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PERIODIC SOLUTIONS OF DISCRETE RAYLEIGH EQUATIONS
WITH DEVIATING ARGUMENTS

Gen-Qiang Wang and Sui-Sun Cheng

Abstract. Perodic solutions of discrete Rayleigh equations with variable de-
lays can be related to steady state solutions of discrete time neural networks.
By means of Mawhin’s continuation theorem, and sharp a priori estimates,
existence of periodic solutions is established.

1. INTRODUCTION

To motivate what follows, let us consider ω neuron units placed on the vertices
of a regular ω polygon (naturally ω ≥ 2). Let x

(t)
n denote the state value of the

n-th neuron during the time period t ∈ {0, 1, 2, ...}. Assume that each neuron unit
is activated by its two neighbors so that the change of state values between two
consecutive time periods is given by the superposition of portions of the gradients
x

(t)
n−1 − x

(t)
n and x

(t)
n+1 − x

(t)
n . Then

x(t+1)
n − x(t)

n = α
(
x

(t)
n−1 − x(t)

n

)
+ α

(
x

(t)
n+1 − x(t)

n

)
= α∆2x

(t)
n−1,

where α is a proportionality constant not equal to 0, and ∆ is the forward difference.
If we assume further that bias mechanism is triggered, then a term Q

(
n, x

(t)
n−αn

,

x
(t)
n−βn

, x
(t)
n−γn

)
may be added on the right hand side, where αn, βn, γn are integers

for each n = 1, 2, ..., ω. Similarly, there may be a control mechanism Pn for each
neuron. Thus we may end up with the dynamical system

x(t+1)
n − x(t)

n = α∆2x
(t)
n−1 + Q

(
n, x

(t)
n−αn

, x
(t)
n−βn

, x
(t)
n−γn

)
+ Pn, n = 1, 2, ..., ω.
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It is possible that the subscripts n−1, n+1, n−αn, n−βn and n−γn fall outside
the range {1, 2, ..., ω}. If this is the case, they will be taken to mean the numbers that
are respectively congruent to them modulo ω. In this setting, {αn}n∈Z , {βn}n∈Z

and {γn}n∈Z are ω-periodic sequences, and Q is ω-periodic in the first variable.
In order to understand the dynamics of the “neural network” model described

above, it is of interest to seek “steady state” solutions
{(

x
(t)
1 , ..., x

(t)
ω

)†}∞

t=0

such

that x
(t)
n = xn for n ∈ {1, ..., ω} and t ≥ 0. This then leads us to finding solutions

of the steady state system

∆2xn−1 +
1
α

Q (n, xn−αn , xn−βn , xn−γn) +
1
α

Pn = 0, n = 1, 2, ..., ω,

or equivalently, finding ω-periodic solutions {xn}∞n=−∞ of

∆2xn−1 +
1
α

Q (n, xn−αn , xn−βn , xn−γn) +
1
α

Pn = 0,

n ∈ Z = {...,−2,−1, 0, 1, 2, 3, ...}.
In this paper, we consider the existence of ω-periodic solutions of one particular

class of equations of the form

(1) ∆2xn−1 + F (n, ∆xn−σn) + G(n, xn−τn) = pn, n ∈ Z,

where F (n, x) and G(n, x) are real continuous functions defined on Z × R such
that F (n, x) = F (n + ω, x) and G(n, x) = G(n + ω, x) for all x, F (n, 0) = 0 for
n ∈ Z, {σn}n∈Z , {τn}n∈Z are integer ω-periodic sequences and {pn}n∈Z is a real
ω-periodic sequence. The assumption

ω∑
n=1

pn = 0

is also imposed. We remark that this is imposed for the sake of convenience.
Indeed, if

∑ω
n=1 pn �= 0, then by setting C = 1

ω

∑ω
n=1 pn, pn = pn − C and

G(n, xn−τn) = G(n, xn−τn) − C, we see that (1) is equivalent to the following
equation

∆2xn−1 + F (n, ∆xn−σn) + G(n, xn−τn) = pn,

where
∑ω

n=1 pn = 0.

