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EXACT NULL CONTROLLABILITY OF ABSTRACT SEMILINEAR
FUNCTIONAL INTEGRODIFFERENTIAL STOCHASTIC

EVOLUTION EQUATIONS IN HILBERT SPACES

J. Y. Park1 and P. Balasubramaniam2,∗

Abstract. Sufficient conditions for exact null controllability of the semilinear
integrodifferential stochastic evolution equations in Hilbert space are obtained.
It is shown that the exact null controllability of the corresponding linear sys-
tem with additive term implies the exact null controllability of the semilinear
functional integrodifferential stochastic evolution equations. An application to
stochastic partial integrodifferential equations is given.

1. INTRODUCTION

Semigroup theory gives a unified treatment of a wide class of stochastic parabolic,
hyperbolic and functional differential equations, and much effort has been devoted
to the study of controllability results for such evolution equations. In deterministic
cases, fixed point techniques, among the other methods, are widely used as a tool for
studying the controllability of nonlinear systems. Several authors have extended fi-
nite dimensional controllability results to infinite dimensional controllability results
represented by integrodifferential evolution equations with bounded and unbounded
linear operators in Banach spaces see the early survey by Balachandran and Dauer
[2] and the references therein. Stochastic control theory is a stochastic general-
ization of classical control theory. Controllability of linear stochastic systems is a

Received January 11, 2006, accepted December 8, 2007.
Communicated by Yuan-Chung Sheu.
2000 Mathematics Subject Classification: 93E03, 93C40.
Key words and phrases: Exact null controllability, Integrodifferential equations, Semilinear stochastic
evolution equation, Schauder fixed point theorem.
1The work was supported by grant no. KRF-2005-202-C00030 from the Basic Research Program of
the Korea Research Foundation.
2The author work was supported by the KOSEF at the Pusan National University, South Korea during
his visiting 2005-06 from Department of Mathematics, Gandhigram Rural Institute-Deemed University,
Gandhigram- 624 302, Tamilnadu, India,
*Correspondence Author.

2093



2094 J. Y. Park and P. Balasubramaniam

well-known problem discussed in the literature ([1, 8, 11, 14]). Controllability of a
linear stochastic system in Hilbert space recently has been extended by Balasubra-
maniam and Dauer[3] to the stochastic evolution equation with infinite delay. The
controllability results in the infinite dimensional cases have been studied by several
authors by the assumption that the semigroup T (t), t > 0, associated with the linear
convolution operator Lb

0u =
∫ b
0 T (b − s)Bu(s)ds has a bounded inverse operator

(L0)−1 with values in L2(J, U)/ker(Lb
0). The main objective of this paper (sec-

tion 2) is to remove the bounded invertibility condition replacing it by the exact null
controllability of the associated linear system with additive term in the stochastic
settings based on the recent observation of [7]. Using this operator we transform
the controllability problem into a fixed point theorem to show that the operator has
a fixed point.

The purpose of this paper is to study the exact null controllability results of a
class of abstract semilinear functional integrodifferential stochastic evolution equa-
tions of the form

(1)
d(x(t)) = [Ax(t) +Bu(t) + F (t, xt)]dt+

∫ t

0
G(s, xs)dw(s),

for a .e t ∈ J = [0, b],

x0(θ) = φ(θ), θ ∈ [−r, 0]

where A is the infinitesimal generator of a strongly continuous semigroup T (t) in a
real separable Hilbert space H, the state x(·) takes its values in H and the control
function u is given in L2(J, U), a Hilbert space of admissible control functions with
U as a separable Hilbert space. B is a bounded linear operator from U into H .
Here w is an H-valued Wiener process associated with a positive, nuclear covariance
operator Q, F is an H-valued map and G is a L(K,H)-valued map both defined on
J ×Cr (where K is a real separable Hilbert space and L(K,H) is the space of all
bounded, linear operators from K to H , we write simply L(H) if H = K .) and φ
is an Cr-valued random variable independent of w with finite second moment. Here
Cr = C([−r, 0], H) is a Banach space of all continuous functions φ : [−r, 0] → H

endowed with the norm ‖φ‖ = sup{‖φ(θ)‖ : −r ≤ θ ≤ 0}. Let J1 = [−r, b], for
x(·) ∈ C(J1, H) we have xt(·) ∈ Cr for t ∈ J , xt(θ) = x(t+ θ) for θ ∈ [−r, 0].
Our aim is to study the exact null controllability of the mild solution of the system
(1) that is exact null controllability of the following system

(2)

x(t) = T (t)φ(0)+
∫ t

0

T (t−s)[Bu(s)+F (s, xs)+
∫ s

0

G(τ, xτ)dw(τ)]ds,

for a .et ∈ J = [0, b],

x0(θ) = φ(θ), θ ∈ [−r, 0]
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The integrodifferential equation considered here serves as an abstract formulation of
partial integrodifferential equation which arise in various physical phenomena such
as electromagnetic theory, population dynamics, and heat conduction in materials
with memory (for details see ([4, 9, 10, 14]).

