-
tions generating an a.c. isometric representation. If {xn} is a sequence such
that xn → 0 weakly, ‖xn‖ = 1 and ‖(Ti − λi)xn‖ → 0 for i = 1, 2, then
‖[y ⊗ xn]‖Q → 0 for all y ∈ H.

Proof. Without loss of generality, we assume that the space K ⊃ H and
operator Bi ∈ L(H) extends Ti for i = 1, 2. Moreover, B1 is a coisometry,
K = S1 ⊕R1 and

B1 =

(
S∗1 0
0 R1

)
,

where S∗1 ∈ L(S1) is a (unilateral) backward shift and R1 ∈ L(R1) is a unitary
operator, and B2 has the form

B2 =

(
As 0
0 Ar

)
,

for some As ∈ L(S1) and Ar ∈ L(R1).
By the decomposition (4.3.1) and the minimality of {B1, B2}, we conclude

similarly as in the proof of Lemma 8.1.6 that {B1, B2} is an a.c. pair. It also
generates an isometric functional as an extension of the pair {T1, T2}. Thus
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we have

‖[y ⊗ xn]‖Q= sup{|(h(B1, B2)y, xn)| : h ∈ H∞(D2), ‖h‖∞ = 1}
= sup{|(h(B1, B2)y, xn)| : h ∈ H∞(D2), ‖h‖∞ = 1}
= ‖[y ⊗ xn]‖QB1,B2

.

So we need to show that the last tends to zero.
For a contraction T and λ ∈ D, let T λ denote the operator (T−λ)(I−λT )−1.

An easy calculation based on [71] shows that the decomposition K = S1⊕R1 is
also a decomposition of (B∗

1)
λ1 into a pure isometry and a unitary part. Let us

note that S1, R1 reduce Bλ2
2 . Moreover, Bλi

i is a coisometric extension of T λi
i

for i = 1, 2. Let xn = xs
n ⊕ xr

n, y = ys ⊕ yr with respect to the decomposition
K = S1⊕R1. Since ‖(T1−λ1)xn‖ → 0, we have ‖T λg

1 xn‖ → 0. One can easily
see that

‖xr
n‖≤ ‖xn − PKerBλ1

1
xn = ‖(I − P

KerB
λ1
1

)xn‖
= ‖(B∗

1)
λ1Bλ1

1 xn‖ = ‖T λ1
1 xn‖ → 0.

(8.1.2)

Thus,

‖[y ⊗ xn]‖QB1,B2
= sup{|(h(B1, B2)y, xn)| : h ∈ H∞(D2), ‖h‖∞ = 1}
≤ sup{|(h(S∗1 , As)ys, xs

n)| : h ∈ H∞(D2), ‖h‖∞ = 1}
+sup{|(h(R1, Ar)yr, xr

n)| : h ∈ H∞(D2), ‖h‖∞ = 1}
≤ ‖[ys ⊗ xs

n]‖QS∗
1

,As
+ ‖yr‖ ‖xr

n‖.

The second component converges to 0. To prove that the first one converges to
0, it is enough to show that the pair {S∗1 , As} and the sequence zn = xs

n

‖xs
n‖ fulfills

the assumptions of Lemma 8.1.6. The sequence of operators {S∗n1 } converges
strongly to 0 since S∗1 is a backward shift. Since B2 is an extension of T2, thus
‖(B2−λ2)xn‖ → 0. Since ‖(B2−λ2)xn‖2 = ‖(As−λ2)xs

n‖2 + ‖(Ar −λ2)xr
n‖2,

thus ‖(As − λ2)xs
n‖ → 0 and ‖(As − λ2)zn‖ → 0, since ‖xs

n‖ → 1. Hence, we
can finish the proof of Lemma 8.1.6 and Theorem 8.1.9 with the following

Lemma 8.1.11. The pair {S∗1 , As} generates an a.c. isometric represen-
tation.