One reason why we consider this particular class is that (1) can be regarded as
a discrete analogue of the Rayleigh differential equation with deviating arguments

(2) x′′ (t) + F (t, x′ (t − σ (t))) + G(t, x (t − τ (t))) = p (t) ,



Discrete Rayleigh Equations 2053

where F (t, x) and G(t, x) are real continuous functions defined on R2 with positive
period T in the first variable, F (t, 0) = 0 for t ∈ Z, σ (t) , τ (t) and p (t) are real
continuous functions defined on R with period T.

Although many excellent results have been worked out for the existence of
periodic solutions for the special case

∆2xn−1 + f(n, xn) = 0, n ∈ Z,

(see for example [1-5]) using variational principles and critical theory, there does
not seem to be any result for (1) which has variable “delays”. One possible reason is
that a variational principle for (1) is difficult to build. Fortunately, the existence of
periodic solutions of (2) has been obtained by other means (see for examples [6-8]),
and therefore we may try these alternate means for our discrete time equation.

In this note, existence criteria for periodic solutions of (1) will be established
by means of continuation theorems. In general, a priori bounds are needed for
establishing existence. Although such bounds are not difficult to establish, good
ones are not. For this purpose, we will need to build novel inequalities for periodic
sequences which are also sharp. Such inequalities can then be used to find sharp a
priori bounds for periodic solutions of (1). Then by using Mawhin’s continuation
theorem we will be able to find periodic solutions of (1).

Let X and Y be two Banach spaces and L : DomL ⊂ X → Y is a linear
mapping and N : X → Y a continuous mapping. The mapping L will be called
a Fredholm mapping of index zero dim KerL = codimIm L < +∞, and Im L
is closed in Y. If L is a Fredholm mapping of index zero, there exist continuous
projectors P : X → X and Q : Y → Y such that Im P = KerL and Im L =
KerQ = Im (I − Q). It follows that L|DomL∩KerP : (I − P ) X → Im L has an
inverse which will be denoted by KP . If Ω is an open and bounded subset of
X , the mapping N will be called L-compact on Ω̄ if QN

(
Ω̄
)

is bounded and
KP (I − Q)N : Ω̄ → X is compact. Since Im Q is isomorphic to KerL there exist
an isomorphism J : Im Q → KerL.

Theorem A. (Mawhin’s continuation theorem [9]). Let L be a Fredholm map-
ping of index zero, and let N be L-compact on Ω̄. Suppose

(i) for each λ ∈ (0, 1), x ∈ ∂Ω, Lx �= λNx; and
(ii) for each x ∈ ∂Ω ∩ KerL, QNx �= 0 and deg (JQN, Ω ∩ Ker L, 0) �= 0.

Then the equation Lx = Nx has at least one solution in Ω̄ ∩ domL.

2. EXISTENCE CRITERIA

Our main result is the following.
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Theorem 1. Suppose there exist constants K > 0, D > 0, r1 > 0, r2 > 0 and
r3 > 0 such that

(a) |F (n, x)| ≤ r1|x| + K for(n, x) ∈ Z × R,

(b) xG(n, x) > 0 and |G(n, x)| � r2|x| for n ∈ Z and |x| > D, and
(c) limx→−∞ max0≤n≤ω−1

G(n,x)
x ≤ r3, (or limx→∞ max0≤n≤ω−1

G(n,x)
x ≤ r3).

If

ω ·
(

r1 + r3

(
r1

r2
+

ω

2

))
< 1,

then (1) has an ω-periodic solution.

To prove our results, we proceed in steps. First of all, for any real sequence
{un}n∈Z ,we recall the non-standard “summation” operation introduced in [10],

(3)
β⊕

n=α

un =




β∑
n=α

un α ≤ β

0 β = α − 1

−
α−1∑

n=β+1

un β ≤ α − 1

.

It is then easy to see that {xn}n∈Z is an ω-periodic solution of the following equation

(4) ∆xn = ∆x0 −
n⊕

i=1

(F (i, ∆xi−σi) + G(i, xi−τi)− pi) ,

if, and only if, {xn}n∈Z is an ω-periodic solution of (1).
Let lω, where ω � 2 is positive integer, be the set of all real ω-periodic sequences

of the form u = {un}n∈Z . Let Xω be the Banach space of all real ω-periodic
sequences in lω endowed with the usual linear structure as well as the norm ‖x‖1 =
max0≤i≤ω−1 |xi| . Let Yω be the Banach space of all real ω-periodic sequences of the
form y = {yn}n∈Z = {nα + hn}n∈Z , where y0 = 0, α ∈ R and {hn}n∈Z ∈ Xω,

and endowed with the usual linear structure as well as the norm ‖y‖ 2 = |α|+‖h‖1 .
Let the zero elements of Xω and Yω be denoted by θ1 and θ2 respectively.