The outlay of the paper is as follows. In the following section, we give the
necessary preliminaries, definitions and stated hypotheses for proving the controlla-
bility result. In section 3, we deduce the main result to that of finding a fixed point
of a solution map. Finally in section 4, an example is presented which illustrates
the main theorem.

2. PRELIMINARIES

For more details of this section, the reader may refer ([6], [13]) and the references
therein. Throughout the paper, (H, ‖·‖) and (K, ‖·‖K) denote real separable Hilbert
spaces.

Let (Ω, F, P ) be a complete probability space furnished with complete family
of right continuous increasing sub σ-algebras {Ft, t ∈ J} satisfying Ft ⊂ F. An H-
valued random variable is an F-measurable function x(t) : Ω → H and a collection
of random variables S = {x(t, w) : Ω → H |t ∈ J} is called a stochastic process.
Usually we suppress the dependence on w ∈ Ω and write x(t) instead of x(t, w)
and x(t) : J → H in the place of S. Let βn(t)(n = 1, 2, ...) be a sequence
of real-valued one-dimensional standard Brownian motions mutually independent
over (Ω, F, P ). Set w(t) =

∑∞
n=1

√
λnβn(t)ζn, t ≥ 0, where λn ≥ 0, (n=1, 2,

...) are nonnegative real numbers and {ζn} (n=1, 2, ...) is complete orthonormal
basis in K. Let Q ∈ L(K,K) be an operator defined by Qζn = λnζn with finite
Tr(Q) =

∑∞
n=1 λn < ∞, (Tr denotes the trace of the operator). Then the above

K-valued stochastic process w(t) is called a Q-Wiener process. We assume that
Ft = σ(w(s) : 0 ≤ s ≤ t) is the σ-algebra generated by w and FT = F. Let
ϕ ∈ L(K,H) and define

‖ϕ‖2
Q = Tr(ϕQϕ∗) =

∞∑
n=1

‖
√
λnϕζn‖2.

If ‖ϕ‖Q < ∞, then ϕ is called a Q-Hilbert-Schmidt operator. Let LQ(K,H)
denote the space of all Q-Hilbert-Schmidt operators ϕ : K → H . The completion
LQ(K,H) of L(K,H) with respect to the topology induced by the norm ‖ · ‖Q
where ‖ϕ‖Q = 〈〈ϕ, ϕ〉〉1/2 is a Hilbert space with the above norm topology.

Finally, let C(J1, L2(Ω;H)) be the space of all continuous functions from J1

into L2(Ω;H) satisfying the conditions supt∈J1
E‖x(t)‖2 <∞, E stands for inte-

gration with respect to probability measure [P ]. Then, define the subspace

Y = C(J1, H) = {ξ ∈ C(J1, L
F
2 (Ω, H)) | ξ is Ft-adapted }
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denote the family of continuous H-valued stochastic processes {ξ(t) : t ∈ J1}
which are Ft-measurable and have finite second moments, that is,

‖ξ‖Y = sup
t∈J1

(
E‖ξ(t)‖2

)1/2
<∞.

It is easy to verify that Y furnished with the norm topology as defined above, is a
Banach space.

Definition 2.1. The system (2) is said to be exact null controllable on the
interval J, if for every φ and preassigned time b there exists a stochastic control
u ∈ L2(J, U) such that the solution x(·) satisfies x(b) = 0.

Define Lb
0u =

∫ b
0 T (b− s)Bu(s)ds : L2(J, U) → H ,

N b
0(z, f) = T (b)z +

∫ b
0 T (b− s)f(s)ds : H × L2(J, U) → H,

where f(s) = F (s) +
∫ s
0 G(τ)dw(τ)

Consider the linear system
d

dt
(z(t)) = Az(t) + Bu(t) + f(t), for a .e t ∈ J = [0, b],

z(0) = z0, θ ∈ [−r, 0]
(3)

associated with the system (1).

Definition 2.2. The system (3) is said to be exactly null controllable on J if

ImLb
0 ⊃ ImN b

0.

Remark 2.1. It is known that, see [5], system (3) is exactly null controllable
if and only if there exists γ > 0 such that

‖(Lb
0)

∗‖2 ≥ γ‖(N b
0)

∗z‖2 for all z ∈ H.

