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MINIMIZERS AND GAMMA-CONVERGENCE OF ENERGY
FUNCTIONALS DERIVED FROM p-LAPLACIAN EQUATION

Mao-Sheng Chang, Shu-Cheng Lee and Chien-Chang Yen

Abstract. This paper presents the existence of minimizers and Γ-convergence
for the energey functionals

Eε(u) =
∫

Ω

{W (u(x)) + ε|∇u(x)|p} dx, for all ε > 0, p > 1

with Neumann boundary condition and the constraint∫
Ω

u(x)dx = m|Ω|, where 0 < m < 1.

The energy functionals discussed in this paper are associated with the Euler-
Lagrange p-Laplacian equation. We employ the direct method in the calculus
of variations to show the existence of minimizers. The Γ-convergence is
achieved with the help of coarea formula and Young’s inequality.

1. INTRODUCTION

In this paper, we study the existence of minimizers and Γ-convergence of the
energy functionals derived from the p-Laplacian equation

−∆pu + g(x, u) = 0, in Ω,(1)

with the Neumann boundary condition

∂u

∂n
= 0, on ∂Ω(2)
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and the conserved density constraint,∫
Ω

u(x)dx = m|Ω|, where 0 < m < 1,(3)

on an open bounded domain Ω ⊂ R
n with Lipschitz continuous boundary ∂Ω, where

∆pu = div(|∇u|p−2∇u) is the p-Laplacian operator with p > 1, and g(x, u) is a
Carathéodory function. This problem without the constraint (3) has been studied
in [3]. The study of eigenvalues and positive solutions of radial p-Lapacian equation
can be found in [1, 5].

There are numerous literature existing on this type of eigenvalue problems when
g(x, u) = λ|u|p−1u + h(x). In this paper, we consider a special type of a dou-
ble well potential function g(x, u) = 1

ε W
′(u) and W (u) = 1

4u2(1 − u)2 and its
corresponding energy functional is described as

Eε(u) =
∫

Ω

(W (u(x)) + ε|∇u(x)|p) dx.(4)

Equation (4) can be rewritten into

Eε(u) =
∫

Ω
f(ε1/p|∇u(x)|, u(x))dx(5)

where f(s, u) = sp+W (u) for p > 1. For p = 2, the method of Γ-convergence was
introduced by De Giorgi in the early 1970’s and the Γ-convergence of energy func-
tionals in (4) to a perimeter functional was conjectured by De Giorgi and proved by
Modica and Mortola [19] in 1977. This convergence implies that global minimizers
of (4) converge to global minimizers of the perimeter functional. In 1987, Modica
has applied the Γ-convergence theory to solve the minimal interface problem in the
Van der Waals-Cahn-Hilliard theory of phase transitions [12]. The mathematical
problem is thus to study the asymptotic behavior, as ε → 0+, of solution uε to the
minimization problem

min{Eε(u) :
∫

Ω
u(x)dx = m}.

Furthermore, Modica has shown that {uε} converges to a function u0 which takes
only the values 0 and 1 with interface between the set {x : u0(x) = 0} and {x :
u0(x) = 1} having minimal area [18]. There have been numerous fantastic works
on the subject of phase transitions by using De Giorgi’s notion of Γ-convergence.
For instance, R.V. Kohn and P. Sternberg [15], N. C. Owen [20], I. Fonseca and L.
Tartar [11], P. Sternberg [22], S. Conti, I. Fonseca and G. Leoni [6], S. Baldo [2],
W. Jin and R.V. Kohn [14], and E. Sandier and S. Serfaty [21].
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In this paper we establish the existence of minimizers and Γ-convergence of
the functionals {Eε}ε>0 defined in (4) with the constraint (3) for all p > 1.
The technique for the proof of the existence of minimizers is based on the di-
rect method [7, 16] involved the general theory on Sobolev space W1,p(Ω). We
show that functions defined in (4) is weakly lower semicontinuous and coercive
over W1,p(Ω). With the constraint (3), the existence of minimizers on a subset of
W1,p(Ω) is considered and the general theory can not be directly applied. Therefore,
we combine the two methods to show the existence.