Define the mappings L : Xω → Yω and N : Xω → Yω respectively by

(5) (Lx)n = ∆xn − ∆x0, n ∈ Z,

and

(6) (Nx)n = −
n⊕

i=1

(F (i, ∆xi−σi) + G(i, xi−τi) − pi) , n ∈ Z.
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Let

(7)
hn = −

n⊕
i=1

(F (i, ∆xi−σi) + G(i, xi−τi)− pi)

+
n

ω

ω⊕
i=1

(F (i, ∆xi−σi) + G(i, xi−τi) − pi) , n ∈ Z.

Since
{
hn

}
n∈Z

∈ Xω and h0 = 0, N is a well-defined operator from Xω into Yω.
Let us define P : Xω → Xω and Q : Yω → Yω respectively by

(8) (Px)n = x0, n ∈ Z, for x = {xn}n∈Z ∈ Xω,

and

(9) (Qy)n = nα, n ∈ Z, for y = {nα + hn}n∈Z ∈ Yω .

It is easy to see from (5) that the following Lemma 1 is true.

Lemma 1. The mapping L defined by (5) satisfies

(10) KerL = {x ∈ Xω; xn = x0, n ∈ Z, x0 ∈ R} .

Lemma 2. The mapping L defined by (5) satisfies

(11) Im L = {y ∈ Xω : y0 = 0} ⊂ Yω .

Proof. It suffices to show that for each y = {yn}n∈Z ∈ Xω that satisfies
y0 = 0, there is x = {xn}n∈Z ∈ Xω such that

(12) yn = ∆xn − ∆x0, n ∈ Z.

Indeed, if we let

(13) xn =
n−1⊕
i=0

yi − n

ω

ω−1⊕
i=0

yi, n ∈ Z,

then it is not difficult to check that x = {xn}n∈Z ∈ Xω as required . This completes
the proof.

In view of (8), (9), Lemma 1 and Lemma 2, we know that the operators P and
Q are projections, Xω = KerP ⊕ KerL and Yω = Im L ⊕ Im Q. Furthermore, It is
easy to see that dimKerL = 1 = dim ImQ = codimIm L, and that Im L is closed
in Yω. Thus the following lemma is true.
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Lemma 3. The mapping L defined by (5) is a Fredholm mapping of index
zero.

Next we recall that a subset S of a Banach space X is relatively compact if,
and only if, for each ε > 0, it has a finite ε-net.

Lemma 4. A subset S of Xω is relatively compact if, and only if S is bounded.

Proof. It is easy to see that if S is relatively compact in Xω, then S is bounded.
Conversely, if the subset S of Xωis bounded, then there is a subset

(14) Γ := {x ∈ Xω : ‖x‖1 ≤ H} ,

where H is a positive constant, such that S ⊂ Γ. It suffices to show that Γ is
relatively compact in Xω. Note that for each ε > 0, we may choose numbers
y0 < y1 < · · · < yl such that y0 = −H, yl = H and yi+1 − yi < ε for
i = 0, 1, ..., l− 1. Then

(15)
{
v = {vn}n∈Z ∈ Xω : vj ∈ {y0, y1, ..., yl−1} , j = 0, ..., ω− 1

}
is a finite ε-net of Γ. This completes the proof.

Lemma 5. Let L and N be defined by (5) and (6) respectively. Suppose Ω is
an open and bounded subset of Xω. Then N is L-compact on Ω.

Proof. Since Ω is bounded, there is a positive constant H such that for any
x = {xn}n∈Z ∈ Ω,

(16) −H

2
≤ xn ≤ H

2
, n ∈ Z.

¿From this we have

(17) −H ≤ ∆xn ≤ H, n ∈ Z.