The following lemma is crucial in the part of our main result and has been proven
in [7].

Lemma 2.1. Suppose that the system (3) is exactly null controllable on J. Then
the linear operator W : (L0)−1N b

0 : H × L2(J,H) → L2(J, U) is bounded and
the control

u(t) = −(L0)−1
[
T (b)z0 +

∫ b

0
T (b− s)F (s)ds+

∫ b

0
T (b− s)G(s)dw(s)

]
= −W (z0, F, G)

transfers the system (3) from z0 to 0, where L0 is the restriction of Lb
0 to [kerLb

0]
⊥,

F ∈ L2(J,H) and G ∈ L2(J, L(K,H)).
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For the proof of the main result in section 3, we will use the following hypothe-
ses:
(C1) The compact semigroup T (t) on the separable Hilbert space H, there exists

constant MT such that

‖T (t)‖ ≤MT , t ≥ 0,

(C2) The linear system (3) is exactly null controllable on J.
(C3) w is a H-valued Wiener process defined on a Hilbert space K.
(C4) The functions F : J×Cr → H and G : J×Cr → L(K,H) are continuous,

for each x ∈ H the functions F (·, x) : J → H and G(·, x) : J → L(KQ, H)
are strongly Ft-measurable and there exists functions λ(·) ∈ L1(J, R+) and
g(·) ∈ L1(Cr, R

+) be such that for a.a. (t, φ) ∈ J × Cr

E‖F (t, φ)‖
∨
E‖G(t, φ)‖Q ≤ λ(t)g(φ).

(C5) Next, for convenience, let us introduce the following assumptions

‖λ‖2 =
( ∫ b

0
‖λ(s)‖2ds

)1/2

k = max{1,MW ,MBMT

√
b}, where MW = ‖W‖ and MB = ‖B‖

c = max{c1, c2}, where c1 = 2kMW

√
b
(‖λ‖+

√
Tr(Q)‖λ‖2

)
and c2 = 2MT b

(‖λ‖+
√
Tr(Q)‖λ‖2

)
d = max{d1, d2}, where d1 = 2kMW‖φ(0)‖ and d2 = 2MT‖φ(0)‖.

(C5) lim supr→∞
(
r − csup{g(φ) : ‖φ‖ ≤ r}) = ∞.

3. CONTROLLABILITY RESULTS

Theorem 3.1. Suppose the conditions (C1)-(C6) are satisfied. Then the system
(2) is exactly null controllable on J .

Proof. Using the hypothesis (C2) for an arbitrary x(·) define the operator Φ on
Y as follows

(4) (Φx)(t) =




φ(t), if t ∈ [−r, 0],

T (t)φ(0) +
∫ t

0

T (t− s)(−BW (φ(0), F, G))ds

+
∫ t

0
T (t− s)F (s, xs)ds

+
∫ t

0
T (t− s)

( ∫ s

0
G(τ, xτ)dw(τ)

)
ds, for a. e. t ∈ J ,
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where

W (φ(0), F, G)=(L0)−1
[
T (b)φ(0)+

∫ b

0
T (b−s)

(
F (s, xs)+

∫ s

0
G(τ, xτ)dw(τ)

)
ds

]
.

It will be shown that the operator Φ from Y into itself has a fixed point. On the
Banach space Y introduce a set

Yr = {x(·) ∈ Y : x(t) = φ(t), t ∈ [−r, 0], ‖x(t)‖Y ≤ r for all t ∈ J1}
where r is the positive constant. Let

ψ(r) = sup{g(φ) : ‖φ‖ ≤ r}.
By the hypothesis (C6), there exists r > 0 such that

d+ cψ(r) ≤ r.

The proof will be given in several steps.

Step 1. The control u(·) = −W (φ(0), F, G) is bounded on Yr. Indeed,

E‖u‖ ≤
(∫ b

0
E‖W (φ(0), F, G)(s)‖2ds

)1/2

≤ MW

[
E‖φ(0)‖+

( ∫ t

0

E‖F (s, xs)‖2ds
)1/2

+
( ∫ b

0

(∫ s

0
E‖G(τ, xτ)dw(τ)‖)2

ds
)1/2]

.

That is

(5)
‖u‖ ≤MW

[
‖φ(0)‖+

√
b‖λ‖ψ(r)+

√
Tr(Q)

√
b
( ∫ s

0
‖λ(τ)‖2dτ

)1/2
ψ(r)

]

≤MW

[
‖φ(0)‖+

√
b
(‖λ‖+

√
Tr(Q)‖λ‖2

)
ψ(r)

]
.