For the case of a general type of function f is considered by Owen [20] and the
result cannot be applied to f(s, u) = sp +W (u) for each p > 1 since the condition
(H3) in the paper: f(s, u) ≥ cs2 with c > 0. Our result holds for the case of the
special function f(s, u) and p > 1 and Owen’s is for the general function f(s, u)
but p = 2. With the help of the special function f(s, u), our proof takes advantage
of Young’s inequality. For a general function f(s, u), Owen should impose certain
conditions in order to control the behavior of the function f . We conclude that
the methods of Owen’s and ours are different but the both results are the same for
some cases. More precisely, Owen establishes the same result as ours whenever
f(s, u) = sp + W (u) and p = 2. Our work combined with Owen’s technique (by
constructing a scalar function) can be expected to extend to more general problems.

We would like to point out the Γ-convergence for the functionals (considered
here) which are associated with the Euler-Lagrange p-Laplacian equation. The
kinematic energy has been modified by p > 1 and the potential and kinematic
energy have more sensitive interaction and balance between themselves. In other
words, the relation and structure of these two energies can be judged by Young’s
inequality.

2. THE EXISTENCE OF MINIMIZERS

We will show the existence of minimizers of the functional (4) with the constraint
(3) on Am,

Am ≡
{

v ∈ W1,p(Ω) :
∫

Ω
vdx = m|Ω|

}
.

We first show the functionals in (4) have the properties of weakly lower semicon-
tinuous and coercivity over W1,p(Ω).

Definition 2.1. Let X be a Banach space and I : X → R ∪ {+∞} be a
functional. I is weakly lower semicontinuous over X if

lim inf
n→∞ I(un) ≥ I(u) whenever un ⇀ u in X
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Definition 2.2. Let (X, ‖ · ‖X) be a Banach space and I : X → R∪ {+∞} be
a functional. If there exist α > 0 and β ∈ R such that

I(u) ≥ α‖u‖X + β

then I is coercive over X .

We assume that

un ⇀ u in W1,p(Ω),(6)

that is,

un ⇀ u in Lp(Ω)(7)

and

∇un ⇀ ∇u in Lp(Ω : R
n).(8)

By the continuity of potential function W and Fatou’s lemma yield,

Eε(u) =
∫

Ω

W (u(x)) + ε|∇u(x)|pdx

≤
∫

Ω
lim inf
n→∞ (W (un(x)) + ε|∇un(x)|p) dx

≤ lim inf
n→∞

∫
Ω

W (un(x)) + ε|∇un(x)|pdx

= lim inf
n→∞ Eε(un).

The above argument leads to

Lemma 2.3. The functional Eε defined in (4) is weakly lower semicontinuous
over W1,p(Ω).

Next, we are going to show the lemma below.

Lemma 2.4. The functionals Eε defined in (4) are coercive over W1,p(Ω).

Proof. By the Poincaré inequality [9], there is a constant C > 0 only depending
on n, p and Ω such that

Cp

∫
Ω
|∇u(x)|pdx≥

∫
Ω
|u(x)−m|pdx=‖u−m‖p

Lp(Ω)≥
∣∣‖u‖Lp(Ω)−‖m‖Lp(Ω)

∣∣p
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The last equality is by Minkowski’s inequality. We therefore deduce that, C̃ denoting
a generic constant independent of u,

‖u‖p
W1,p(Ω)

≤ C̃(1 + ‖ |∇u| ‖p
Lp(Ω)

).

Since

Eε(u) ≥ ε

∫
Ω
|∇u(x)|pdx = ε‖ |∇u| ‖p

Lp(Ω)
,

we get

Eε(u) ≥ α‖u‖p
W1,p(Ω)

+ β,

where α > 0 and β ∈ R. Lemma 2.4 has been shown.

Let us define the set Sm by

Sm = {Eε(u) | u ∈ Am}.
Since the set Sm is bounded below by 0, the infimum of the set Sm exists and there
is a sequence {uk}∞k=1 in Am such that

lim
k→∞

Eε(uk) = inf Sm < +∞.(9)

We call {uk}∞k=1 a minimizing sequence for Eε on Am. By the coercivity of Eε over
W1,p(Ω), Lemma 2.4 and (9), {uk}∞k=1 is a bounded sequence in W 1,p(Ω). Since
W1,p(Ω) is compactly contained in Lp(Ω), there exists a subsequence {ukj}∞j=1 of
bounded sequence {uk}∞k=1 such that

ukj → u in Lp(Ω) as j → ∞,(10)

for some u ∈ Lp(Ω). Moreover, there is a subsequence {ukj�
}∞�=1 of {ukj}∞j=1 such

that

ukj�
→ u a.e. in Ω as � → ∞.(11)