Let

(18) A = max
1≤i≤ω,−−H≤u≤H

|F (i, u)| ,

(19) B = max
1≤i≤ω,−−H≤u≤H

|G(i, u)| ,

and
C = max

1≤i≤ω
|pi| .
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It is easy to see from (6), (7) and (9) that

(20)

(QNx)n = −n

ω

ω⊕
i=1

(F (i, ∆xi−σi) + G(i, xi−τi)− pi)

= −n

ω

ω⊕
i=1

(F (i, ∆xi−σi) + G(i, xi−τi))

for n ∈ Z. Thus

‖QNx‖2 =

∣∣∣∣∣ 1ω
ω⊕

i=1

(F (i, ∆xi−σi) + G(i, xi−τi))

∣∣∣∣∣ ≤ A + B,

so that QN
(
Ω
)

is bounded. We denote the inverse of the mapping L|DomL∩KerP :
(I − P ) X → Im L by KP . Then

((I − Q) Nx)n = −
n⊕

i=1

(F (i, ∆xi−σi) + G(i, xi−τi) − pi)

+
n

ω

ω⊕
i=1

(F (i, ∆xi−σi) + G(i, xi−τi)) , n ∈ Z.

By direct calculations, we may obtain

(21)

(KP (I−Q)Nx)n = −
n−1⊕
i=0

i⊕
k=1

(F (k, ∆xk−σk
) + G(k, xk−τk

)− pk)

+
n−1⊕
i=0

i

ω

ω⊕
k=1

(F (k, ∆xk−σk
) + G(k, xk−τk

))

+
n

ω

ω−1⊕
i=0

{
i⊕

k=1

(F (k, ∆xk−σk
)+G(k, xk−τk

) − pk)

− i

ω

ω⊕
k=1

(F (k, ∆xk−σk
) + G(k, xk−τk

))

}
.

It follows that

(22)

‖KP (I−Q) Nx‖1 ≤ 2
ω−1⊕
i=0

i⊕
k=1

|(F (k, ∆xk−σk
) + G(k, xk−τk

) − pk)|

+2
ω−1⊕
i=0

ω⊕
k=1

|(F (k, ∆xk−σk
) + G(k, xk−τk

))|

≤ 4
ω−1⊕
i=0

ω⊕
k=1

(|F (k, ∆xk−σk
)|+|G(k, xk−τk

)|+|pk|)

≤ 4ω2 (A + B + C) .
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Thus KP (I − Q)N
(
Ω
)

is bounded in Xω. In view of Lemma 4, KP (I − Q)N
(
Ω
)

is relatively compact in Xω and hence N is L-compact on Ω. This completes the
proof .

Lemma 6. ([10]). If u = {un}n∈Z ∈ lω, then

(23) max
0≤i,j≤ω−1

|ui − uj| ≤ 1
2

ω−1∑
k=0

|∆uk| ,

where the constant factor 1
2 is the best possible.

Lemma 7. For any u = {un}n∈Z ∈ lω, we have

(24) max
0≤k≤ω−1

|∆uk| ≤ 1
2

ω−1∑
k=0

∣∣∆2uk

∣∣ .
Furthermore, if ω � 3, then the constant factor 1

2 in (24) is the best possible.

Proof. Since u = {un}n∈Z ∈ lω, we see that {∆un}n∈Z ∈ lω and
{
∆2un

}
n∈Z

∈
lω. For any s, i ∈ {0, 1, , ..., ω− 1} , we have

(25) ∆us = ∆ui +
s⊕

k=i+1

∆2uk−1,

and

(26) ∆ui = ∆ui+ω = ∆us +
i+ω⊕

k=s+1

∆2uk−1.

(25) and (26) lead us to

(27) ∆us = ∆ui +
1
2

{
s⊕

k=i+1

∆2uk−1 −
i+ω⊕

k=s+1

∆2uk−1

}
.

Let ua = max0≤k≤ω−1 uk, ub = min0≤k≤ω−1 uk, |∆uc| = max0≤k≤ω−1 |∆uk| ,
where a, b, c ∈ {0, 1, , ..., ω− 1} . Then ∆ua ≤ 0 and ∆ub � 0. If ∆uc =
max0≤k≤ω−1 |∆uk| , then from (27), we see that