Proof. To see that the pair {S∗1 , As} generates an a.c. representation, it
is enough to notice that it is a restriction of the pair {B1, B2}, which is an
a.c. pair, and then make an easy calculation on elementary measures. Now we
prove that σle(T1, T2) ∩ D 2 ⊂ σle(S∗1 , As) ∩ D2. Let (λ1, λ2) ∈ σle(T1, T2) ∩ D2,
and {xn} be an orthonormal sequence such that limn→∞ ‖(Ti − λi)‖ = 0, for
i = 1, 2. Hence, limn→∞‖(Bi − λi)xn‖ = 0, for i = 1, 2, too. Let xn = xs

n ⊕ xr
n
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with respect to the decomposition K = S1 ⊕R1. We can prove as above that
‖(As−λ2)xs

n‖ → 0 and in the same way that ‖(S∗1−λ1)xs
n‖ → 0. As in (8.1.2),

it can be show that ‖xr
n‖ → 0, and hence ‖xs

n‖ → 1. Let zn = xs
n

‖xs
n‖ . It is easy

to check that ‖(As − λ2)zn‖ → 0 and ‖(S∗1 − λ1)zn‖ → 0. Thus (λ1, λ2) ∈
σle(S∗1 , As) ∩ D2 by Lemma 4.3.5. Hence, if σle(T1, T2) ∩ D2 is dominating for
H∞(D2), then so is σle(S∗1 , As) ∩ D2. Hence, by Theorems 4.3.4 and 4.3.5, the
proof of the lemma is finished.

8.2. Results with dominancy of Taylor spectrum.

Our main result of this section will be the following

Theorem 8.2.1. Let T = (T1, . . . , TN) be an N -tuple of doubly commuting
contractions. If the intersection of the Taylor spectrum with the open polydisc
σ(T ) ∩ DN is dominating for H∞(DN), then T = (T1, . . . , TN) has a common
non-trivial invariant subspace.

As we shall see, because of the double commutativity, it will be sufficient
in the proof to consider the case that the Taylor spectrum of T coincides with
the essential Taylor spectrum. This allows us to reduce the proof of Theorem
8.2.1 to the following

Theorem 8.2.2. Let T = (T1, . . . , TN) be an N -tuple of doubly commuting
completely non-unitary contractions. If the intersection of the Taylor essential
spectrum with the open polydisc σe(T ) ∩ DN is dominating for H∞(DN), then
T = (T1, . . . , TN) is reflexive.

Of course, the reflexivity is a much stronger property than the existence
of a non-trivial common invariant subspace. Theorem 8.2.2 is a generalization
of the reflexivity result for a single contraction case (Theorem [15]). It also
improves Theorem [47] mentioned in the beginning of Section 8.1.

Let us quote also two other related results

Theorem [18]. Let {T1, T2} be a pair of commuting contractions and
assume that it generates a weak-star continuous isometric functional calculus
Φ : H∞(D2) → L(H). Then (5.2.1) is fulfilled. (If T1, T2 are of C00 class, then
A (T1, T2) is reflexive.)

Theorem [1]. Let T = (T1, . . . , TN) be an N -tuple of commuting com-
pletely non-unitary contractions and DN be a spectral set for T . Assume also
that T = (T1, . . . , TN) is of C00 class. If the intersection of the Taylor essential
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spectrum with the open polydisc σe(T ) ∩ DN is dominating for H∞(DN), then
T = (T1, . . . , TN) has a common non-trivial invariant subspace.

To reduce Theorem 8.2.1 to Theorem 8.2.2, let us note first that if one of
the contractions T1, . . . , TN , say Ti0 , has a non-trivial unitary part, then from
the formula for the subspace Hu i0 on which the contraction Ti0 is unitary (cf.
[71, Theorem I.3.2]), we see that Hu i0 is invariant for all operators S doubly
commuting with Ti0 and Lat(T ) will be non-trivial. Hence we may assume
that T1, . . . , TN are all c.n.u. Also, because of the proposition below we may
assume that σ(T ) = σe(T ) and we are in the situation of Theorem 8.2.2.

Proposition 8.2.3. Let T = (T1, . . . , TN) be an N -tuple of doubly com-
muting operators in L(H). If σ(T )\σe(T ) 6= ∅, then Ti0 has a non-trivial
hyperinvariant subspace for some i0 ∈ {1, . . . , N}.