Step 2. There exists r > 0 such Φ sends Yr into itself, Φ : Yr → Yr. If
x(·) ∈ Yr, from (4) and (5) for t ∈ J , we have

E‖(Φx)(t)‖ ≤ MTE‖φ(0)‖+MTMB

√
b
(∫ b

0
E‖W (φ(0), F,G)(s)‖2ds

)1/2

+MT

√
b
(∫ t

0

E‖F (s, xs)‖2ds
)1/2

+MT

√
b
(∫ t

0

∫ s

0
E‖G(τ, xτ)dw(τ)‖2ds

)1/2
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‖(Φx)(t)‖
≤ MT‖φ(0)‖+MTMB

√
bMW

[
‖φ(0)‖+

√
b
(‖λ‖+

√
Tr(Q)‖λ‖2

)
ψ(r)

]

+MT b
(
‖λ‖+

√
Tr(Q)‖λ‖2

)
ψ(r)

≤ d

2
+
d

2
+ kMW

[√
b
(‖λ‖+

√
Tr(Q)‖λ‖2

)
ψ(r)

]

+MT b
(‖λ‖+

√
Tr(Q)‖λ‖2

)
ψ(r)

≤ 1
2
(
d+ cψ(r)

)
+

1
2
(
d+ cψ(r)

)

≤ r.

Hence, Φ maps Yr into itself.

Step 3. The operator Φ maps Yr into equicontinuous set of Yr. Let 0 < t1 <

t2 ≤ b. For each x ∈ Yr , we have

z(t1) − z(t2) ≤ [
T (t1)− T (t2)]φ(0)−

∫ t2

t1

T (t2 − s)BW (φ(0), F, G)(s)ds

+
∫ t1

0

[
T (t1 − s) − T (t2 − s)

]
BW (φ(0), F, G)(s)ds

−
∫ t2

t1

T (t2 − s)
[
F (s, xs) +

∫ s

0
G(τ, xτ)dw(τ)

]
ds

+
∫ t1

0

[
T (t1−s)−T (t2−s)

][
F (s, xs) +

∫ s

0
G(τ, xτ)dw(τ)

]
ds.

Therefore,

‖z(t1) − z(t2)‖
≤ ‖T (t1)− T (t2)‖‖φ(0)‖+MTMB

∫ t2

t1

‖W (φ(0), F, G)(s)‖ds

+MB

∫ t1

0
‖T (t1 − s) − T (t2 − s)‖‖W (φ(0), F, G)(s)‖ds

+MT

∫ t2

t1

(
λ(s) +

∫ s

0

λ(τ)dw(τ)
)
dsψ(r)

+
∫ t1

0

‖T (t2 − s) − T (t1 − s)‖(λ(s) +
∫ s

0

λ(τ)dw(τ)
)
dsψ(r)

= I1 + I2 + I3 + I4 + I5.

(6)

Since by (5) the control u is bounded, the right hand side (6) does not depend on
particular choices of x(·). It is clear that I2 → 0 and I4 → 0 as t1 − t2 → 0.
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Since the semigroup T (·) is compact, ‖T (t2 − s)− T (t1 − s)‖ → 0 as t1 − t2 → 0
for arbitrary t, s such that t − s > 0. Then I1 → 0 and by Lebesque’s dominated
convergence theorem, I3 → 0 and I5 → 0 as t1 − t2 → 0. As t1 − t2 → 0, the
right-hand side of (6) tends to zero. The equicontinuity for the cases t1 < t2 ≤ 0
and t1 ≤ 0 ≤ t2 follows from the uniform continuity of φ on the interval [−r, 0].

Step 4. For arbitrary t ∈ J the set

V (t) = {(Φx)(t) : x(·) ∈ Yr}
is relatively compact. In fact, the case where t = 0 is trivial, since V (0) = {φ(0)}.
So, let t, 0 < t ≤ b, be a fixed and let η be a real numbers satisfying 0 < η < t.
For every x(·) ∈ Yr define

(Φηx)(t) = T (t)φ(0) + T (η)
∫ t−η

0
T (t− s− η)

(
−BW (φ(0), F, G)

+F (s, xs) +
∫ s

0
G(τ, xτ)dw(τ)

)
ds.