We denote {ukj�
} by {ukj} for convenience. Note that for p > 1, W1,p(Ω) is

reflexive and uniformly convex. For bounded sequence {ukj}∞j=1 in W1,p(Ω), there
is a subsequence {ukji

}∞i=1 and a function ũ ∈ W1,p(Ω) such that

ukji
⇀ ũ in W1,p(Ω) as i → ∞.(12)

Thus, u = ũ a.e. in Ω which gives us that u ∈ W 1,p(Ω), and

ukji
→ u in Lp(Ω) as i → ∞,(13)
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ukji
⇀ u in W1,p(Ω) as i → ∞.(14)

By (13), we have∣∣∣∣∫
Ω

u(x)dx− m|Ω|
∣∣∣∣ =

∣∣∣∣∫
Ω

(u(x)− ukji
(x))dx

∣∣∣∣
≤

∫
Ω
|u(x)− ukji

(x)|dx

≤ ‖u − ukji
‖Lp(Ω) · ‖1‖Lq(Ω),

for each i ∈ N , so that∫
Ω

u(x)dx = m|Ω|, and u ∈ Am.(15)

By (14), (15), Lemma 2.3 and Equation (9), we have established the existence of
minimizers of Eε over Am.

Theorem 2.5. Each functional Eε over the space Am has a minimizer, that is,
there exists a uε ∈ Am such that

Eε(uε) = min{Eε(v) : v ∈ Am}.

3. Γ-CONVERGENCE

We say that the functional E0 is the Γ(L1(Ω))-limit of {Eε}ε>0 (denoted by
E0 = Γ(L1(Ω))-limit {Eε}ε>0) means that for each u ∈ L1(Ω), we have

(i) If uε → u in L1(Ω), then E0(u) ≤ lim inf
ε→0+

Eε(uε).

(ii) There exists a family {vε}ε>0 in L1(Ω) such that vε → u in L1(Ω) and
lim sup

ε→0+

Eε(vε) ≤ E0(u).

The references for the theory of Γ-convergence can be found in [4, 8].
For the reason of convenience, we use the following variational form

Jε(u) =


∫

Ω

(
1
ε

W (u(x))
q

+ εp−1 |∇u(x)|p
p

)
dx, if u ∈ W1,p(Ω)

+∞, otherwise.
(16)

and define

J0(u) =


(∫ 1

0

W 1/q(t)dt

)
PerΩ(A), if W (u) = 0, a.e.,

Φ ◦ u ∈ BV(Ω)

+∞, otherwise,

(17)
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where 1
q + 1

p = 1, W (u) = 1
4u2(1− u)2 and PerΩ(A) is the perimeter of a set A in

Ω,

A = {x ∈ Ω : u(x) = 1},(18)

and

Φ(t) =
∫ t

0
W 1/q(s)ds on [0, 1].(19)

We extend the function Φ(t) into R by

Φ(t) = Φ(1), t > 1, and Φ(t) = 0, t < 0.

Lemma 3.1. If the functionals Jε with lim inf
ε→0+

Jε(uε) < ∞ and uε → u in

L1(Ω) then the values of the function u belong to {0, 1} almost everywhere, that
is, u(x) ∈ {0, 1} a.e. Furthermore, the function u(x) = χA(x), where the set A is
defined in (18).

Proof. Since uε → u in L1(Ω), there is a subsequence {uεj} such that uεj → u

almost everywhere. It follows that W ◦uεj → W ◦u almost everywhere. By Fatou’s
lemma, we have

0 ≤
∫

Ω
W (u(x))dx =

∫
Ω

lim
j→∞

W (uεj(x))dx

≤ lim inf
j→∞

∫
Ω

W (uεj (x))dx

≤ lim inf
j→∞

εjqJεj(uεj ) = 0.

The last equality holds due to the assumption. The integral of the potential function
W over Ω is vanished. That implies u(x) ∈ {0, 1} almost everywhere and this
lemma has been proved.

One can find the co-area formula in

Lemma 3.2. (cf: [10, 17], Coarea formula for BV-functions) Let U ⊂ R
n be

open.

(I) Suppose that f ∈ BV(U). Define E t ≡ {x ∈ U |f(x) > t} for each t ∈ R.
Then

(i) PerU(Et) < +∞ for L1 a.e. t ∈ R.

(ii) The total variation of f on U , |∇f |(U)(=
∫

U
|∇f(x)|dx) =

∫ ∞

−∞
PerU (Et)dt.
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(II) If f ∈ L1(U) and
∫ ∞

−∞
PerU (Et)dt < +∞, then f ∈ BV(U).