(28)

max
0≤k≤ω−1

|∆uk| = ∆uc = ∆ua +
1
2

{
c⊕

k=a+1

∆2uk−1 −
a+ω⊕

k=c+1

∆2uk−1

}

≤ 1
2

{
s⊕

k=a+1

∆2xk−1 −
a+ω⊕

k=s+1

∆2xk−1

}

≤ 1
2

a+ω∑
k=a+1

∣∣∆2xk

∣∣ = 1
2

ω−1∑
k=0

∣∣∆2xk

∣∣ .
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If −∆uc = max0≤k≤ω−1 |∆uk| , from (27) we have

(29)

max
0≤k≤ω−1

|∆uk| = −∆uc = −∆ub− 1
2

{
c⊕

k=b+1

∆2uk−1 −
b+ω⊕

k=c+1

∆2uk−1

}

≤ −1
2

{
c⊕

k=b+1

∆2uk−1 −
b+ω⊕

k=c+1

∆2uk−1

}

≤ 1
2

b+ω∑
k=b+1

∣∣∆2uk

∣∣ =
1
2

ω−1∑
k=0

∣∣∆2uk

∣∣ .
According to (28) and (28), we see that (24) holds. When ω � 3, we assert that if
β is a constant and β < 1

2 , then there is u = {un}n∈Z ∈ lω such that

(30) max
0≤k≤ω−1

|∆uk| > β

ω−1∑
k=0

∣∣∆2uk

∣∣ .
Indeed, in case ω = 3, if we let

(31) un =

{
0 n ≡ 0, 1 mod 3

ω − 1 n ≡ 2 mod 3

then we have

(32) ∆un =




0 n ≡ 0 mod 3

ω − 1 n ≡ 1 mod 3

1 − ω n ≡ 2 mod 3

and

(33) ∆2un =




ω − 1 n ≡ 0 mod 3

2 − 2ω n ≡ 1 mod 3

ω − 1 n ≡ 2 mod 3

.

In case ω � 4, if we let

(34) un =

{
0 n ≡ 0, 1, ..., ω− 2 mod ω,

ω − 1 n ≡ ω − 1 mod ω
,

then we have

(35) ∆un =




0 n ≡ 0, 1, ..., ω− 3 mod ω

ω − 1 n ≡ ω − 2 mod ω

1 − ω n ≡ ω − 1 mod ω
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and

(36) ∆2un =




0 n ≡ 0, 1, ..., ω− 4 mod ω

ω − 1 n ≡ ω − 3 mod ω

2 − 2ω n ≡ ω − 2 mod ω

ω − 1 n ≡ ω − 1 mod ω

.

Thus when ω � 3, from (32) and (33) (or (35) and (36)), we see that

β

ω−1∑
k=0

∣∣∆2uk

∣∣ = 4β (ω − 1) < 2 (ω − 1) = max
0≤k≤ω−1

|∆uk|

as required. This shows that the constant 1/2 in (24) is the best possible. The proof
is complete.

Now, we consider the following auxiliary equation

(37) ∆xn = ∆x0 − λ

n⊕
i=1

(F (i, ∆xi−σi) + G(i, xi−τi) − pi) , n ∈ Z,

where λ ∈ (0, 1) .

Lemma 8. Suppose the conditions (a), (b) and (c) of Theorem 1 hold and

ω

(
r1 + r3

(
r1

r2
+

ω

2

))
< 1,

then (1) has an ω-periodic solution. Then there is a positive number D 0 such that
for any ω-periodic solution x = {xn}n∈Z of (37), we have

(38) ‖x‖1 ≤ D0.

Proof. We only give the proof in case

(39) lim
x→−∞ max

0≤n≤ω−1

G(n, x)
x

≤ r3,

since the other case can be treated in similar manners. Let x = {xn}n∈Z be an
ω-periodic solution of (37). It is easy to see that {∆xn}n∈Z ∈ Xω. By (37) and
the assumption that

∑ω−1
n=0 pn = 0, we have

(40)
ω⊕

i=1

(F (i, ∆xi−σi) + G(i, xi−τi)) = 0.
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It is then easy to see that there are ξ, η ∈ {1, 2, ..., ω} such that

(41) F (ξ, ∆xξ−σξ
) + G(ξ, xξ−τξ

) ≤ 0

and

(42) F (η, ∆xη−ση) + G(η, xη−τη) ≥ 0.

Next, we will prove that

(43) ‖x‖1 ≤
(

r1

r2
+

ω

2

)
max

0≤k≤ω−1
|∆xk| + D +

K

r2
.

