EXISTENCE AND NONEXISTENCE OF GLOBAL SOLUTIONS FOR A NONLINEAR WAVE EQUATION

Shun-Tang Wu and Long-Yi Tsai

Abstract

The initial boundary value problem for a Kirchhoff type plate equation in a bounded domain is considered. We prove the existence of global solutions by the similar arguments as in [11]. We derive the blow-up properties of solutions by energy method. Moreover, the estimates of the lifespan of solutions are also given.

1. Introduction

In this paper we consider the initial boundary value problem for the following nonlinear wave equation :

$$
\begin{equation*}
u_{t t}+\alpha \Delta^{2} u-M\left(\|\nabla u\|_{2}^{2}\right) \Delta u=f(u) \tag{1.1}
\end{equation*}
$$

with initial conditions

$$
\begin{equation*}
u(x, 0)=u_{0}(x), u_{t}(x, 0)=u_{1}(x), x \in \Omega \tag{1.2}
\end{equation*}
$$

and boundary condition

$$
\begin{equation*}
u(x, t)=\frac{\partial}{\partial \nu} u(x, t)=0, x \in \partial \Omega, t \geq 0 \tag{1.3}
\end{equation*}
$$

where $\Delta=\sum_{j=1}^{N} \frac{\partial^{2}}{\partial x_{j}^{2}}$ and $\Omega \subset \mathbb{R}^{N}, N \geq 1$, is a bounded domain with a smooth boundary $\partial \Omega$ so that Divergence theorem can be applied. Here $\alpha>0, f$ is a nonlinear function like $f(u)=|u|^{p-2} u, p>2, M(s)$ is a positive locally Lipschitz function like $M(s)=m_{0}+b s^{\gamma}, m_{0}>0, b \geq 0, \gamma \geq 1$ and $s \geq 0, \nu$ is the normal

[^0]Communicated by Jong-Shenq Guo.
2000 Mathematics Subject Classification: 74K20, 74K10, 93D15, 93D20.
Key words and phrases: Blow-up, Life span, Wave equation, Global existence.
unit vector pointing toward the exterior of Ω and $\frac{\partial}{\partial \nu}$ denotes the normal derivative on $\partial \Omega$.

First, we mention some of the known results related to the problem (1.1). When $f \equiv 0$, Woinowsky-Krieger [26] first proposed the problem (1.1) - (1.3) in the one-dimensional case as a model to describe the dynamic buckling of a hinged extensible beam under an axial force. The derivation of this model also can be found in [10, 9, 23]. Dickey [9] considered (1.1) with hinged boundary condition and the existence of solution was established. Later, Ball [2] extended the work of Dickey to both the cases of hinged ends and that of clamped ends, and he obtained the existence of weak solutions for (1.1) by using the technique of Lions [18]. For the general space dimension N, Mederiors [20] considered the problem (1.1) with $f \equiv 0$ in abstract framework. When the influence of the internal damping is considered, the problem (1.1) was treated by Brito [3] and Biler [5] for the linear damping case. On the other hand, for the nonlinear damping case, KomémouPatcheu [17], Vasconcellos [24] and Aassila [1] investigated the problem (1.1) with $f \equiv 0$. Recently, Cavalcanti et. al. [7] considered the problem (1.1) with nonlinear damping and internal force for general domains, and obtain the global existence of weak solutions. Concerning the nonexistence of global solutions, Kirane et. al. [15] and Can [6] studied the blow-up properties of (1.1) with a dynamic boundary condition in the case that $M \equiv 0$. Later, Guedda and Labani [12] discussed the nonexistence result of the problem (1.1) for the nontrival function M.

When $\alpha \equiv 0$ in the equation (1.1), it is Kirchhoff equation which has been modeled in describing the nonlinear vibrations of an elastic string. Kirchhoff [16] was the first one to study the oscillations of stretched strings and plates. In this direction, there has been a large literatures concerning the existence and nonexistence of global solutions and some properties of solutions with initial and null Dirchlet boundary conditions [13, 14, 21, 27].

In this paper, we shall discuss the existence, uniqueness, global existence and blow-up properties of solutions for the problem (1.1) - (1.3) in a bounded domain Ω in \mathbb{R}^{N}. The content of this paper is organized as follows. In section 2 , we give some lemmas and assumptions which will be used later. In section 3, we first use Galerkin approximation method to study the existence of the linear problem (3.1) - (3.3). Then, we obtain the local existence of regular solutions for the problem (1.1) - (1.3) by using contraction mapping principle, and the uniqueness of solution is also given. By using density arguments, we derive the local existence of weak solution in Theorem 3.3. In section 4, we first define an energy function $E(t)$ in (4.7) and show that it is a constant function of t. Then, we obtain Theorem 4.4, which shows global existence of solutions under some restrictions on the initial data. In the last section, the blow-up properties of local solution for the problem (1.1) - (1.3) with small positive initial energy are obtained by using the direct
method [19]. Moreover, the estimates for the blow-up time T^{*} are also given. In this way, we can extend the result of [2] to nonzero external force term $f(u)$ and to more general $M(s)$, and the result of [20] to nonzero external force term $f(u)$.

2. Preliminary Results

In this section, we shall give some lemmas and assumptions which will be used throughout this work.

Lemma 2.1. (Sobolev-Poincare inequality [22]). If $2 \leq p \leq \frac{2 N}{[N-2 m]^{+}}$, then

$$
\|u\|_{p} \leq B_{1}\left\|(-\Delta)^{\frac{m}{2}} u\right\|_{2}, \text { for } u \in D\left((-\Delta)^{\frac{m}{2}}\right)
$$

holds with some constant B_{1}, where we put $[a]^{+}=\max \{0, a\}, \frac{1}{[a]^{+}}=\infty$ if $[a]^{+}=0$ and denote $\|\cdot\|_{p}$ to be the norm of $L^{p}(\Omega)$.

Lemma 2.2. [19]. Let $\delta>0$ and $B(t) \in C^{2}(0, \infty)$ be a nonnegative function satisfying

$$
\begin{equation*}
B^{\prime \prime}(t)-4(\delta+1) B^{\prime}(t)+4(\delta+1) B(t) \geq 0 \tag{2.1}
\end{equation*}
$$

If

$$
\begin{equation*}
B^{\prime}(0)>r_{2} B(0), \tag{2.2}
\end{equation*}
$$

with $r_{2}=2(\delta+1)-2 \sqrt{(\delta+1) \delta}$, then

$$
B^{\prime}(t)>0,
$$

for $t>0$.
Lemma 2.3. [19]. If $J(t)$ is a nonincreasing function on $\left[t_{0}, \infty\right), t_{0} \geq 0$ and satisfies the differential inequality

$$
\begin{equation*}
J^{\prime}(t)^{2} \geq a+b J(t)^{2+\frac{1}{\delta}} \text { for } t \geq t_{0} \tag{2.3}
\end{equation*}
$$

where $a>0$ and $b \in \mathbb{R}$, then there exists a finite time T^{*} such that

$$
\lim _{t \rightarrow T^{*-}} J(t)=0
$$

and the upper bound of T^{*} is estimated respectively by the following cases :
(i) If $b<0$ and $J\left(t_{0}\right)<\min \left\{1, \sqrt{\frac{a}{-b}}\right\}$ then

$$
T^{*} \leq t_{0}+\frac{1}{\sqrt{-b}} \ln \frac{\sqrt{\frac{a}{-b}}}{\sqrt{\frac{a}{-b}}-J\left(t_{0}\right)}
$$

(ii) If $b=0$, then

$$
T^{*} \leq t_{0}+\frac{J\left(t_{0}\right)}{\sqrt{a}}
$$

(iii) If $b>0$, then

$$
T^{*} \leq \frac{J\left(t_{0}\right)}{\sqrt{a}}
$$

or

$$
T^{*} \leq t_{0}+2^{\frac{3 \delta+1}{2 \delta}} \frac{\delta c}{\sqrt{a}}\left\{1-\left[1+c J\left(t_{0}\right)\right]^{\frac{-1}{2 \delta}}\right\}
$$

where $c=\left(\frac{b}{a}\right)^{\frac{\delta}{2+\delta}}$.
Now, we state the hypothesis on f :
(A1) $f(0)=0$ and there is a positive constant k_{1} such that

$$
|f(u)-f(v)| \leq k_{1}|u-v|\left(|u|^{p-2}+|v|^{p-2}\right)
$$

for $u, v \in \mathbb{R}$ and $2<p \leq \frac{2(N-3)}{N-4} ;(2<p$, if $N \leq 4)$.

3. Local Existence

In this section, we shall discuss the local existence of solutions for wave equations (1.1) - (1.3) by using contraction mapping principle.