Since T (η) is compact, the set

Vη(t) = {(Φηx)(t) : x(·) ∈ Yr}
is relatively compact set in H for every η, 0 < η < t. On the otherhand, for every
x(·) ∈ Yr by (6) we have

‖(Φx)(t)− (Φηx)(t)‖

=
∥∥∥

∫ t

t−η
T (t− s)

[
BW (φ(0), F, G)(s)

+F (s, xs) +
∫ s

0

G(τ, xτ)dw(τ)
]
ds

∥∥∥

≤
( ∫ t

t−η
‖T (t− s)‖2‖B‖2ds

)1/2( ∫ b

0
‖W (φ(0), F, G)(s)‖2ds

)1/2

+MT ‖λ‖ψ(r)η+MT

√
Tr(Q)‖λ‖2ψ(r)η

≤ MTMBMW

[
‖φ(0)‖+

√
b
(‖λ‖+

√
Tr(Q)‖λ‖2

)
ψ(r)

]

+MT η
(‖λ‖+

√
Tr(Q)‖λ‖2

)
ψ(r)

≤ ε.

Therefore there are relatively compact sets arbitrarily close to the set V (t). Hence,
for each t ∈ J , the set V (t) is relatively compact in H (see Pazy [12]).
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From the steps 2-4 and by the Ascoli-Arzela theorem, one can conclude that Φ
is compact. On the other hand, it is easy to see tat Φ is continuous on Yr. Hence,
Φ is a compact continuous operator on Yr. From the Schauder fixed point theorem
Φ has a fixed point. Thus, the system (1) is exactly null controllable on J .

4. APPLICATION

The results from Section 3 is illustrated by showing its applicability to a semi-
linear partial integrodifferential equation.

Consider the partial differential system of the form

xt(t, θ) = xθθ(t, θ) + u(t, θ) + F (s, x(s− h, θ))

+
∫ t

0
G(s, x(s− h, θ)dw(s), 0 < x < 1, t ∈ J,

xθ(t, 0) = xθ(t, 1) = 0, t ∈ J

x(t, θ) = φ(t, θ), x ∈ [−h, 0].

(7)

where φ is continuous, u ∈ L2(0, b) and H = L2(0, 1). Also F : R × R → R

and G : R × R → L(R) are continuous. Let A : H → H be operator defined by
Az = d2z

dθ2 with domain

D(A) = {z ∈ H : z,
dz

dθ
are absolutely continuous, zθθ ∈ H,

dz

dθ
(0) =

dz

dθ
(1) = 0}.

It is known that A is closed and A has eigenvalues λn = −n2π2, n ≥ 0, and
the corresponding eigenvectors en(θ) =

√
2cos(nπθ) for n ≥ 1, e0 = 1, form an

orthonormal basis for L2(0, 1). Further, it is known that A generates a compact
semigroup T (t), t > 0 in H and is given by

T (t)z = (z, 1) +
∞∑

n=1

e−n2π2t(z, en)en

=
∫ 1

0
z(α)dα+

∞∑
n=1

(2e−n2π2tcos(nπθ)
∫ 1

0
cos(nπα)z(α)dα, z ∈ H,

and it is self-adjoint. If u ∈ L2(J,H), then B = I, B∗ = I and consequently by
Remark 2.1, the condition for exact null controllability of the linear system with
additive terms F,G ∈ L2(J,H),

xt(t, θ) = xθθ(t, θ) + u(t, θ) + F (t, θ) +
∫ t

0
G(t, θ)dw(t),

xθ(t, 0) = xθ(t, 1) = 0, t ∈ J

x(t, θ) = φ(t, θ), x ∈ [−h, 0].

(8)
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is the existence of a γ > 0 such that
∫ b

0
‖B∗T ∗(b− s)z‖2ds ≥ γ

(
‖T ∗(b)z‖2 +

∫ b

0
‖T ∗(b− s)z‖2ds

)

or equivalently
∫ b

0
‖T ∗(b− s)z‖2ds ≥ γ

(
‖T (b)z‖2 +

∫ b

0
‖T (b− s)z‖2ds

)
.

In [5], it is shown that the linear system (8) with f = 0 is exactly null controllable
if

∫ b

0
‖T (b− s)z‖2ds ≥ b‖T (b)z‖2.

From here it follows that
∫ b

0
‖T (b− s)z‖2ds ≥ b

1 + b

(
‖T (b)z‖2 +

∫ b

0
‖T (b− s)z‖2ds

)
.

Thus by Remark 2.1, the linear system (8) is exactly null controllable.
We assume that the nonlinear operators F : J × H → H and G : J × H →

L(K,H) are continuous and there is a constant 0 < γ < 1 and a function α ∈ L2(J)
such that

‖F (s, z)‖
∨

‖G(s, z)‖ ≤ α(s)‖z‖γ

for all (s, z) ∈ J × H. So the conditions (C4) and (C6) are satisfied. Further, all
the conditions stated in the above Theorem 3.1 are satisfied. Hence the system (7)
is exactly null controllable on J .
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