Indeed, either there is δ ∈ {0, 1, ..., ω− 1} such that

(44) |xδ| ≤ D,

or |xk| > D for all k ∈ {0, 1, ..., ω− 1} . In the former case, from Lemma 6,

(45) ‖x‖1 = max
0≤k≤ω−1

|xk| − |xδ| ≤ max
0≤i,j≤ω−1

|xi − xj | ≤ 1
2

ω−1∑
k=0

|∆xk| ,

so that

(46) ‖x‖1 ≤ |xδ| + 1
2

ω−1∑
k=0

|∆xk| ≤ D +
ω

2
max

0≤k≤ω−1
|∆xk| .

This shows that (43) holds. In the latter case, there are three subcases:

Case I. There are i0, j0 ∈ {0, 1, ..., ω− 1} such that xi0 > D and xj0 < −D.
Let xa = max0≤k≤ω−1 xk and xb = min0≤k≤ω−1 xk. We know that xa > D and
xb < −D. By Lemma 6, we have

(47) xa − xb ≤ max
0≤i,j≤ω−1

|xi − xj| ≤ 1
2

ω−1∑
k=0

|∆xk| ≤ ω

2
max

0≤k≤ω−1
|∆xk| .

It follows that

(48) xa ≤ xb +
ω

2
max

0≤k≤ω−1
|∆xk| ≤ −D +

ω

2
max

0≤k≤ω−1
|∆xk|

and

(49) xb � xa − ω

2
max

0≤k≤ω−1
|∆xk| � D − ω

2
max

0≤k≤ω−1
|∆xk| .

From (48) and (49), we have for any n ∈ {0, 1, ..., ω− 1} ,

(50) D − ω

2
max

0≤k≤ω−1
|∆xk| ≤ xb ≤ xn ≤ xa ≤ −D +

ω

2
max

0≤k≤ω−1
|∆xk| .
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It follows that

(51) ‖x‖1 ≤
∣∣∣∣−D +

ω

2
max

0≤k≤ω−1
|∆xk|

∣∣∣∣ ≤ D +
ω

2
max

0≤k≤ω−1
|∆xk| .

This shows that (43) also holds.

Case II. For all k ∈ {0, 1, ..., ω− 1} , we have xk > D. In view of conditions
(a), (b) and (41), we have

(52)
r2

∣∣xξ−τξ

∣∣ ≤ ∣∣G(ξ, xξ−τξ
)
∣∣ = G(ξ, xξ−τξ

) ≤ −F (ξ, ∆xξ−σξ
)

=
∣∣F (ξ, ∆xξ−σξ

)
∣∣ ≤ r1|∆xξ−σξ

| + K ≤ r1 max
1≤k≤ω

|∆xk| + K.

Thus,

(53)
∣∣xξ−τξ

∣∣ ≤ r1

r2
max

1≤k≤ω
|∆xk| + K

r2
.

Since ξ − τξ ∈ Z and x = {xn}n∈Z is ω-periodic, there is a c ∈ {0, 1, ..., ω− 1}
such that xc = xξ−τξ

. From (53), we have

(54) |xc| ≤ r1

r2
max

0≤k≤ω−1
|∆xk|+ K

r2
.

Furthermore, by Lemma 6 we have

(55) ‖x‖1 ≤ |xc| + 1
2

ω−1∑
k=0

|∆xk| ≤
(

r1

r2
+

ω

2

)
max

0≤k≤ω−1
|∆xk| + K

r2
.

This shows that (43) also holds.

Case III. For all k ∈ {0, 1, ..., ω− 1} , we have xk <−D. In view of conditions
(a), (b) and (42), we have

(56)
r2

∣∣xη−τη

∣∣ ≤ ∣∣G(η, xη−τη)
∣∣ = −G(η, xη−τη) ≤ F (η, ∆xη−ση)

=
∣∣F (η, ∆xη−ση)

∣∣ ≤ r1|∆xη−ση |+K ≤ r1 max
1≤k≤ω

|∆xk|+K.

Thus,

(57)
∣∣xη−τη

∣∣ ≤ r1

r2
max

1≤k≤ω
|∆xk|+ K

r2
.