An important tool in the proof of local existence Theorem 3.2 is based on studying the following linear problem :

$$
\begin{equation*}
u_{t t}+\alpha \Delta^{2} u-\mu(t) \Delta u=f_{1}(x, t) \text { on } \Omega \times(0, T) \tag{3.1}
\end{equation*}
$$

with initial conditions

$$
\begin{equation*}
u(x, 0)=u_{0}(x), u_{t}(x, 0)=u_{1}(x), x \in \Omega \tag{3.2}
\end{equation*}
$$

and Dirichlet boundary condition

$$
\begin{equation*}
u(x, t)=\frac{\partial}{\partial \nu} u(x, t)=0, x \in \partial \Omega, t>0 \tag{3.3}
\end{equation*}
$$

Here, $T>0, f_{1}$ is some fixed forcing term on $\Omega \times(0, T)$, and μ is a positive locally Lipschitz function on $[0, \infty)$ with $\mu(t) \geq m_{0}>0$ for $t \geq 0$.

Lemma 3.1. Suppose that $u_{0} \in U, u_{1} \in H_{0}^{1}(\Omega) \cap H^{2}(\Omega)$ and $f_{1} \in W^{1,2}(0, T$; $\left.L^{2}(\Omega)\right)$. Then the problem $(3.1)-(3.3)$ admits a unique solution u such that

$$
u \in L^{\infty}(0, T ; U), u_{t} \in L^{\infty}\left(0, T ; H_{0}^{1}(\Omega) \cap H^{2}(\Omega)\right)
$$

and

$$
u_{t t} \in L^{\infty}\left(0, T ; L^{2}(\Omega)\right),
$$

where

$$
U=\left\{u \in H_{0}^{2}(\Omega) ; \Delta^{2} u \in L^{2}(\Omega)\right\} .
$$

Proof. Let $\left(w_{n}\right)_{n \in N}$ be a basis in U and let V_{n} be the space generated by $w_{1}, \cdots, w_{n}, n=1,2, \cdots$. Let us consider

$$
u_{n}(t)=\sum_{i=1}^{n} r_{i n}(t) w_{i}
$$

to be the solution of the following approximate problem corresponding to (3.1) (3.3)

$$
\begin{align*}
& \int_{\Omega} u_{n}^{\prime \prime}(t) w d x+\alpha \int_{\Omega} \Delta u_{n}(t) \Delta w d x+\mu(t) \int_{\Omega} \nabla u_{n}(t) \cdot \nabla w d x \tag{3.4}\\
= & \int_{\Omega} f_{1}(x, t) w d x \text { for } w \in V_{n},
\end{align*}
$$

with initial conditions

$$
\begin{equation*}
u_{n}(0)=u_{0 n} \equiv \sum_{i=1}^{n} p_{i n} w_{i} \rightarrow u_{0} \text { in } U \tag{3.5}
\end{equation*}
$$

and

$$
\begin{equation*}
u_{n}^{\prime}(0)=u_{1 n} \equiv \sum_{i=1}^{n} q_{i n} w_{i} \rightarrow u_{1} \text { in } H_{0}^{1}(\Omega) \cap H^{2}(\Omega) \tag{3.6}
\end{equation*}
$$

where $p_{i n}=\int_{\Omega} u_{0} w_{i} d x, q_{i n}=\int_{\Omega} u_{1} w_{i} d x$ and $u^{\prime}=\frac{\partial u}{\partial t}$.
By standard methods in differential equations [8], we prove the existence of solutions to (3.4) - (3.6) on some interval $\left[0, t_{n}\right), 0<t_{n}<T$. In order to extend the solution of $(3.4)-(3.6)$ to the whole interval $[0, T]$, we need the following a priori estimates.

Step 1. Setting $w=2 u_{n}^{\prime}(t)$ in (3.4), we obtain

$$
\begin{align*}
& \frac{d}{d t}\left(\left\|u_{n}^{\prime}(t)\right\|_{2}^{2}+\alpha\left\|\Delta u_{n}\right\|_{2}^{2}+\mu(t)\left\|\nabla u_{n}(t)\right\|_{2}^{2}\right) \\
= & 2 \int_{\Omega} f_{1}(x, t) u_{n}^{\prime}(t) d x+\mu^{\prime}(t)\left\|\nabla u_{n}(t)\right\|_{2}^{2} . \tag{3.7}
\end{align*}
$$

Note that by Hölder inequality and Young's inequality, we have

$$
\begin{equation*}
2\left|\int_{\Omega} f_{1}(x, t) u_{n}^{\prime}(t) d x\right| \leq\left\|f_{1}\right\|_{2}^{2}+\left\|u_{n}^{\prime}(t)\right\|_{2}^{2} \tag{3.8}
\end{equation*}
$$

Then, by integrating (3.7) over $(0, t)$ and using (3.8), we obtain

$$
\begin{align*}
& \left\|u_{n}^{\prime}(t)\right\|_{2}^{2}+\alpha\left\|\Delta u_{n}\right\|_{2}^{2}+\mu(t)\left\|\nabla u_{n}(t)\right\|_{2}^{2} \\
\leq & c_{1}+\int_{0}^{t}\left(1+\frac{\left|\mu^{\prime}(s)\right|}{\mu(s)}\right)\left[\left\|u_{n}^{\prime}(s)\right\|_{2}^{2}+\mu(s)\left\|\nabla u_{n}(s)\right\|_{2}^{2}\right] d t \tag{3.9}
\end{align*}
$$

where $c_{1}=\left\|u_{1 n}\right\|_{2}^{2}+\alpha\left\|\Delta u_{0 n}\right\|_{2}^{2}+\mu(0)\left\|\nabla u_{0 n}\right\|_{2}^{2}+\int_{0}^{T}\left\|f_{1}\right\|_{2}^{2} d t$.
We observe that conditions (3.5) and (3.6) and the assumption of f_{1} implies that c_{1} is bounded. Thus, by employing Gronwall's Lemma, we see that

$$
\begin{equation*}
\left\|u_{n}^{\prime}(t)\right\|_{2}^{2}+\alpha\left\|\Delta u_{n}\right\|_{2}^{2}+\mu(t)\left\|\nabla u_{n}(t)\right\|_{2}^{2} \leq L_{1} \tag{3.10}
\end{equation*}
$$

for $t \in[0, T]$ and L_{1} is a positive constant independent of $n \in N$.
Step 2. To estimate $u_{n}^{\prime \prime}(0)$ in L^{2}-norm, we let $t=0$ in (3.4) and put $w=$ $2 u_{n}^{\prime \prime}(0)$, we deduce that

$$
\left\|u_{n}^{\prime \prime}(0)\right\|_{2}^{2} \leq\left\|u_{n}^{\prime \prime}(0)\right\|_{2}\left[\alpha\left\|\Delta^{2} u_{0 n}\right\|_{2}+\mu(0)\left\|\Delta u_{0 n}\right\|_{2}+\left\|f_{1}\right\|_{2}\right] .
$$

Thus, using (3.5) and (3.6), there exists a positive constant L_{2} independent of $n \in N$ such that

$$
\begin{equation*}
\left\|u_{n}^{\prime \prime}(0)\right\|_{2} \leq L_{2} \tag{3.11}
\end{equation*}
$$

Next, we are going to give an upper bound for $\left\|u_{n}^{\prime \prime}(t)\right\|_{2}$.
Step 3. Taking the derivative of (3.4) with respect to t and setting $w=2 u_{n}^{\prime \prime}(t)$, we have

$$
\begin{align*}
& \frac{d}{d t}\left(\left\|u_{n}^{\prime \prime}(t)\right\|_{2}^{2}+\alpha\left\|\Delta u_{n}^{\prime}(t)\right\|_{2}^{2}+\mu(t)\left\|\nabla u_{n}^{\prime}(t)\right\|_{2}^{2}\right) \tag{3.12}\\
= & -2 \mu^{\prime}(t) \int_{\Omega} \nabla u_{n}(t) \cdot \nabla u_{n}^{\prime \prime}(t) d x+\mu^{\prime}(t)\left\|\nabla u_{n}^{\prime}(t)\right\|_{2}^{2}+2 \int_{\Omega} f_{1}^{\prime}(x, t) u_{n}^{\prime \prime}(t) d x .
\end{align*}
$$