Since the space H is infinite-dimensional, the proposition is a consequence
of the following

Lemma 8.2.4. Let T = (T1, . . . , TN) be an N -tuple of doubly commuting
operators in L(H). If, for some λ ∈ CN and some p ∈ {1, . . . , N}, we have

ker δp(λ− T ) ∩ ran δp−1(λ− T )⊥ 6= {0},

then either there is i0 ∈ {1, . . . , N} such that the operator Ti0 has a non-trivial
hyperinvariant subspace or the tuple consists of scalar operators.

Proof. By our assumptions, there exists some 0 6= ω ∈ Λp(H) with δp(λ−
T )ω = 0 = δp−1(λ− T )∗ω. Hence

δp−1(λ− T )δp−1(λ− T )∗ω + δp(λ− T )∗δp(λ− T )ω = 0.

By Lemma 3.2.2, there are disjoint sets S, T with S ∪ T ={1, . . . , N} and a
vector 0 6= x ∈ H such that

∑

i∈S
(λi − Ti)∗(λi − Ti)x +

∑

k∈T
(λk − Tk) (λk − Tk)∗x = 0.

Hence x ∈ ker (λi−Ti) for i ∈ S and x ∈ ker (λk−Tk)∗ for k ∈ T . From this we
obtain a non-trivial hyperinvariant subspace or Tj = λj for all j ∈ {1, . . . , N}.

The next lemma will be a preparation to the proof of Theorem 8.2.2.

Lemma 8.2.5. Assume that T = (T1, . . . , TN) is an N -tuple of dou-
bly commuting completely non-unitary contractions. Let λ ∈ σe(T ) ∩ DN .
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Then there are disjoint sets S, T such that S ∩ T = {1, . . . , N}, and λ =
(λ1, . . . , λN) ∈ DN and sequence {xn} with xn → 0 weakly, ‖xn‖ = 1 for all n
such that ‖(Ti−λi)xn‖ → 0 for all i ∈ S and ‖(T ∗i −λi)xn‖ → 0 for all i ∈ T .

Proof. By Lemma 3.2.1, there is a number p ∈ {1, . . . , N} and an orthonor-
mal sequence {ηn}∞n=1 in Λp(H) such that (3.2.1) holds. Passing, if necessary,
to some subsequence, we may assume that for some I = (i1, . . . , ip) ∈ Np the
coefficients xn of si1 ∧ · · · ∧ sip

in ηn satisfy ‖xn‖ ≥ α for all n ∈ N and some
α > 0. By Lemma 3.2.2, there are disjoint sets S, T with S ∪ T = {1, . . . , N}
such that

∑

i∈S
(λi − Ti)∗(λi − Ti)xn +

∑

k∈T
(λk − Tk)(λk − Tk)∗xn → 0.

Taking the scalar product with xn, we get ‖(Ti− λi)xn‖ → 0 for all i ∈ S and
‖(T ∗k − λk)xn‖ → 0 for all k ∈ T . Since the sequence {ηn}∞n=1 is orthonormal,
thus xn → 0 weakly. Moreover, since the numbers ‖x‖ are bounded below, we
can assume without loss of generality that ‖xn‖ = 1.

Proof of Theorem 8.2.2. We can construct the representation Φ : A(DN) →
L(H) generated by T = (T1, . . . , TN) as in Section 4.2. Moreover, by Lemma
4.3.2 T is a.c., since each Ti is c.n.u. Thus we can extend Φ to H∞(DN). By
Lemma 4.3.5, since σe(T ) is dominating for H∞(DN) we can see that Φ is
an isometry and a weak-star homeomorphism. Hence, as it was mentioned in
Section 5.2, to show the reflexivity of T = (T1, · · · , TN) it is enough to check
the approximation properties (5.2.1)–(5.2.3).

We will start with the approximation of the point evaluation.

Lemma 8.2.6. Let T = (T1, . . . , TN) be an a.c. N -tuple of commuting
contractions, S, T be disjoint sets such that S ∪ T = {1, . . . , N}, and λ =
(λ1, . . . , λN) ∈ DN . Assume thht xn → 0 weakly and ‖xn‖ = 1 for all n. If
‖(Ti − λi)xn‖ → 0 for all i ∈ S and ‖(T ∗i − λi)xn‖ → 0 for all i ∈ T , then
limn→∞ ‖[xn ⊗ xn]− [Cλ]‖Q = 0.