Lemma 3.3. If the function Φ is defined in (19) and u(x) = χA(x) with a set
A of finite perimeter in Ω, then

J0(u) =
∫ ∞

−∞
PerΩ({x ∈ Ω : (Φ ◦ u)(x) ≤ t})dt.(20)

Proof. Let St ≡ {x ∈ Ω|(Φ ◦ u)(x) ≤ t}. By Lemma 3.2, we have∫ ∞

−∞
PerΩ(St)dt =

∫ ∞

−∞
PerΩ({x ∈ Ω : Φ(1)χA(x) ≤ t})dt

=
∫ Φ(1)

0

PerΩ({x ∈ Ω : Φ(1)χA(x) ≤ t})dt

= PerΩ(Ω − A)(Φ(1)− 0) = Φ(1)PerΩ(A)

=
(∫ 1

0

W 1/q(t)dt

)
PerΩ(A)

= J0(u).

Lemma 3.4. Suppose v ∈ W 1,p(Ω) and the function Φ is defined in (19). Then
Φ ◦ v ∈ W1,p(Ω) and Φ ◦ v ∈ BV(Ω).

Proof. Since

‖Φ ◦ v‖p
Lp(Ω) =

∫
Ω
|Φ(v(x))|pdx

=
∫

Ω
|Φ(v(x))− Φ(0)|pdx

≤
∫

Ω
(Lip(Φ))p|v(x)− 0|pdx

= (Lip(Φ))p‖v‖p
Lp(Ω) < +∞,

where Lip(Φ) is the Lipschitz constant of the function Φ. Next,

‖ ∂

∂xi
(Φ ◦ v)‖p

Lp(Ω) =
∫

Ω
| ∂

∂xi
(Φ(v(x)))|pdx

=
∫

Ω
|Φ′(v(x))

∂v(x)
∂xi

|pdx
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≤
∫

Ω

(
max
t∈[0,1]

W 1/q(t)
)p

|∂v(x)
∂xi

|pdx

≤
(

max
t∈[0,1]

W 1/q(t)
)p

‖ ∂v

∂xi
‖p

Lp(Ω)
< +∞.

Therefore, ∂
∂xi

(Φ ◦ v) ∈ Lp(Ω) for i = 1, 2, . . . , n. That implies Φ ◦ v ∈ W1,p(Ω).
Since Ω is open, bounded with ∂Ω Lipschitz, in addition, by the fact W 1,1(Ω) ⊂
BV(Ω), so Φ ◦ v ∈ BV(Ω). We obtain Lemma 3.4.

Lemma 3.5. (cf: [10, 17], Lower semicontinuous of variation measure.) Sup-
pose that U ⊂ R

n is open. Suppose fk ∈ BV(U) for each k ∈ N and fk → f in
L1(U). Then ∫

U
|∇f(x)|dx ≤ lim inf

k→∞

∫
U
|∇fk(x)|dx.

Theorem 3.6. The functionals Jε and J0 are defined in (16) and (17). If
uε → u in L1(Ω) then J0(u) ≤ lim inf

ε→0+
Jε(uε).

Proof. Since uε ∈ W1,p(Ω) and Φ is Lipschitz on R, Φ ◦uε → Φ ◦u in L1(Ω)
whenever uε → u in L1(Ω). Since

Jε(uε) =
∫

Ω

(
1
ε

W (uε(x))
q

+ εp−1 |∇uε(x)|p
p

)
dx

≥
∫

Ω
W 1/q(uε(x))|∇uε(x)|dx ( by Young’s inequality )

≥
∫

Ω
|∇(Φ ◦ uε)(x)|dx,

that last inequality is by

|∇(Φ ◦ uε)(x)| = |Φ′(uε(x))| |∇uε(x)|

=

 0, if uε(x) ≥ 1 or uε(x) ≤ 0,

W 1/q(uε(x))|∇uε(x)|, if uε(x) ∈ [0, 1].

By Lemma 3.4 and Lemma 3.5, we have∫
Ω

|∇(Φ ◦ u)(x)|dx ≤ lim inf
ε→0+

∫
Ω

|∇(Φ ◦ uε)(x)|dx ≤ lim inf
ε→0+

Jε(uε).