By Holder inequality and Young's inequality, we note that

$$
\begin{equation*}
2\left|\mu^{\prime}(t) \int_{\Omega} \nabla u_{n}(t) \cdot \nabla u_{n}^{\prime \prime}(t) d x\right| \leq M_{1}^{2}\left(\left\|\Delta u_{n}^{\prime}\right\|_{2}^{2}+\left\|u_{n}^{\prime \prime}\right\|_{2}^{2}\right) \tag{3.13}
\end{equation*}
$$

and we also get

$$
\begin{equation*}
2\left|\int_{\Omega} f_{1}^{\prime}(x, t) u_{n}^{\prime \prime}(t) d x\right| \leq\left\|f_{1}^{\prime}\right\|_{2}^{2}+\left\|u_{n}^{\prime \prime}\right\|_{2}^{2} \tag{3.14}
\end{equation*}
$$

where $M_{1}=\sup _{0 \leq t \leq T}\left|\mu^{\prime}(t)\right|$.
Thus, by integrating (3.12) over $(0, t)$ and using (3.13), (3.14), (3.11) and (3.10),
we obtain

$$
\begin{aligned}
& \left\|u_{n}^{\prime \prime}(t)\right\|_{2}^{2}+\alpha\left\|\Delta u_{n}^{\prime}(t)\right\|_{2}^{2}+\mu(t)\left\|\nabla u_{n}^{\prime}(t)\right\|_{2}^{2} \\
\leq & c_{2}+\int_{0}^{t}\left(2+\frac{\left|\mu^{\prime}(s)\right|}{\mu(s)}\right)\left(\left\|u_{n}^{\prime \prime}(s)\right\|_{2}^{2}+\mu(s)\left\|\nabla u_{n}^{\prime}(s)\right\|_{2}^{2}\right) d s,
\end{aligned}
$$

where $c_{2}=\mu(0)\left\|\nabla u_{1 n}\right\|_{2}^{2}+L_{2}^{2}+\alpha\left\|\Delta u_{1 n}\right\|_{2}^{2}+T L_{1}^{2} M_{1}^{2}+\int_{0}^{T}\left\|f_{1}^{\prime}\right\|_{2}^{2} d t$.
Then, by Gronwall's Lemma and using (3.5) - (3.6), we have

$$
\begin{equation*}
\left\|u_{n}^{\prime \prime}(t)\right\|_{2}^{2}+\alpha\left\|\Delta u_{n}^{\prime}(t)\right\|_{2}^{2}+\mu(t)\left\|\nabla u_{n}^{\prime}(t)\right\|_{2}^{2} \leq L_{3}, \tag{3.15}
\end{equation*}
$$

for all $t \in[0, T]$ and L_{3} is a positive constant independent of $n \in N$.
Therefore, from (3.10) and (3.15), we see that

$$
\begin{gather*}
u_{i}^{\prime} \rightarrow u^{\prime} \text { weak-* in } L^{\infty}\left(0, T ; H_{0}^{1}(\Omega) \cap H^{2}(\Omega)\right), \tag{3.17}\\
u_{i}^{\prime} \rightarrow u^{\prime} \text { weak-* in } L^{\infty}\left(0, T ; L^{2}(\Omega)\right), \tag{3.18}\\
u_{i}^{\prime \prime} \rightarrow u^{\prime \prime} \text { weak-* in } L^{\infty}\left(0, T ; L^{2}(\Omega)\right) .
\end{gather*}
$$

Thus, by passing the limit in (3.4) and using (3.16) - (3.19), we obtain

$$
\int_{0}^{T} \int_{\Omega}\left(u_{t t}+\alpha \Delta^{2} u-\mu(t) \Delta u\right) v \theta d x d t=\int_{0}^{T} \int_{\Omega} f_{1}(x, t) v \theta d x d t,
$$

for all $\theta \in D(0, T)$ and for all $v \in U$. From above identity, we have

$$
\begin{equation*}
u_{t t}+\alpha \Delta^{2} u-\mu(t) \Delta u=f_{1}(x, t) \text { in } D^{\prime}(\Omega \times(0, T)) . \tag{3.20}
\end{equation*}
$$

On the other hand, since $u^{\prime \prime}, \mu \Delta u$ and $f_{1} \in L^{\infty}\left(0, T ; L^{2}(\Omega)\right)$ and by (3.20), we deduce that $\Delta^{2} u \in L^{\infty}\left(0, T ; L^{2}(\Omega)\right)$, so $u \in L^{\infty}(0, T ; U)$.
In addition

$$
u_{t t}+\alpha \Delta^{2} u-\mu(t) \Delta u=f_{1}(x, t) \text { in } L^{\infty}\left(0, T ; L^{2}(\Omega)\right) .
$$

Next, we want to show the uniqueness of (3.1) - (3.3). Let $u^{(1)}, u^{(2)}$ be two solutions of $(3.1)-(3.3)$. Then $z=u^{(1)}-u^{(2)}$ satisfies

$$
\begin{equation*}
\int_{\Omega} z^{\prime \prime}(t) w d x+\alpha \int_{\Omega} \Delta z \Delta w d x+\mu(t) \int_{\Omega} \nabla z(t) \cdot \nabla w d x=0 \text { for } w \in U, \tag{3.21}
\end{equation*}
$$

$$
\begin{gathered}
z(x, 0)=0, z^{\prime}(x, 0)=0, \quad x \in \Omega \\
z(x, t)=\frac{\partial}{\partial \nu} z(x, t)=0, x \in \partial \Omega, t \geq 0
\end{gathered}
$$

Setting $w=2 z^{\prime}(t)$ in (3.21), then as in deriving (3.10), we see that

$$
\begin{aligned}
& \left\|z^{\prime}(t)\right\|_{2}^{2}+\mu(t)\|\nabla z(t)\|_{2}^{2}+\alpha\|\Delta z(t)\|_{2}^{2} \\
\leq & \int_{0}^{t}\left[1+\frac{\left|\mu^{\prime}(s)\right|}{\mu(s)}\right]\left[\left\|z^{\prime}(s)\right\|_{2}^{2}+\mu(s)\|\nabla z(s)\|_{2}^{2}\right] d s
\end{aligned}
$$

Thus, by employing Gronwall's Lemma, we conclude that

$$
\left\|z^{\prime}(t)\right\|_{2}=\|\nabla z(t)\|_{2}=\|\Delta z(t)\|_{2}=0 \text { for all } t \in[0, T]
$$

Therefore, we have the uniqueness.
Now, we are ready to to show the local existence of the problem (1.1) - (1.3).
Theorem 3.2. (Regular Solution). Suppose that (A1) holds, and that $u_{0} \in U$, $u_{1} \in H_{0}^{1}(\Omega) \cap H^{2}(\Omega)$, then there exists a unique solution u of $(1.1)-(1.3)$ satisfying

$$
u \in L^{\infty}(0, T ; U), u_{t} \in L^{\infty}\left(0, T ; H_{0}^{1}(\Omega) \cap H^{2}(\Omega)\right)
$$

and

$$
u_{t t} \in L^{\infty}\left(0, T ; L^{2}(\Omega)\right)
$$

Proof. Define the following two-parameter space :

$$
X_{T, R_{0}}=\left\{\begin{array}{c}
v \in L^{\infty}\left(0, T ; H_{0}^{2}(\Omega)\right), v_{t} \in L^{\infty}\left(0, T ; H_{0}^{1}(\Omega) \cap H^{2}(\Omega)\right): \\
e(v(t)) \leq R_{0}^{2}, t \in[0, T], \text { with } v(0)=u_{0} \text { and } v_{t}(0)=u_{1}
\end{array}\right\}
$$

for $T>0, R_{0}>0$ and $e(v(t)) \equiv\left\|v_{t}(t)\right\|_{2}^{2}+\|\Delta v(t)\|_{2}^{2}$. Then $X_{T, R_{0}}$ is a complete metric space with the distance

$$
\begin{equation*}
d(y, z)=\sup _{0 \leq t \leq T}\left[\|\Delta(y-z)\|_{2}^{2}+\left\|(y-z)_{t}\right\|_{2}^{2}\right]^{\frac{1}{2}} \tag{3.22}
\end{equation*}
$$

where $y, z \in X_{T, R_{0}}$.
Given $v \in X_{T, R_{0}}$, we consider the following problem

$$
\begin{equation*}
u_{t t}+\alpha \Delta^{2} u-M\left(\|\nabla v\|_{2}^{2}\right) \Delta u=f(v) \tag{3.23}
\end{equation*}
$$

with initial conditions

$$
\begin{equation*}
u(x, 0)=u_{0}(x), u_{t}(x, 0)=u_{1}(x), x \in \Omega \tag{3.24}
\end{equation*}
$$

and boundary condition

$$
\begin{equation*}
u(x, t)=\frac{\partial}{\partial \nu} u(x, t)=0, x \in \partial \Omega, t \geq 0 \tag{3.25}
\end{equation*}
$$

First of all, we observe that

$$
\begin{align*}
\frac{d}{d t} M\left(\|\nabla v\|_{2}^{2}\right) & =2 M^{\prime}\left(\|\nabla v\|_{2}^{2}\right) \int_{\Omega} \nabla v \cdot \nabla v_{t} d x \\
& \leq 2 M_{2}\|\Delta v\|_{2}\left\|v_{t}\right\|_{2} \tag{3.26}\\
& \leq M_{2} R_{0}^{2}
\end{align*}
$$

where $M_{2}=\sup \left\{\left|M^{\prime}(s)\right| ; 0 \leq s \leq B_{1}^{2} R_{0}^{2}\right\}$. And by (A1), we note that $f \in$ $W^{1,2}\left(0, T ; L^{2}(\Omega)\right)$. Thus, by Lemma 3.1, there exists a unique solution u of (3.23)(3.25). We define the nonlinear mapping $S v=u$, and then, we shall show that there exist $T>0$ and $R_{0}>0$ such that
(i) $S: X_{T, R_{0}} \rightarrow X_{T, R_{0}}$,
(ii) S is a contraction mapping in $X_{T, R_{0}}$ with respect to the metric $d(\cdot, \cdot)$ defined in (3.22).