Proof. By the Hahn-Banach theorem, for each n, there exists some fn ∈
H∞(DN) such that ‖fn(T )‖ = ‖fn‖ = 1 and ‖[xn ⊕ xn] − [Cλ]‖Q = | <
fn(T ), [xn ⊕ xn] − [Cλ] > |. Since the polydisc has the Gleason property,
there are gn

i ∈ H∞(DN) satisfying ‖gn
i ‖ ≤ Mλ for i = K + 1, · · · , N and



On the Existence of Invariant Subspaces 279

fn(z) = fn(λ)−∑N
i=1(zi − λi)gn

i (z), where z = (z1, . . . , zN) ∈ DN . Hence

‖[xn ⊗ xn]− [Cλ]‖Q=

∣∣∣∣∣< fn(λ) +
N∑

i=1

(Ti − λi)gn
i (T ), [xn ⊗ xn]− [Cλ] >

∣∣∣∣∣

=

∣∣∣∣∣

(
N∑

i=1

(Ti − λi)gn
i (T )xn, xn

)∣∣∣∣∣
≤

∑

i∈S
|(gn

i (T )(Ti − λi)xn, xn)|+
∑

i∈T
|(gn

i (T )xn, (T ∗i − λi)xn)|

≤
∑

i∈S
‖(gn

i (T )‖ ‖(Ti − λi)xn‖+
∑

i∈T
‖(gn

i (T )‖ ‖(T ∗i − λi)xn)‖

≤ Mλ

(∑

i∈S
‖(Ti − λi)xn‖+

∑

i∈T
‖(T ∗i − λi)xn‖

)
.

Thus, the proof is finished since ‖(Ti − λi)xn‖ → 0 for all i ∈ S and ‖(T ∗i −
λi)xn‖ → 0 for all i ∈ T .

Next, the approximate orthogonality (5.2.2) will be shown.

Lemma 8.2.7. Let T = (T1, . . . , TN) be an a.c. N -tuple of commuting
contractions. Let S, T be disjoint sets such that S ∪T = {1, . . . , N}. Assume
that {Ti : i ∈ S} is doubly commuting. Let λ = (λ1, . . . , λN) ∈ DN and
xn → 0 weakly, ‖xn‖ = 1 for all n. If ‖(Ti − λi)xn‖ → 0 for all i ∈ S and
‖(T ∗i − λi)xn‖ → 0 for all i ∈ T , then limn→∞ ‖[y ⊗ xn]‖Q = 0 for all y ∈ H.

Proof. Without loss of generality, we can assume that S = {1, · · · ,K}.
There can be found some functions fn ∈ H∞(DN) such that ‖fn(T )‖ = ‖fn‖ =
1 and ‖y ⊗ xn]‖Q = |(fn(T )y, xn)|. Notice that

‖[y ⊗ xn]‖Q ≤ |(fn(T1, . . . , TK , λK+1, . . . , λN)y, xn)|
+|((fn(T1, . . . , TN)− fn(T1, . . . , TK , λK+1, . . . , λN))y, xn)|.

By an obvious modification of the Gleason property for polydomains, there are
functions gn

K+1, . . . , g
n
N ∈ H∞(DN) such that ‖gn

i ‖ ≤ Mλ for i = K + 1, . . . , N
and

fn(z)− fn(z1, . . . , zK , λK+1, . . . , λN) =
N∑

i=K+1

(λi − zi)gn
i (z),

where z = (z1, . . . , zN). The point λ being fixed, let us denote by hn ∈
H∞(DK) the function hn(z1, . . . , zK) = fn(z1, . . . , zK , λK+1, . . . , λN) and write
T = (T1, . . . , TK). Obviously, we have a natural functional calculus for T̃ =
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(T1, . . . , TK). Hence, for any ε > 0, we have