We obtain the inequality (by Lemma 3.1, Lemma 3.2, and Lemma 3.3)
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J0(u) =
∫

Ω
|∇(Φ ◦ u)(x)|dx ≤ lim inf

ε→0+
Jε(uε),(21)

provided by the limiting infimum is finite, lim inf
ε→0+

Jε(uε) < ∞. If the limiting

infimum is infinite, lim inf
ε→0+

Jε(uε) = ∞, then the equation

J0(u) ≤ lim inf
ε→0+

Jε(uε)

is trivial.

Lemma 3.7. (cf [10, 17], Coarea formula). Suppose that f : R → R is a
measurable function and that h : R

n → R is a Lipschitz function. Then∫
Ω

f(h(x))|∇h(x)|dx =
∫ ∞

−∞
f(t)Hn−1({x ∈ Ω|h(x) = t})dt,

for each measurable subset Ω of R
n. In particular, we have∫

Ω
|∇h(x)|dx =

∫ ∞

−∞
Hn−1({x ∈ Ω|h(x) = t})dt,

for each measurable subset Ω of R
n.

Lemma 3.8. ( [2, 18]). Let Ω ⊂ R
n be open, and A be a polygonal domain in

R
n with the compact boundary ∂A and H n−1(∂A∩ ∂Ω) = 0. Then the following

two things hold

(i) there exists a constant η > 0 such that the function h(x) defined in (30) is
Lipshitz continuous on D η ≡ {x ∈ R

n| |h(x)| < η} and |∇h(x)| = 1, a.e.
on Dη.

(ii) If St ≡ {x ∈ R
n| h(x) = t}, then lim

t→0
Hn−1(St ∩ Ω) = Hn−1(∂A∩ Ω).

Remark. By Lemma 3.1 in [2] and Lemma 3.8, it permits us only require to
prove Theorem 3.9 for polygonal domains.

Theorem 3.9. Let the functionals Jε and J0 be defined in (16) and (17),
respectively. There exists a family {vε}ε>0 in L1(Ω) such that vε → u in L1(Ω)
and lim sup

ε→0+

Jε(vε) ≤ J0(u).

Proof. The Euler-Lagrange equation for Jε defined in (16) is

W ′(u(x))
q

− εpdiv(|∇u(x)|p−2∇u(x)) = 0, for all x ∈ Ω.(22)
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For n = 1, (22) becomes

W ′(u(t))
q

− εp(p− 1)|u′(t)|p−2u′′(t) = 0, for all t ∈ I.(23)

Let f(t) = |t|p−2t on R and F (t) =
∫ t
0 f(s)ds. Multiplying u′(t) to (23), we can

rewrite it into

d

dt

(
W (u(t))

q
− εp(p − 1)F (u′(t))

)
= 0, for all t ∈ I.(24)

That implies there is a positive constant Cε,p which depends on ε and p and will be
chosen latter such that

W (u(t))
q

− εp(p− 1)F (u′(t)) = −Cε,p, for all t ∈ I.(25)

Since F (t) =
∫ t

0
sp−1ds = tp/p is positive and strictly increasing on [0,∞), the

function F : [0,∞) → [0,∞) has an inverse F−1. By (25),

u′(t) = F−1

(
1

εp(p − 1)

(
W (u(t))

q
+ Cε,p

))
.(26)

The inverse of the function F is F−1(t) = (pt)1/p. Hence (26) can be simplified
expressed as

u′(t) =
1
ε

(W (u(t)) + qCε,p)
1/p .(27)

Therefore, u is a solution of (23) and is also one of the ordinary differential equation
(27) [13].

Let us define

Ψε(t) ≡ ε

∫ t

0

(
1

W (s) + qCε,p

)1/p

ds, t ∈ [0, 1],

and ηε ≡ Ψε(1). We have Ψε(0) = 0 and Ψ′
ε(t) = ε( 1

W (t)+qCε,p
)1/p > 0 for all

t ∈ (0, 1). It implies Ψε is strictly increasing on [0, 1] and its inverse Ψ−1
ε :

[0, ηε] → [0, 1] exists. The derivative of the inverse function is

d

dt
(Ψ−1

ε (t)) =
1
ε

(
W (Ψ−1

ε (t)) + qCε,p

)1/p
, for all t ∈ (0, ηε).
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So far, the function Ψ−1
ε (t) satisfies (27). We extend Ψ−1

ε : [0, ηε] → [0, 1] to
Ψ̃−1

ε : R → [0, 1] by

Ψ̃−1
ε (t) =


0, if t < 0,

Ψ−1
ε (t), if t ∈ [0, ηε],

1, if t > ηε.