Since η − τη ∈ Z and x = {xn}n∈Z is ω-periodic, there is a d ∈ {0, 1, ..., ω− 1}
such that x d = xη−τη . From (57), we have

(58) |xd| ≤ r1

r2
max

0≤k≤ω−1
|∆xk| + K

r2
.
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It easy to prove from Lemma 6 and (58) that (43) also holds.

Next, note that the condition ω
(
r1 + r3

(
r1
r2

+ ω
2

))
< 1 implies there is a

positive number ε > 0 such that

(59) η1 = ω

(
r1 + (r3 + ε)

(
r1

r2
+

ω

2

))
< 1.

In view of condition (c), we have a ρ > D such that for n ∈ Z and x < −ρ,

(60) G(n; x) ≤ (r3 + ε) |x| .

Let

(61) E1 = {n ∈ {0, 1, ..., ω− 1} : xn < −ρ} ,

(62) E2 = {n ∈ {0, 1, ..., ω− 1} : |xn| ≤ ρ} ,

(63) E3 = {0, 1, ..., ω− 1} \ (E1 ∪ E2)

and

(64) M0 = max
0≤i≤ω−1,|x|≤ρ

|G(n; x)| .

By (43), (60) and (61), we have

(65)

∑
n∈E1

|G(n; xn−τn)| ≤
∑
n∈E1

(r3 + ε) |xn−τn | ≤ ω (r3 + ε) ‖x‖1

≤ ω (r3+ε)
{(

r1

r2
+

ω

2

)
max

0≤k≤ω−1
|∆xk|+D+

K

r2

}
.

From (62) and (64), we have

(66)
∑
n∈E2

|G(n; xn−τn)| ≤ ωM0.

It follows from condition (a) that

(67)
ω−1⊕
i=0

|F (i, ∆xi−σi)|≤
ω−1⊕
i=0

(r1|∆xi−σi |+K)≤ω

(
r1 max

0≤k≤ω−1
|∆xk|+K

)
.
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In view of (b), (40), (63), (65), (66) and (67), we get

(68)

∑
n∈E3

|G(n; xn−τn)| =
∑
n∈E3

G(n; xn−τn)

=
ω−1⊕
i=0

G(i, xi−τi) −
∑
n∈E1

G(n; xn−τn) −
∑
n∈E2

G(n; xn−τn)

≤ −
ω−1⊕
i=0

F (i, ∆xi−σi) −
∑
n∈E1

G(n; xn−τn)−
∑
n∈E2

G(n; xn−τn)

≤
ω−1⊕
i=0

|F (i, ∆xi−σi)|+
∑

n∈E1

|G(n; xn−τn)| +
∑

n∈E2

|G(n; xn−τn)|

≤ ω (r3 + ε)
{(

r1

r2
+

ω

2

)
max

0≤k≤ω−1
|∆xk| + D +

K

r2

}

+ω

(
r1 max

0≤k≤ω−1
|∆xk| + K

)
+ ωM0.

≤ ω

(
r1+ (r3 + ε)

(
r1

r2
+

ω

2

))
max

0≤k≤ω−1
|∆xk| + M1.

for some positive number M1. On the other hand, by (37), we see that

(69) ∆2xn−1 = −λ (F (n, ∆xn−σn) + G(n, xn−τn) − pn) , n ∈ Z.

It follows from (b), (65), (66), (67), (68) and (69) that

(70)

ω−1⊕
i=0

∣∣∆2xi−1

∣∣ ≤ ω−1⊕
n=0

|F (i, ∆xi−σi)| +
ω−1⊕
i=0

|G(i, xi−τi)|+
ω−1⊕
i=0

|pi|

=
ω−1⊕
n=0

|F (i, ∆xi−σi)| +
∑
n∈E1

|G(n; xn−τn|)

+
∑
n∈E2

|G(n; xn−τn |+
∑
n∈E3

|G(n; xn−τn | +
ω−1⊕
i=0

|pi|

≤ ω

(
r1 max

0≤k≤ω−1
|∆xk| + K

)

+ω (r3 + ε)
{(

r1

r2
+

ω

2

)
max

0≤k≤ω−1
|∆xk| + D +

K

r2

}

+ωM0+ω

(
r1+ (r3+ε)

(
r1

r2
+

ω

2

))
max

0≤k≤ω−1
|∆xk|+M1 +

ω−1⊕
i=0

|pi|

≤ 2η1 max
0≤k≤ω−1

|∆xk|+ M2.
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for some positive number M2. On the other hand, by Lemma 7, we have

(71) max
0≤k≤ω−1

|∆xk| ≤ 1
2

ω−1⊕
i=0

∣∣∆2xk

∣∣ .
¿From (70) and (71), we get

(72) max
0≤k≤ω−1

|∆xk| ≤ η1 max
0≤k≤ω−1

|∆xk|+ M2

2
.