‖[y ⊗ xn]‖Q≤ |(fn(T1, . . . , TK , λK+1, . . . , λN)y, xn)|

+

∣∣∣∣∣

(
N∑

i=K+1

(λi − Ti)gn
i (T )y, xn

)∣∣∣∣∣

≤ |(hn(T̃ )y, xn)|+
N∑

i=K+1

‖gn
i (T )‖ ‖y‖ ‖(λi − T ∗i )xn‖

≤ |(hn(T̃ y, xn)|+ ε

for n sufficiently large, since ‖(T ∗i − λi)xn‖ → 0 for i = K + 1, . . . , N .
By the same construction as in [68, p.1234], we can construct a doubly com-

muting K-tuple of isometries V = (V1, . . . , VK) ⊂ L(K), which is a minimal
isometric dilation of the K-tuple T ∗ = (T ∗1 , . . . , TK). Then V ∗ = (V ∗

1 , . . . , V ∗
K)

is an extension of T̃ = (T1, . . . , TK). By the minimality and the decomposition
(4.3.1), the K-tuple V = (V1, . . . , VK) is a.c. and so is V ∗ by Lemma, 4.3.5.
Moreover, by Theorem 4.3.4 we can construct a functional calculus for each
of them.

For any contraction A and µ ∈ D, we will denote by Aµ the operator
(A − µ)(I − µA)−1. Let K = Ki

s ⊕ Ki
u be the decomposition of Vi into a

unilateral shift and a unitary part. The decomposition coincides with the
decomposition of V λi

i (see [71, Proposition I.4.3 and its proof]). Moreover,
(V λ)∗ = ((V λ1

1 )∗, . . . , (V λK

K )∗) is an extensioll of T̃ λ = (T λ1
1 , . . . , T λK

K ). Since
‖(Ti − λi)xn‖ → 0 for i = 1, . . . , K, we have ‖T λi

i xn‖ → 0 for i = 1, . . . , K.
By the double commutativity of V = (V1, . . . , VK) and [69, Theorem 3], we

can write K = Ks⊕Kr, where V s
i = Vi|Ks

is a shift operator for all i = 1, . . . , K,
and Vi0 |Kr

is a unitary operator for some i0 ∈ {1, . . . , K}. Moreover, Ks and
Kr. reduce Vi. We will denote V r

i = Vi|Kr. Form xn = xs
n ⊕ xr

n, y = ys ⊕ yr

with respect to this orthogonal decomposition. Let Pi denote the projection
onto ker(V λi

i )∗. By the double commutativity, one can see that Pi and Pj

commute for i, j = 1, . . . , K. We also have P1 · · ·PK H ⊂ Ks. Thus

‖xr
n‖≤ ‖xn − P1 · · ·PK xn‖ ≤

K∑

i=1

‖P1 · · ·Pi−1(xn − Pixn)‖

≤
K∑

i=1

‖xn − Pixn‖ =
K∑

i=1

‖V λi
i (V λi

i )∗xn‖

=
K∑

i=1

‖(V λi
i )∗xn‖ =

K∑

i=1

‖T λi
i xn‖ → 0.

There is also a natural functional calculus for V ∗
s = (V s∗

1 , . . . , V s∗
K ) and for

V ∗
r = (V r∗

1 , . . . , V r∗
K ), since V ∗

s and V ∗
s are the restrictions of V ∗. Hence,
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because of ‖xr
n‖ → 0, we have

‖(hn(T̃ )y, xn)‖= |(hn(V ∗)y, xn)|
≤ |(hn(V ∗

s )ys, xs
n)|+ |(hn(V ∗

r )yr, xr
n)|

≤ |(hn(V ∗
s )ys, xs

n)|+ ‖hn‖ ‖yr‖ ‖xr
n‖

≤ |(hn(V ∗
s )ys, xs

n)|+ ε

for n sufficiently large, since ‖xr
n‖ → 0, we have ‖xs

n‖ → 1 and hence we may
assume that ‖xs

n‖ = 1.
Now we know that V s∗

i is a unilateral shift for i = 1, · · · ,K. For M ∈ N,
let RM be the orthogonal projection onto the space

∨K
i=1 ran V sM

i . Using
the obvious extension of [69, Theorem 1] from pairs to K-tuples of doubly
commuting shifts, there is a sufficiently large M such that ‖RM ys‖ ≤ ε

2
. Let

y1 = (I −RM)ys and y2 = RM ys. Then V s∗M
i y1 = 0 for i = 1, . . . , K. We can

write

hn(z) =
M−1∑

|I|=0

an
I zI +

L∑

i=1

zM
i qn

i (z),

where z = (z1, . . . , zK), an
I ∈ C, qn

i ∈ H∞(DK).