Multiplying (3.23) by $2 u_{t}$, and then integrating it over $\Omega \times(0, t)$, we obtain

$$
\begin{equation*}
\frac{d}{d t} e_{1}(u(t))=I_{1}+I_{2}, \tag{3.27}
\end{equation*}
$$

where

$$
\begin{align*}
e_{1}(u(t)) & =\left\|u_{t}\right\|_{2}^{2}+\alpha\|\Delta u\|_{2}^{2}+M\left(\|\nabla v\|_{2}^{2}\right)\|\nabla u\|_{2}^{2} \\
I_{1} & =\left(\frac{d}{d t} M\left(\|\nabla v\|_{2}^{2}\right)\right)\|\nabla u\|_{2}^{2} \tag{3.28}
\end{align*}
$$

and

$$
I_{2}=2 \int_{\Omega} f(v) u_{t} d x \text {. }
$$

By (3.26) and (3.28), we have

$$
\begin{equation*}
\left|I_{1}\right| \leq M_{2} R_{0}^{2} e_{1}(u(t)), \tag{3.29}
\end{equation*}
$$

and by (A1), Holder inequality and Lemma 2.1, we get

$$
\begin{align*}
\left|I_{2}\right| & \leq 2 k_{1} \int_{\Omega}|v|^{p-1}\left|u_{t}\right| d x \\
& \leq 2 k_{1} B_{1}^{p-1}\|\Delta v\|_{2}^{p-1}\left\|u_{t}\right\|_{2} \tag{3.30}\\
& \leq 2 k_{1} B_{1}^{p-1} R_{0}^{p-1} e_{1}(u(t))^{\frac{1}{2}} .
\end{align*}
$$

Then, by integrating (3.27) over $(0, t)$ and using (3.29) - (3.30), we deduce

$$
e_{1}(u(t)) \leq e_{1}\left(u_{0}\right)+\int_{0}^{t}\left(2 M_{2} R_{0}^{2} e_{1}(u(s))+2 k_{1} B_{1}^{p-1} R_{0}^{p-1} e_{1}(u(s))^{\frac{1}{2}}\right) d s
$$

Thus, by Gronwall's Lemma, we have

$$
\begin{equation*}
e_{1}(u(t)) \leq \chi\left(u_{0}, u_{1}, R_{0}, T\right)^{2} \mathrm{e}^{2 M_{2} R_{0}^{2} T} \tag{3.31}
\end{equation*}
$$

where

$$
\chi\left(u_{0}, u_{1}, R_{0}, T\right)=\sqrt{e_{1}\left(u_{0}\right)}+k_{1} B_{1}^{p-1} R_{0}^{p-1} T
$$

Hence, from (3.31) and (3.28), we obtain

$$
e(u(t)) \leq k_{2} \chi\left(u_{0}, u_{1}, R_{0}, T\right)^{2} \mathrm{e}^{2 M_{2} R_{0}^{2} T}
$$

where $k_{2}=\frac{1}{\min \{1, \alpha\}}$.
Therefore if the parameters T and R_{0} satisfy

$$
\begin{equation*}
k_{2} \chi\left(u_{0}, u_{1}, R_{0}, T\right)^{2} \mathrm{e}^{2 M_{2} R_{0}^{2} T} \leq R_{0}^{2} \tag{3.32}
\end{equation*}
$$

then S maps $X_{T, R_{0}}$ into itself.
Next, we will show that S is a contraction mapping with respect to the metric $d(\cdot, \cdot)$. Let $v_{i} \in X_{T, R_{0}}$ and $u^{(i)} \in X_{T, R_{0}}, i=1,2$ be the corresponding solution to $(3.23)-(3.25)$. Let $w(t)=\left(u^{(1)}-u^{(2)}\right)(t)$, then w satisfy the following system :

$$
\begin{align*}
& w_{t t}+\alpha \Delta^{2} w-M\left(\left\|\nabla v_{1}\right\|_{2}^{2}\right) \Delta w \\
= & f\left(v_{1}\right)-f\left(v_{2}\right)+\left[M\left(\left\|\nabla v_{1}\right\|_{2}^{2}\right)-M\left(\left\|\nabla v_{2}\right\|_{2}^{2}\right)\right] \Delta u^{(2)} \tag{3.33}
\end{align*}
$$

with initial conditions

$$
\begin{equation*}
w(0)=0, w_{t}(0)=0 \tag{3.34}
\end{equation*}
$$

and boundary condition

$$
\begin{equation*}
w(x, t)=\frac{\partial}{\partial \nu} w(x, t)=0, x \in \partial \Omega \text { and } t \geq 0 \tag{3.35}
\end{equation*}
$$

Multiplying (3.33) by $2 w_{t}$, and integrating it over Ω, we have

$$
\begin{equation*}
\frac{d}{d t}\left[\left\|w_{t}\right\|_{2}^{2}+M\left(\left\|\nabla v_{1}\right\|_{2}^{2}\right)\|\nabla w(t)\|_{2}^{2}+\alpha\|\Delta w\|_{2}^{2}\right]=I_{3}+I_{4}+I_{5} \tag{3.36}
\end{equation*}
$$

where

$$
I_{3}=2\left[M\left(\left\|\nabla v_{1}\right\|_{2}^{2}\right)-M\left(\left\|\nabla v_{2}\right\|_{2}^{2}\right)\right] \int_{\Omega} \Delta u^{(2)} w_{t} d x
$$

$$
I_{4}=2 \int_{\Omega}\left(f\left(v_{1}\right)-f\left(v_{2}\right)\right) w_{t} d x
$$

and

$$
I_{5}=\left(\frac{d}{d t} M\left(\left\|\nabla v_{1}\right\|_{2}^{2}\right)\right)\|\nabla w(t)\|_{2}^{2}
$$

To proceed the estimates of $I_{i}, i=3,4,5$, we observe that

$$
\begin{align*}
\left|I_{3}\right| \leq & 2 L\left(\left\|\nabla v_{1}\right\|_{2}+\left\|\nabla v_{2}\right\|_{2}\right)\left\|\nabla v_{1}-\nabla v_{2}\right\|_{2}\left\|\Delta u^{(2)}\right\|_{2}\left\|w_{t}\right\|_{2} \tag{3.37}\\
\leq & 4 L B_{1}^{2} R_{0}^{2} e\left(v_{1}-v_{2}\right)^{\frac{1}{2}} e(w(t))^{\frac{1}{2}}, \\
& \left|I_{4}\right| \leq 4 k_{1} B_{1}^{p} R_{0}^{p-2} e\left(v_{1}-v_{2}\right)^{\frac{1}{2}} e(w(t))^{\frac{1}{2}}, \tag{3.38}
\end{align*}
$$

and

$$
\begin{equation*}
\left|I_{5}\right| \leq M_{2} R_{0}^{2} e(w(t)), \tag{3.39}
\end{equation*}
$$

where $L=L\left(R_{0}\right)$ is the Lipschitz constant of $M(r)$ in $\left[0, R_{0}\right]$.
Thus, by using (3.37) - (3.39) in (3.36), we get

$$
\begin{align*}
& \frac{d}{d t}\left[\left\|w_{t}\right\|_{2}^{2}+M\left(\left\|\nabla v_{1}\right\|_{2}^{2}\right)\|\nabla w(t)\|_{2}^{2}+\alpha\|\Delta w\|_{2}^{2}\right] \tag{3.40}\\
\leq & 2 M_{2} R_{0}^{2} e(w(t))+c_{3} e\left(v_{1}-v_{2}\right)^{\frac{1}{2}} e(w(t))^{\frac{1}{2}}
\end{align*}
$$

where $c_{3}=4\left(L B_{1}^{2} R_{0}^{2}+k_{1} B_{1}^{p} R_{0}^{p-2}\right)$.
Then, integrating (3.40) over ($0, t$) and using (3.34) - (3.35), we deduce

$$
\begin{equation*}
e(w(t)) \leq \int_{0}^{t}\left[2 M_{2} R_{0}^{2} e(w(s))+c_{3} e\left(v_{1}-v_{2}\right)^{\frac{1}{2}} e(w(s))^{\frac{1}{2}}\right] d s \tag{3.41}
\end{equation*}
$$

Thus, by Gronwall's Lemma, we obtain

$$
e(w(t)) \leq c_{3}^{2} T^{2} \mathrm{e}^{2 M_{2} R_{0}^{2} T} \sup _{0 \leq t \leq T} e\left(v_{1}-v_{2}\right)
$$

By (3.22), we have

$$
\begin{equation*}
d\left(u^{1}, u^{2}\right) \leq C\left(T, R_{0}\right)^{\frac{1}{2}} d\left(v_{1}, v_{2}\right) \tag{3.42}
\end{equation*}
$$

where

$$
C\left(T, R_{0}\right)=c_{3}^{2} T^{2} \mathrm{e}^{2 M_{2} B_{1}^{2} R_{0}^{2} T}
$$

Hence, under inequality (3.32), S is a contraction mapping if $C\left(T, R_{0}\right)<1$. Indeed, we choose R_{0} sufficiently large and T sufficiently small so that (3.32) and (3.42) are satisfied at the same time. By applying Banach fixed point theorem, we obtain the local existence result.