It follows that

(73) max
0≤k≤ω−1

|∆xk| ≤ D1,

where D1 = M2/2(1− η1). From (43) and (73), we get

(74) ‖x‖1 ≤
(

r1

r2
+

ω

2

)
max

0≤k≤ω−1
|∆xk| + D +

K

r2
≤ D0,

where D0 =
(

r1
r2

+ ω
2

)
D1 + D + K

r2
. This completes the proof.

We now turn to the proof of Theorem 1. Let L, N, P and Q be defined by
(5), (6), (8) and (9) respectively. Take a positive number D which is greater than
D0 + D and let

(75) Ω =
{
x ∈ Xω : ‖x‖1 < D

}
.

It is easy to see that Ω is an open and bounded subset of Xω. Furthermore, in
view of Lemma 3 and Lemma 5, we know that L is a Fredholm mapping of index
zero and N is L-compact on Ω. Noting that D > D0, by Lemma 8, for each
λ ∈ (0, 1) and x = {xn}n∈Z ∈ ∂Ω, we have Lx �= λNx. Next note that a
sequence x = {xn}n∈Z ∈ ∂Ω ∩ Ker L must be a constant: xn = D or xn = −D

for n ∈ Z. Hence, by (6), (9) and the assumption that
∑ω−1

n=0 pn = 0, we see that

(76) (QNx)n = −n

ω

ω−1⊕
i=0

(F (i, ∆xi−σi) + G(i, xi−τi)) ,

so that

(77) QNx �= θ2.

The isomorphism J : ImQ → Ker L is defined by (J (nα))n = α for α ∈ R and
n ∈ Z. Thus from the conditions (a) and (b),

(78) (JQNx)n = − 1
ω

ω−1⊕
i=0

(F (i, ∆xi−σi) + G(i, xi−τi)) �= 0, n ∈ Z.
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In particular, we see that if x =
{
D
}

n∈Z
, then

(79)
− 1

ω

ω−1⊕
i=0

(F (i, ∆xi−σi) + G(i, xi−τi))

= − 1
ω

ω−1⊕
i=0

(
F (i, 0) + G(i, D)

)
= − 1

ω

ω−1⊕
i=0

G(i, D) < 0,

and if x =
{−D

}
n∈Z

, then

(80)
− 1

ω

ω−1⊕
i=0

(F (i, ∆xi−σi) + G(i, xi−τi))

= − 1
ω

ω−1⊕
i=0

(
F (i, 0) + G(i,−D)

)
= − 1

ω

ω−1⊕
i=0

G(i,−D) > 0.

This shows that
deg (JQN, Ω ∩ Ker L, θ1) �= 0.

In view of Theorem A, there exists an ω-periodic solution of (1). The proof is
complete.

To see that our Theorem is not vacuous, we provide the following example.

Example. Consider a Rayleigh equation of the form (1) where σn =
[
sin 2πn

ω

]
and τn =

[
cos 2πn

ω

]
(where [·] is a greatest-integer function and the integer ω � 3),

G (n, x) =
4 exp

(
sin 2πn

ω

)2
h (x)

13ω (ω + 2)
,

F (n, x) =

(
1 + cos 2πn

ω

6ω (2 + ω)

)
x + exp

(−x2
)− 1,

h(x) =

{
x3 x � 0
x x < 0

,

and

pn =




1 n ≡ 0 mod ω

−1 n ≡ 1 mod ω

0 n ≡ 2, ..., ω− 1 mod ω

.

It is then easy to verify that all the assumptions in Theorem 1 are satisfied with

K = 2, D = 1, r1 =
1

3ω (2 + ω)
, r2 =

4
13ω (2 + ω)

, r3 =
4e

13ω (2 + ω)
.
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Thus our equation has an ω-periodic solution. Furthermore, this solution is nontrivial
since y = {0}n∈Z is not a solution of this equation.
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