Moreover, we can estimate that |an
I | ≤ 1.

Since xs
n → 0 weakly, we have, for n sufficiently large, |(V ∗I

1 y1, x
s
n)| ≤ ε

2MK

for all I such that |I| ≤ M − 1. Hence

|(hn(V ∗
s )ys, xs

n)|≤ |(hn(V ∗
s )ys, x

s
n)|+

M−1∑

|I|=0

|an
I | |(V ∗I

s y1, x
s
n)|

+
K∑

i=1

|(qn
i (V ∗

s )V s∗M
i y1, x

s
n)|

≤ ‖hn‖ ‖ys‖ ‖xs
n‖+

K∑

i=1

ε

2MK
+ 0 ≤ ε.

Thus, for n sufficiently large, ‖[y ⊗ xn]‖Q ≤ 3ε.
The second orthogonality condition (5.2.3) turns out to be symmetric to

the previous one.

Lemma 8.2.8. Let T = (T1, . . . , TN) be an a.c. N -tuple of commuting
contractions. Let S ′, T ′ be disjoint sets such that S ′ ∪T ′ = {1, . . . , N}. As-
sume that {Ti : i ∈ T ′} is doubly commuting. Let λ = (λ1, . . . , λN) ∈ DN) and
xn → 0 weakly, ‖xn‖ = 1 for all n. If ‖(Ti − λi)xn‖ → 0 for all i ∈ S ′ and
‖(T ∗i − λi)xn‖ → 0 for all i ∈ T ′, then limn→∞ ‖[xn ⊗ y]‖Q = 0 for all y ∈ H.
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Proof. Since the set {T ∗i : i ∈ T ′} is also doubly commuting, we can
apply Lemma 8.2.7 to S = T ′ and T = S ′. Hence we get ‖[xn ⊗ y]‖Q =
|[y ⊗ xn]‖Q(A(T∗)) → 0.

8.3. Application to weighted shifts.

Let R denote a weighted shift on l2+. Put Ren = snen+1, where (en)∞n=1 is
an orthonormal basis of l2+. Following [62], let

i(R) = lim
n→∞

inf
k
|sk+1 · · · sk+n| 1n and r(R) = lim

n→∞
sup

k
|sk+1 · · · sk+n| 1n .

We need the following result from [62].

Lemma 8.3.1.

(1) For any positive numbers ε, M , there are integers k, n, both greater than
M , such that |sk+1 · · · sk+n| 1n ≥ r(R)− ε.

(2) If no sn vanishes and ε, M are positive numbers, then there are integers
m, p, both greater than M , such that |sm+1 · · · sm+p| 1p ≤ i(R) + ε.

Note the following

Proposition 8.3.2.

(1) If no sn vanishes, then σap(R) = {c : i(R) ≤ |c| ≤ r(R)} = σle(R).

(2) If finitely many sn vanish, then σap(R)− {0} = σle(R) = σle(R′), where
R′ is the shift with weights sk+1, sk+2, . . ., and sk is the last zero weight
of R.

(3) If infinitely many sn vanish, then σap(R) = {c : |c| ≤ r(R)} = σle(R).

Proof. In the following proof we develop the ideas used in [62], where the
first equality of (1) was shown. Let us note that both σap(R) and σle(R) have
the circular symmetry [67, Corollary 2, p.52]. Hence, if i(R) = r(R), then the
nonemptiness of σle(R) shows the needed equality.

Since σap(R) ⊃ σle(R) and σle(R) is closed, to finish the proof of the first
equality in the case when i(R) < r(R), it is enough to show that i(R) < c <
r(R) implies c ∈ σle(R).