Next, we are in condition to show the existence of weak solution for the problem (1.1) - (1.3).

Theorem 3.3. (Weak Solution). Supposed that (A1) holds and that $u_{0} \in H_{0}^{2}(\Omega)$ and $u_{1} \in L^{2}(\Omega)$. Then the problem (1.1) - (1.3) possesses a unique solution u such that

$$
u \in C\left([0, T] ; H_{0}^{2}(\Omega)\right) \cap C^{1}\left([0, T] ; L^{2}(\Omega)\right)
$$

Proof. Since $U \times\left(H_{0}^{1}(\Omega) \cap H^{2}(\Omega)\right)$ is dense in $H_{0}^{2}(\Omega) \times L^{2}(\Omega)$, there exists $\left\{u_{0}^{m}, u_{1}^{m}\right\} \subset U \times H_{0}^{1}(\Omega) \cap H^{2}(\Omega)$ such that $\left\{u_{0}^{m}, u_{1}^{m}\right\} \rightarrow\left\{u_{0}, u_{1}\right\}$ in $H_{0}^{2}(\Omega) \times$ $L^{2}(\Omega)$ as $m \rightarrow \infty$.

By Theorem 3.2, for each $m \in N$, there exists a unique solution u_{m} such that $u_{m} \in L^{\infty}(0, T ; U), u_{m}^{\prime} \in L^{\infty}\left(0, T ; H_{0}^{1}(\Omega) \cap H^{2}(\Omega)\right)$ and $u_{m}^{\prime \prime} \in L^{\infty}\left(0, T ; L^{2}(\Omega)\right)$ satisfies

$$
\begin{gather*}
u_{m}^{\prime \prime}+\alpha \Delta^{2} u_{m}-M\left(\left\|\nabla u_{m}\right\|_{2}^{2}\right) \Delta u_{m}=f\left(u_{m}\right), \tag{3.43}\\
u_{m}(x, 0)=u_{0}^{m}(x), u_{m}^{\prime}(x, 0)=u_{1}^{m}(x), x \in \Omega, \tag{3.44}\\
u_{m}(x, t)=\frac{\partial}{\partial \nu} u_{m}(x, t)=0, x \in \partial \Omega, t \geq 0 . \tag{3.45}
\end{gather*}
$$

By using similar arguments as in the Step 1 of Lemma 3.1, we deduce

$$
\begin{equation*}
\left\|u_{m}^{\prime}(t)\right\|_{2}^{2}+\alpha\left\|\Delta u_{m}(t)\right\|_{2}^{2}+\widehat{M}\left(\left\|\nabla u_{n}(t)\right\|_{2}^{2}\right) \leq L \tag{3.46}
\end{equation*}
$$

for all $t \in[0, T]$ and L is a positive constant independent of $m \in N$, where $\widehat{M}(s)=\int_{0}^{s} M(r) d r$.

Let $m_{2} \geq m_{1}$ be two natural numbers and consider $z_{m}=u_{m_{2}}-u_{m_{1}}$. Repeating similar discussions used in (3.33) - (3.40) and observing that $\left\{u_{0}^{m}\right\},\left\{u_{1}^{m}\right\}$ are Cauchy sequence in U and $H_{0}^{1}(\Omega) \cap H^{2}(\Omega)$, respectively, we, then, have

$$
\begin{equation*}
\left\|z_{m}^{\prime}(t)\right\|_{2}^{2}+M\left(\left\|\nabla z_{m_{2}}\right\|_{2}^{2}\right)\left\|\nabla z_{m}\right\|_{2}^{2}+\alpha\left\|\Delta z_{m}\right\|_{2}^{2} \rightarrow 0 \tag{3.47}
\end{equation*}
$$

as $m \rightarrow \infty$, for all $t \in[0, T]$.
Therefore, from (3.46) and (3.47), we see that

$$
\begin{aligned}
& u_{m} \rightarrow u \text { in } C\left([0, T] ; H_{0}^{2}(\Omega)\right), \\
& u_{m}^{\prime} \rightarrow u^{\prime} \text { in } C\left([0, T] ; L^{2}(\Omega)\right), \\
& u_{m} \rightarrow u \text { weak-* in } L^{\infty}\left(0, T ; H_{0}^{2}(\Omega)\right), \\
& u_{m}^{\prime} \rightarrow u^{\prime} \text { weak-* in } L^{\infty}\left(0, T ; L^{2}(\Omega)\right) .
\end{aligned}
$$

By the above convergence results, it is sufficient to to pass the limit in (3.43), we obtain

$$
u_{t t}+\alpha \Delta^{2} u-M\left(\|\nabla u\|_{2}^{2}\right) \Delta u=f(u) \text { in } L^{\infty}\left(0, T ; H^{-2}(\Omega)\right)
$$

The uniqueness of weak solutions can be obtained by using the similar discussions as in [4]. We omit the details.

4. Global Existence

In this section, we consider the global existence of solutions for a kind of the problem (1.1) - (1.3) :

$$
\begin{align*}
& u_{t t}+\alpha \Delta^{2} u-M\left(\|\nabla u\|_{2}^{2}\right) \Delta u=|u|^{p-2} u, p>2 \tag{4.1}\\
& u(x, 0)=u_{0}(x), u_{t}(x, 0)=u_{1}(x), x \in \Omega \tag{4.2}\\
& u(x, t)=\frac{\partial}{\partial \nu} u(x, t)=0, x \in \partial \Omega, t \geq 0 \tag{4.3}
\end{align*}
$$

Let

$$
\begin{gather*}
I_{1}(t) \equiv I_{1}(u(t))=\alpha\|\Delta u\|_{2}^{2}+m_{0}\|\nabla u\|_{2}^{2}-\|u\|_{p}^{p} \tag{4.4}\\
I_{2}(t) \equiv I_{2}(u(t))=\alpha\|\Delta u\|_{2}^{2}+M\left(\|\nabla u\|_{2}^{2}\right)\|\nabla u\|_{2}^{2}-\|u\|_{p}^{p} \tag{4.5}
\end{gather*}
$$

and

$$
\begin{equation*}
J(t) \equiv J(u(t))=\frac{\alpha}{2}\|\Delta u\|_{2}^{2}+\frac{1}{2} \widehat{M}\left(\|\nabla u\|_{2}^{2}\right)-\frac{1}{p}\|u\|_{p}^{p} \tag{4.6}
\end{equation*}
$$

for $u(t) \in H_{0}^{2}(\Omega), t \geq 0$ and $\widehat{M}(s)=\int_{0}^{s} M(r) d r$.
We define the energy of the solution u of (4.1) - (4.3) by

$$
\begin{equation*}
E(t)=\frac{1}{2}\left\|u_{t}\right\|_{2}^{2}+J(t) \tag{4.7}
\end{equation*}
$$

Lemma 4.1. $\quad E(t)$ is a constant function on $[0, T]$.
Proof. Multiplying (4.1) by u_{t}, integrating by parts over $\Omega \times(0, t)$, and using the boundary conditions (4.3), we obtain

$$
E(t)=E(0), \text { for } t \in[0, T]
$$

Remark. By (4.6), (4.7), the assumption of M and Lemma 2.1, we have

$$
\begin{align*}
E(t) & =\frac{1}{2}\left\|u_{t}\right\|_{2}^{2}+\frac{\alpha}{2}\|\Delta u\|_{2}^{2}+\frac{1}{2} \widehat{M}\left(\|\nabla u\|_{2}^{2}\right)-\frac{1}{p}\|u\|_{p}^{p} \\
& \geq \frac{1}{2} l\|\nabla u\|_{2}^{2}-\frac{1}{p}\|u\|_{p}^{p}, \quad t \geq 0 \tag{4.8}
\end{align*}
$$

where $l=\alpha B_{1}^{-2}+m_{0}$ and B_{1} is the Sobolev's constant given in Lemma 2.1.
By Poincaré inequality, we get

$$
\begin{equation*}
E(t) \geq G\left(\|\nabla u(t)\|_{2}\right), t \geq 0 \tag{4.9}
\end{equation*}
$$

where

$$
\begin{equation*}
G(\lambda)=\frac{1}{2} l \lambda^{2}-\frac{B_{1}^{p}}{p} \lambda^{p} \tag{4.10}
\end{equation*}
$$

Note that $G(\lambda)$ has the maximum at $\lambda_{1}=\left(\frac{l}{B_{1}^{p}}\right)^{\frac{1}{p-2}}$ and the maximum value E_{1} is

$$
\begin{equation*}
E_{1}=G\left(\lambda_{1}\right)=l^{\frac{p}{p-2}}\left(\frac{1}{2}-\frac{1}{p}\right) B_{1}^{\frac{-2 p}{p-2}} \tag{4.11}
\end{equation*}
$$

Adapting the idea of Vitillaro [25], we have the following Lemma:
Lemma 4.2. Assume that $E(0)<E_{1}$. Then
(i) if $\left\|\nabla u_{0}\right\|_{2}<\lambda_{1}$, then $\|\nabla u(t)\|_{2}<\lambda_{1}$ for $t \geq 0$.
(ii) If $\left\|\nabla u_{0}\right\|_{2}>\lambda_{1}$, then there exists $\lambda_{2}>\lambda_{1}$ such that $\|\nabla u(t)\|_{2} \geq \lambda_{2}$ for $t \geq 0$.

Lemma 4.3. Let u be a solution of (4.1) - (4.3). Assume that $0<\left\|\nabla u_{0}\right\|_{2}<$ λ_{1} and

$$
\begin{equation*}
\beta=\frac{B_{1}^{p}}{l}\left(\frac{2 p}{l(p-2)} E(0)\right)^{\frac{p-2}{2}}<1 \tag{4.12}
\end{equation*}
$$

then $I_{2}(t)>0$, for all $t \in[0, T)$, where l is given in (4.8).
Proof. We note that $\left\|\nabla u_{0}\right\|_{2}<\lambda_{1}$ implies $I_{1}\left(u_{0}\right)>0$, hence by the continuity of $u(t)$, we have

$$
\begin{equation*}
I_{1}(t)>0 \tag{4.13}
\end{equation*}
$$

for some interval near $t=0$. Let $t_{\max }>0$ be a maximal time (possibly $t_{\max }=T$), when (4.13) holds on [$0, t_{\max }$).
From (4.6) and (4.4), we have

$$
\begin{align*}
J(t) & \geq \frac{\alpha}{2}\|\Delta u\|_{2}^{2}+\frac{m_{0}}{2}\|\nabla u(t)\|_{2}^{2}-\frac{1}{p}\|u(t)\|_{p}^{p} \\
& =\frac{p-2}{2 p}\left[\alpha\|\Delta u\|_{2}^{2}+m_{0}\|\nabla u(t)\|_{2}^{2}\right]+\frac{1}{p} I_{1}(t) \tag{4.14}
\end{align*}
$$

From (4.14) and using Poincaré inequality and Lemma 4.1, we get

$$
\begin{equation*}
l\|\nabla u\|_{2}^{2} \leq \frac{2 p}{p-2} J(t) \leq \frac{2 p}{p-2} E(t)=\frac{2 p}{p-2} E(0) \tag{4.15}
\end{equation*}
$$

Then, from Poincaré inequality, (4.15) and (4.12), we obtain

$$
\begin{align*}
\|u\|_{p}^{p} & \leq B_{1}^{p}\|\nabla u\|_{2}^{p} \leq \frac{B_{1}^{p}}{l}\left(\frac{2 p}{l(p-2)} E(0)\right)^{\frac{p-2}{2}} l\|\nabla u\|_{2}^{2} \tag{4.16}\\
& =\beta l\|\nabla u\|_{2}^{2}<l\|\nabla u\|_{2}^{2} \text { on }\left[0, t_{\max }\right) .
\end{align*}
$$

Thus

$$
\begin{equation*}
I_{1}(t) \geq l\|\nabla u\|_{2}^{2}-\|u\|_{p}^{p}>0 \text { on }\left[0, t_{\max }\right) . \tag{4.17}
\end{equation*}
$$

This implies that we can take $t_{\max }=T$. But, from (4.4) and (4.5), we see that

$$
I_{2}(t) \geq I_{1}(t), t \in[0, T] .
$$

Therefore, we have $I_{2}(t)>0$, for $t \in[0, T]$.
Remark. (4.12) holds if and only if $0<E(0)<E_{1}$.
Next, we want to show that $T=\infty$, by using the similar arguments as that of [11].

Theorem 4.4. (Global existence). Assume that $u_{0} \in H_{0}^{2}(\Omega)$ and $u_{1} \in L^{2}(\Omega)$ with the conditions that $0<\left\|\nabla u_{0}\right\|_{2}<\lambda_{1}$ and $0<E(0)<E_{1}$. Then the problem (4.1) - (4.3) has a unique weak global solution satisfying

$$
u \in C\left(0, \infty ; H_{0}^{2}(\Omega)\right) \cap C^{1}\left(0, \infty ; L^{2}(\Omega)\right) .
$$

Proof. We define

$$
E_{2}(t)=\frac{1}{2}\left\|u_{t}\right\|_{2}^{2}+\frac{\alpha}{2}\|\Delta u\|_{2}^{2}+\frac{1}{2} \widehat{M}\left(\|\nabla u(t)\|_{2}^{2}\right)+\frac{1}{p}\|u(t)\|_{p}^{p}
$$

Then, from Lemma 4.1, we obtain

$$
\begin{equation*}
E_{2}^{\prime}(t)=2 \int_{\Omega}|u|^{p-2} u u_{t} d x . \tag{4.19}
\end{equation*}
$$

Note that by using (4.11), (4.7) and Lemma 4.1, we have

$$
\begin{equation*}
\alpha\|\Delta u\|_{2}^{2} \leq \frac{2 p}{p-2} J(t) \leq \frac{2 p}{p-2} E(t)=\frac{2 p}{p-2} E(0) . \tag{4.20}
\end{equation*}
$$

On the other hand, by Hölder inequality, Poincaré inequality and (4.20), we get

$$
\begin{aligned}
\left.\left|\int_{\Omega}\right| u\right|^{p-2} u u_{t} d x \mid & \leq\left\|u_{t}\right\|_{2}\|u\|_{2(p-1)}^{p-1} \\
& \leq \frac{1}{2}\left\|u_{t}\right\|_{2}^{2}+\frac{1}{2}\|u\|_{2(p-1)}^{2(p-1)} \\
& \leq \frac{1}{2}\left\|u_{t}\right\|_{2}^{2}+\frac{1}{2} B_{1}^{2(p-1)}\|\Delta u\|_{2}^{2(p-1)} \\
& \leq \frac{1}{2}\left\|u_{t}\right\|_{2}^{2}+\frac{B_{1}^{2(p-1)}}{\alpha}\left(\frac{2 p}{\alpha(p-2)} E(0)\right)^{p-2} \frac{\alpha}{2}\|\Delta u\|_{2}^{2} .
\end{aligned}
$$

Then integrating (4.19) over $(0, t)$ and using above inequality, we obtain

$$
\begin{equation*}
E_{2}^{\prime}(t) \leq c_{4} E_{2}(t) \tag{4.21}
\end{equation*}
$$

where $c_{4}=\max \left\{1, \frac{B_{1}^{2(p-1)}}{\alpha}\left(\frac{2 p}{\alpha(p-2)} E(0)\right)^{p-2}\right\}$.
Thus, we deduce

$$
E_{2}(t) \leq E_{2}(0) \exp \left(c_{4} t\right)
$$

for any $t \geq 0$. Therefore by the standard continuation principle, we have $T=\infty$.

5. Blow-up Property

In this section, we shall discuss the blow up phenomena for a kind of the problem (1.1) - (1.3) :

$$
\begin{equation*}
u_{t t}+\alpha \Delta^{2} u-M\left(\|\nabla u\|_{2}^{2}\right) \Delta u=|u|^{p-2} u, p>2 \tag{5.1}
\end{equation*}
$$

In order to state our results, we make further assumptions on M :
(A2) There exists a positive constant $0<\delta \leq \frac{p-2}{4}$ such that

$$
(2 \delta+1) \widehat{M}(s)-M(s) s \geq 2 \delta m_{0} s, \text { for all } s \geq 0
$$

Definition. A solution u of (5.1), (1.2) and (1.3) is called blow-up if there exists a finite time T^{*} such that

$$
\begin{equation*}
\lim _{t \rightarrow T^{*-}}\left(\int_{\Omega} u^{2} d x\right)^{-1}=0 \tag{5.2}
\end{equation*}
$$

Now, let u be a solution of (5.1) and define

$$
\begin{equation*}
a(t)=\int_{\Omega} u^{2} d x, t \geq 0 \tag{5.3}
\end{equation*}
$$

Lemma 5.1. Assume that (A2) holds, then we have

$$
\begin{equation*}
a^{\prime \prime}(t)-4(\delta+1)\left\|u_{t}\right\|_{2}^{2} \geq Q_{1}(t), \text { for } t \geq 0 \tag{5.4}
\end{equation*}
$$

where

$$
\begin{equation*}
Q_{1}(t)=-4(1+2 \delta) E(0)+4 \delta l\|\nabla u\|_{2}^{2} \tag{5.5}
\end{equation*}
$$

Proof. Form (5.3), we have

$$
\begin{equation*}
a^{\prime}(t)=2 \int_{\Omega} u u_{t} d x \tag{5.6}
\end{equation*}
$$