Take a, b with i(R) < a < c < b < r(R). An orthogonal sequence
{xl}, xl = (xl

r), such that

‖Rxl − cxl‖ ≤ 1
l
‖xl‖ ‖R‖ for l ∈ N(8.3.1)
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will be constructed by induction. Let x1
1 = 1, x1

r = 0 for r > 1 and k(1) =
n(1) = p(1) = m(1) = 1. Let us assume that vectors xj, and positive integers
k(j), n(j), m(j), p(j) are defined for all j < l.

By Lemma 8.3.1 (1), we can choose n(l), k(l) such that ( c
b
)n(l) < 1

l
, k(l) >

m(l − 1) + p(l − 1), and |sk(l)+1 · · · sk(l)+n(l)|
1

n(l) > b. Now, by Lemma 8.3.1
(2), we can choose p(l), m(l) such that (a

c
)p(l) < 1

l
, m(l) > k(l) + n(l), and

|sm(l)+1 · · · sm(l)+p(l)|
1

p(l) < a.
Define xl = (xl

r) as follows:

xl
k(l)+1 = 1,

xl
r =

sk(l)+1 · · · sr−1

cr−k−1
if k(l) + 2 ≤ r ≤ m(l) + p(l) + 1,

xl
r = 0 if r < k(l) + 1 or r > m(l) + p(l) + 1.

The vectors xl are mutually orthogonal, since k(l) > m(l−1)+p(l−1). Some
calculation as in [62, p.350] shows that (8.3.1) is fulfilled. Hence c ∈ σle(R).

If finitely many sn vanish, then R is the orthogonal sum of R′ and a
nilpotent operator defined on a finite-dimensional space. Hence 0 is not in
σle(R) and thus σle(R) = σle(R′).

Now we show the last statement. Suppose that infinitely many sn vanish.
It is easy to see that 0 ∈ σle(R). As above, it is enough to show that each
c with 0 < c < r(R) is in σle(R). A similar construction as before yields an
orthogonal sequence {xl}, xl = (xl

r) such that

‖Rxl − cxl‖ ≤ 1
l

c ‖xl‖ for l ∈ N.(8.3.2)

Let x1
1 = 1, x1

r = 0 for r > 1 and k(1) = n(1) = m(1) = 1. Let l be any pos-
itive integer and assume that vectors xj and positive integers k(j), n(j), m(j)
are defined for all j < 1. By Lemma 8.3.1 (1), we can choose n(l), k(l) such
that ( c

b
)n(l) < 1

l
, k(l) > m(l− 1), and |sk(l)+1 · · · sk(l)+n(l)|

1
n(l) b. Let m(l) be the

first index greater then k(l) + n(l) such that sm(l) = 0. Define xl = (xl
r) as

follows:
xl

k(l)+1 = 1,

xl
r =

sk(l)+1 · · · sr−1

cr−k−1
if k(l) + 2 ≤ r ≤ m(l),

xl
r = 0 if r < k(l) + 1 or r > m(l).

The vectors xl are mutually orthogonal, since k(l) > m(l− 1). Calculating as
in [62, p.350] one can show that (8.3.2) is fulfilled. Hence c ∈ σle(R).

Let us conclude with the following example.
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Example 8.3.3. Let R1, R2 be weighted shifts such that i(Rj) < r(Rj) =
1, (j = 1, 2). [Lemma 7, 62] shows the possibility of a construction of such
shifts. We may let R1 = R2 = R, where R has weights sn = 1

2
if 2(2k −

1) < n < 2(2k − 1) + 2k for k = 1, 2, . . ., and sn = 1 otherwise. It is easy
to see that i(R) = 1

2
, r(R) = 1. By Propositions 3.1.3 and 8.3.2, we have

σle(R1 ⊕ I, I ⊕ R2) = {(λ1, λ2) : i(Rj) < λj < r(Rj) = 1, j = 1, 2}. Hence,
the assumption of Theorem 8.2.2 is fulfilled for the pair R1 ⊕ I, I ⊕R2.