By (5.1) and Divergence theorem, we get

$$
\begin{equation*}
a^{\prime \prime}(t)=2\left\|u_{t}\right\|_{2}^{2}-2 \alpha\|\Delta u\|_{2}^{2}-2 M\left(\|\nabla u\|_{2}^{2}\right)\|\nabla u\|_{2}^{2}+2\|u\|_{p}^{p} \tag{5.7}
\end{equation*}
$$

Then, by (4.7), we arrive at

$$
\begin{aligned}
& a^{\prime \prime}(t)-4(\delta+1)\left\|u_{t}\right\|_{2}^{2} \\
= & (-4-8 \delta) E(0)+4 \delta \alpha\|\Delta u\|_{2}^{2}+2\left(1-\frac{2+4 \delta}{p}\right)\|u\|_{p}^{p} \\
& +\left[(2+4 \delta) \widehat{M}\left(\|\nabla u(t)\|_{2}^{2}\right)-2 M\left(\|\nabla u(t)\|_{2}^{2}\right)\|\nabla u(t)\|_{2}^{2}\right] .
\end{aligned}
$$

Therefore by (A2) and Poincare inequality, we obtain (5.4).
Now, we consider four different cases on the initial energy $E(0)$.
(1) If $E(0)<0$, then from (5.4), we have

$$
a^{\prime}(t) \geq a^{\prime}(0)-4(1+2 \delta) E(0) t, t \geq 0
$$

Thus we get $a^{\prime}(t)>0$ for $t>t_{1}^{*}$, where

$$
\begin{equation*}
t_{1}^{*}=\max \left\{\frac{a^{\prime}(0)}{4(1+2 \delta) E(0)}, 0\right\} \tag{5.8}
\end{equation*}
$$

(2) If $E(0)=0$, then $a^{\prime \prime}(t) \geq 0$ for $t \geq 0$.

Furthermore, if $a^{\prime}(0)>0$, then $a^{\prime}(t)>0, t \geq 0$
(3) If $0<E(0)<E_{1}$ and $\left\|\nabla u_{0}\right\|_{2}>\lambda_{1}$.

From (5.5) and Lemma 4.2, we see that

$$
\begin{align*}
Q_{1}(t) & =(-4-8 \delta) E(0)+4 \delta l\|\nabla u\|_{2}^{2} \\
& >(-4-8 \delta) E(0)+4 \delta l^{\frac{p}{p-2}} B_{1}^{-\frac{2 p}{p-2}} \tag{5.9}\\
& =(4+8 \delta)\left[-E(0)+\frac{4 \delta}{4+8 \delta} \frac{2 p}{p-2} E_{1}\right]
\end{align*}
$$

Then, choosing $\delta=\frac{p-2}{4}$ and from (5.4) and (5.9), we obtain

$$
\begin{equation*}
a^{\prime \prime}(t) \geq Q_{1}(t)>k_{3}>0 \tag{5.10}
\end{equation*}
$$

where $k_{3}=2 p\left(E_{1}-E(0)\right)$.
Thus we get $a^{\prime}(t)>0$ for $t>t_{2}^{*}$, where

$$
\begin{equation*}
t_{2}^{*}=\max \left\{\frac{-a^{\prime}(0)}{k_{3}}, 0\right\} \tag{5.11}
\end{equation*}
$$

(4) For the case that $E(0) \geq E_{1}$, we first note that, by using Holder inequality and Young's inequality, we have from (5.6)

$$
\begin{equation*}
a^{\prime}(t) \leq a(t)+\left\|u_{t}\right\|_{2}^{2} \tag{5.12}
\end{equation*}
$$

Hence by (5.4) and (5.12), we deduce

$$
a^{\prime \prime}(t)-4(\delta+1) a^{\prime}(t)+4(\delta+1) a(t)+K_{1} \geq 0
$$

where

$$
K_{1}=(4+8 \delta) E(0)
$$

Let

$$
b(t)=a(t)+\frac{K_{1}}{4(1+\delta)}, t>0
$$

Then $b(t)$ satisfies (2.1). By (2.2), we see that if

$$
\begin{equation*}
a^{\prime}(0)>r_{2}\left[a(0)+\frac{K_{1}}{4(1+\delta)}\right] \tag{5.13}
\end{equation*}
$$

then $a^{\prime}(t)>0, t>0$, here $r_{2}=2(\delta+1)-2 \sqrt{(\delta+1) \delta}$.
Consequently, we have
Lemma 5.2. Assume that (A2) holds and that either one of the following statements is satisfied:
(i) $E(0)<0$,
(ii) $E(0)=0$ and $a^{\prime}(0)>0$,
(iii) $0<E(0)<E_{1}$ and $\left\|\nabla u_{0}\right\|_{2}>\lambda_{1}$,
(iv) $E_{1} \leq E(0)$ and (5.13) holds,
then $a^{\prime}(t)>0$ for $t>t_{0}$, where $t_{0}=t_{1}^{*}$ is given by (5.8) in case $(i), t_{0}=t_{2}^{*}$ is given by (5.11) in case (iii) and $t_{0}=0$ in cases (ii) and (iv).

Now, we will find the estimate for the life span of $a(t)$.
Let

$$
\begin{equation*}
J(t)=a(t)^{-\delta}, \text { for } t \geq 0 \tag{5.14}
\end{equation*}
$$

Then we have

$$
J^{\prime}(t)=-\delta J(t)^{1+\frac{1}{\delta}} a^{\prime}(t)
$$

and

$$
\begin{equation*}
J^{\prime \prime}(t)=-\delta J(t)^{1+\frac{2}{\delta}} V(t), \tag{5.15}
\end{equation*}
$$

where

$$
\begin{equation*}
V(t)=a^{\prime \prime}(t) a(t)-(1+\delta) a^{\prime}(t)^{2} . \tag{5.16}
\end{equation*}
$$

By using Hölder inequality in (5.6), we get

$$
\begin{equation*}
a^{\prime}(t) \leq 2\|u\|_{2}\left\|u_{t}\right\|_{2} . \tag{5.17}
\end{equation*}
$$

Thus, by (5.4) and (5.17), we obtain from (5.16)

$$
\begin{aligned}
V(t) & \geq\left[Q_{1}(t)+4(1+\delta)\left\|u_{t}\right\|_{2}^{2}\right] a(t)-4(1+\delta) a(t)\left\|u_{t}\right\|_{2}^{2} \\
& =Q_{1}(t) J(t)^{-\frac{1}{\delta}}, t \geq t_{0} .
\end{aligned}
$$

Therefore, by (5.15), we have

$$
\begin{equation*}
J^{\prime \prime}(t) \leq-\delta Q_{1}(t) J(t)^{1+\frac{1}{\delta}}, t \geq t_{0} \tag{5.18}
\end{equation*}
$$

Theorem 5.3. (Nonexistence of global solutions). Assume that (A2) holds and that either one of the following statements is satisfied:
(i) $E(0)<0$,
(ii) $E(0)=0$ and $a^{\prime}(0)>0$,
(iii) $0<E(0)<E_{1}$ and $\left\|\nabla u_{0}\right\|_{2}>\lambda_{1}$
(iv) $E_{1} \leq E(0)<\frac{a^{\prime}\left(t_{0}\right)^{2}}{8 a\left(t_{0}\right)}$ and (5.13) holds,
then the solution u blows up at finite time T^{*} in the sense of (5.2).
Moreover, the upper bound of T^{*} is estimated as follows:
In case (i),

$$
T^{*} \leq t_{0}-\frac{J\left(t_{0}\right)}{J^{\prime}\left(t_{0}\right)}
$$

Furthermore, if $J\left(t_{0}\right)<\min \left\{1, \sqrt{\frac{\alpha_{1}}{-\beta_{1}}}\right\}$, then we have

$$
T^{*} \leq t_{0}+\frac{1}{\sqrt{-\beta_{1}}} \ln \frac{\sqrt{\frac{\alpha_{1}}{-\beta_{1}}}}{\sqrt{\frac{\alpha_{1}}{-\beta_{1}}}-J\left(t_{0}\right)}
$$

In case (ii),

$$
T^{*} \leq t_{0}-\frac{J\left(t_{0}\right)}{J^{\prime}\left(t_{0}\right)}
$$

or

$$
T^{*} \leq t_{0}+\frac{J\left(t_{0}\right)}{\sqrt{\alpha_{1}}}
$$

In case (iii),

$$
T^{*} \leq t_{0}-\frac{J\left(t_{0}\right)}{J^{\prime}\left(t_{0}\right)}
$$

Furthermore, if $J\left(t_{0}\right)<\min \left\{1, \sqrt{\frac{\alpha_{2}}{-\beta_{2}}}\right\}$, we have

$$
T^{*} \leq t_{0}+\frac{1}{\sqrt{-\beta_{2}}} \ln \frac{\sqrt{\frac{\alpha_{2}}{-\beta_{2}}}}{\sqrt{\frac{\alpha_{2}}{-\beta_{2}}}-J\left(t_{0}\right)}
$$

In case (iv),

$$
T^{*} \leq \frac{J\left(t_{0}\right)}{\sqrt{\alpha_{1}}}
$$

or

$$
T^{*} \leq t_{0}+2^{\frac{3 \delta+1}{2 \delta}} \frac{\delta c}{\sqrt{\alpha_{1}}}\left\{1-\left[1+c J\left(t_{0}\right)\right]^{\frac{-1}{2 \delta}}\right\}
$$

where $c=\left(\frac{\beta_{1}}{\alpha_{1}}\right)^{\frac{\delta}{2+\delta}}$, here α_{1} and β_{1} are in (5.21) and (5.22) and α_{2} and β_{2} are in (5.23) and (5.24) respectively.
Note that in case (i), $t_{0}=t_{1}^{*}$ is given by (5.8), $t_{0}=t_{2}^{*}$ is given by (5.11) in case (iii) and $t_{0}=0$ in cases (ii) and (iv).

Proof. (1) For $E(0) \leq 0$, from (5.18) and (5.5), we have

$$
\begin{equation*}
J^{\prime \prime}(t) \leq \delta(4+8 \delta) E(0) J(t)^{1+\frac{1}{\delta}} \tag{5.19}
\end{equation*}
$$

Note that by Lemma 5.2, $J^{\prime}(t)<0$ for $t>t_{0}$. Multiplying (5.19) by $J^{\prime}(t)$ and integrating it from t_{0} to t, we have

$$
J^{\prime}(t)^{2} \geq \alpha_{1}+\beta_{1} J(t)^{2+\frac{1}{\delta}} \text { for } t \geq t_{0}
$$

where

$$
\begin{align*}
\alpha_{1} & =\delta^{2} J\left(t_{0}\right)^{2+\frac{2}{\delta}}\left[a^{\prime}\left(t_{0}\right)^{2}-8 E(0) J\left(t_{0}\right)^{\frac{-1}{\delta}}\right] \tag{5.21}\\
& >0 .
\end{align*}
$$

and

$$
\begin{equation*}
\beta_{1}=8 \delta^{2} E(0) \tag{5.22}
\end{equation*}
$$

Then by Lemma 2.3, there exists a finite time T^{*} such that $\lim _{t \rightarrow T^{*-}} J(t)=0$ and this will imply that $\lim _{t \rightarrow T^{*-}}\left(\int_{\Omega} u^{2} d x\right)^{-1}=0$.
(2) For the case of $0<E(0)<E_{1}$, from (5.18) and (5.10), we get

$$
J^{\prime \prime}(t) \leq-\delta k_{3} J(t)^{1+\frac{1}{\delta}} \text { for } t \geq t_{0}
$$

Then as the same arguments in (1), we have

$$
J^{\prime}(t)^{2} \geq \alpha_{2}+\beta_{2} J(t)^{2+\frac{1}{\delta}} \text { for } t \geq t_{0}
$$

where

$$
\begin{align*}
\alpha_{2} & =\delta^{2} J\left(t_{0}\right)^{2+\frac{2}{\delta}}\left[a^{\prime}\left(t_{0}\right)^{2}+\frac{2 k_{3}}{1+2 \delta} J\left(t_{0}\right)^{\frac{-1}{\delta}}\right] \tag{5.23}\\
& >0 .
\end{align*}
$$

and

$$
\begin{equation*}
\beta_{2}=-\frac{2 k_{3} \delta^{2}}{1+2 \delta} . \tag{5.24}
\end{equation*}
$$

Thus, by Lemma 2.3, there exists a finite time T^{*} such that $\lim _{t \rightarrow T^{*-}}\left(\int_{\Omega} u^{2} d x\right)^{-1}=0$.
(3) For the case of $E_{1} \leq E(0)$

Applying the same arguments as in part (1), we also have (5.21) and (5.22). We observe that

$$
\alpha_{1}>0 \text { iff } E(0)<\frac{a^{\prime}\left(t_{0}\right)^{2}}{8 a\left(t_{0}\right)} .
$$

Hence, by Lemma 2.3, there exists a finite time T^{*} such that $\lim _{t \rightarrow T^{*-}}\left(\int_{\Omega} u^{2} d x\right)^{-1}=0$.

References

1. M. Aassila, Decay estimates for a quasilinear wave equation of Kirchhoff type. $A d-$ vances in Math. Sci. \& Appl. Gakkotosho, Tokyo, 9 (1999), 371-381.
2. J. M. Ball, Initial boundary value problems for an extensible beam, J. Math. Anal. Appl., 42 (1973), 61-70.
3. E. H. Brito, Decay estimates for the generalized damped extensible string and beam equations, Nonlinear Anal., Theory, Methods \& Applications, 8 (1984), 1489-1496.
4. E. H. Brito, A nonlinear hyperbolic equation, Internat. J. Math. \& Math. Sci., 3 (1980), 505-520.
5. P. Biler, Remarks on the decay for damped string and beam equations, Nonlinear Anal., Theory, Methods \& Applications, 10 (1986), 839-842.
6. M. Can, S. R. Park and F. Aliyev, Nonexistence of global solutions of some quasilinear hyperbolic equations, J. Math. Anal. Appl., 213 (1997), 540-553.
7. M. M. Cavalcanti, V. N. Domingos Cavalcanti and J. A. Soriano, Global existence and asymptotic stability for the nonlinear and generalized damped extensible plate equation, Comm. in Contemporary Math., 5 (2004), 705-731.
8. E. A. Coddington and N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill book company, 1955.
9. R. W. Dickey, Free vibrations and dynamic buckling of the extensible beam, J. Math. Anal. Appl., 29 (1970), 443-454.
10. J. G. Eisley, Nonlinear vibrations of beams and rectangular plates, Z. Angew Math. Phys., 15 (1964), 167-175.
11. V. Georgiev and D. Todorova, Existence of solutions of the wave equations with nonlinear damping and source terms, JDE, 109 (1994), 295-308.
12. M. Guedda and H. Labani, Nonexistence of global solutions to a class of nonlinear wave equations with dynamic boundary conditions, Bull. Belg. Math. Soc., 9 (2002), 39-46.
13. M. Hosoya and Y. Yamada, On some nonlinear wave equations II: global existence and energy decay of solutions, J. Fac. Sci. Univ. Toyko Sect. IA Math., 38 (1991), 239-250.
14. R. Ikehata, A note on the global solvability of solutions to some nonlinear wave equations with dissipative terms, Differential and Integral Equations, 8 (1995), 607616.
15. M. Kirane, S. Kouachi and N. Tatar, Nonexistence of global solutions of some quasilinear hyperbolic equations with dynamic boundary conditions, Math. Nachr., 176 (1995), 139-147.
16. G. Kirchhoff, Vorlesungen uber Mechanik, Leipzig, Teubner, 1883.
17. S. Kouemou-Patcheu, On a global solution and asymptotic behavior for the generalized damped extensible beam equation, $J D E$, 135 (1997), 299-314.
18. J. L. Lions, Quelques methodes de resolution des problemes aux limites nonlineaires, Dunod Gauthier-Villars, 1969.
19. M. R. Li and L. Y. Tsai, Existence and nonexistence of global solutions of some systems of semilinear wave equations, Nonlinear Anal., Theory, Methods \& Applications, 54 (2003), 1397-1415.
20. L. A. Medeiros, On a new class of nonlinear wave equations, J. Math. Anal. Appl., 69 (1979), 252-262.
21. K. Ono, On global existence, asymptotic stability and blowing up of solutions for some degenerate nonlinear wave equations of Kirchhoff type with a strong dissipation, Math. Methods in The Appl. Sci., 20 (1997), 151-177.
22. K. Ono, Global existence, decay, and blowup of solutions for some mildly degenerate nonlinear Kirchhoff strings, JDE, 137 (1997), 273-301.
23. L. A. Segel and G. H. Handelman, Mathematics Applied to Continum Mechanics, Macmillian Co, 1977.
24. C. F. Vasconcellos and L. M. Teixeira, Existence, uniqueness and stabilization for a nonlinear plate system with nonlinear damping, Ann. de la Fac. des Sci. de Toulouse, VIII (1999), 173-193.
25. E. Vitillaro, A potential well method for the wave equation with nonlinear source and boundary damping terms, Glasgow Math. J., 44 (2002), 375-395.
26. S. Woinowsky-Krieger, The effect of axial force on the vibration of hinged bars, J. Appl. Mech., 17 (1950), 17-39.
27. S. T. Wu and L. Y. Tsai, Blow-up of solutions for some nonlinear wave equations of Kirchhoff type with some dissipation, Nonlinear Anal., Theory, Methods \& Applications, 65 (2006), 243-264.

Shun-Tang Wu
General Educational Center,
National Taipei University of Technology,
Taipei 106, Taiwan
E-mail: stwu@ntut.edu.tw
Long-Yi Tsai
Department of Mathematical Science,
National Chengchi University,
Taipei 116, Taiwan

[^0]: Received August 3, 2007, accepted March 17, 2008.