9. Questions and Open Problems.

In Section 2, we considered the finite-dimensional case. In fact, we com-
pletely characterized the reflexive algebras generated by N -tuples of doubly
commuting linear transformations on finite-dimensional Hilbert spaces. A
natural further generalization will be to drop the double commutativity. The
condition 2.5.2.(1) seems to be not suitable, since it depends on the Jordan
sequence, whose definition is based on the double commutativity. In Theorems
2.1 and 2.6.4, we proved that a necessary condition for the reflexivity of an
algebra generated by commuting linear transformations is that each rank-two
member generates a one-dimensional ideal. This condition is also sufficient in
the doubly commuting case. Thus our first conjecture will be

Conjecture 9.1. Suppose A is an operator algebra in a finite-dimensional
Hilbert space generated by a commuting family of (nilpotent) linear transforma-
tions. Then A is reflexive if and only if each rank-two member of A generates
a one-dimensional ideal.

We can also search for different conditions which completely characterize
reflexive families of linear transformations.

We can also restrict ourselves to the nilpotent case in an infinite-dimensional
Hilbert space and ask

Conjecture 9.2. Suppose A is an operator algebra in a Hilbert space
generated by a commuting family of nilpotents. Then A is reflexive if and only
if each rank-two member of A generates a one-dimensional ideal.

The next questions concern Theorem 7.1. It is unknown whether we can
assume only that each operator is quasinormal instead of joint quasinormality.

Conjecture 9.3. Every family S of commuting quasinormal operators is
reflexive and has property A1(1).

Now we can try to drop the double commutativity assumption in Propo-
sition 7.3.
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Conjecture 9.4. Every N -tuple V = (V1, . . . , VN) of commuting spherical
isometries is reflexive.

The next set of questions concerns the Dual Algebra Technique. Let us
recall the most striking results for a single operator.

Theorem [24]. Let T be a contraction. If T ⊂ σ(T ), then T has a
non-trivial invariant subspace.

Theorem [25]. Let T be an a.c. contraction. If T ⊂ σe(T ), then T is
reflexive.

Thus the natural conjectures for N -tuples should be:

Conjecture 9.5. Let T = (T1, . . . , TN) be an N -tuple of commuting con-
tractions. If TN ⊂ σ(T ), then T has a common non-trivial invariant subspace.

Conjecture 9.6. Let T = (T1, . . . , TN) be an a.c. N -tuple of commuting
contractions. If TN ⊂ σe(T ), then W(T ) is reflexive.

These problems seem to be out of reach nowadays. Hence, let us state
the following easier problems which are also not known. We want to drop the
double commutativity from Theorems 8.2.1 and 8.2.2.

Conjecture 9.7. Let T = (T1, . . . , TN) be an N -tuple of commuting con-
tractions. If the intersection of the Taylor spectrum with the open polydisc
σ(T ) ∩ DN is dominating for H∞(DN), then T has a common non-trivial in-
variant subspace.

Conjecture 9.7’. We can ask about the reflexivity of T = (T1, . . . , TN)
assuming the dominancy of Taylor essential spectrum σe(T ).

The answers for the above are not known even if we consider Harte spec-
trum σH(T ) instead of Taylor spectrum σ(T ).

The above conjectures were stated for a polydisc. The unit ball BN is
also a natural generalization of the unit disc D. We have also a notion of
the spherical contraction. Namely, a commuting N -tuple T = (T1, . . . , TN) is
called a spherical contraction if

∑N
i=1 ‖T1x‖2 ≤ ‖x‖2 for all vector x. Hence,

all the above conjectures given for N -tuples of contractions can be stated for
spherical contractions. For example, we have

Conjecture 9.8. Let T = (T1, . . . , TN) be a spherical contracction. If
the intersection of the Taylor spectrum with the open unit ball σ(T ) ∩ BN is
dominating for H∞(BN), then T has a common non-trivial invariant subspace.
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We will finish this section by recalling the famous result from [54] that
every subnormal operator is reflexive. It is a generalization of [21] that every
subnormal operator has a non-trivial invariant subspace. In [76], the existence
of common non-trivial invariant subspaces was shown for jointly subnormal
family. Thus we can state.

Conjecture 9.9. Jointly subnormal families are reflexive.
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