(28)

For each ε > 0, since Ψ−1
ε is increasing and (28), we have

Ψ̃−1
ε (t) ≤ χ0(t) ≤ Ψ̃−1

ε (t + ηε), for all t ∈ R,(29)

where χ0 is the Heaviside function given by

χ0(t) ≡
{

0, if t < 0,

1, if t ≥ 0.

Let

h(x) ≡
{ −d(x, ∂A), if x 
∈ A,

d(x, ∂A), if x ∈ A,
(30)

where A defined in (18) and d is the Euclidean metric function. If we take t = h(x)
in (29) and also take integrations over the region Ω, then we get∫

Ω
Ψ̃−1

ε (h(x))dx ≤
∫

Ω
χ0(h(x))dx ≤

∫
Ω

Ψ̃−1
ε (h(x) + ηε)dx.(31)

For simplification of notations, we define Hε : [0, ηε] → R by

Hε(t) ≡
∫

Ω
Ψ̃−1

ε (h(x) + t)dx, for all t ∈ [0, ηε],

and (31) can be rewritten as

Hε(0) ≤
∫

Ω
χ0(h(x))dx ≤ Hε(ηε).(32)

Since Ψ̃−1
ε (h(x) + t) is continuous for x ∈ Ω and t ∈ [0, ηε], it follows that Hε is

continuous on [0, ηε]. Applying the Intermediate Value Theorem and for each ε > 0,
(32) implies that there is δε ∈ [0, ηε] such that

Hε(δε) =
∫

Ω
χ0(h(x))dx.
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We observe that u(x) = χA(x) = χ0(h(x)) for all x ∈ Ω. Then∫
Ω

Ψ̃−1
ε (h(x) + δε)dx = Hε(δε) =

∫
Ω

χ0(h(x))dx =
∫

Ω
u(x)dx.(33)

We denote χε(t) ≡ Ψ̃−1
ε (t + δε) for all t ∈ R and define function uε : Ω → R by

uε(x) ≡ χε(h(x)), for all x ∈ Ω,(34)

and by (33), it gives us ∫
Ω

uε(x)dx =
∫

Ω

u(x)dx.(35)

Let

Ωδε = {x ∈ Ω : −δε ≤ h(x) ≤ ηε − δε}
and uε is constructed in (34), we have the following estimation∫

Ω
|uε(x) − u(x)|dx

=
∫

Ω

|χε(h(x))− χ0(h(x))|dx

=
∫

Ωδε

|χε(h(x))− χ0(h(x))|dx

=
∫

Ωδε

|χε(h(x))− χ0(h(x))| |∇h(x)|dx (By Lemma 3.7, 3.8)

=
∫ ηε−δε

−δε

|χε(t) − χ0(t)|Hn−1({x ∈ Ω| h(x) = t})dt (By Lemma 3.7)

≤ ηε sup
|t|≤ηε

Hn−1({x ∈ Ω| h(x) = t})

≤ ε

(qCε,p)1/p
γε,

where γε = sup
|t|≤ηε

Hn−1({x ∈ Ω| h(x) = t}) with

lim
ε→0+

γε = Hn−1(∂A∩ Ω) = PerΩ(A). (By Lemma 3.8)(36)

Once, we choose Cε,p = εp/2 then

lim
ε→0+

ε

(qCε,p)1/p
γε = lim

ε→0+

√
εq−1/pγε = 0.(37)
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It follows

uε → u in L1(Ω) as ε → 0+.(38)

The remaining work is to show

lim sup
ε→0

Jε(uε) ≤ J0(u).(39)

By (34), we calculate

|∇uε(x)|p =

[
n∑

i=1

(
∂

∂xi
(uε(x)))2

]p/2

= (χ′
ε(h(x)))p|∇h(x)|p(40)

and substitute it into (16). Then

Jε(uε) ≡
∫

Ω

(
1
ε

W (uε(x))
q

+ εp−1 (χ′
ε(h(x)))p|∇h(x)|p

p

)
dx

Let
φε(t) ≡ 1

ε

W (χε(t))
q

+ εp−1 (χ′
ε(t))p

p
,

and we compute

Jε(uε) =
∫

Ωδε

φε(h(x))|∇h(x)|dx (By Lemma 3.7 and 3.8)

=
∫ ηε−δε

−δε

φε(t)Hn−1({x ∈ Ωδε| h(x) = t})dt

≤ γε

∫ ηε−δε

−δε

φε(t)dt

= γε

∫ ηε

0

(
1
ε

W (Ψ−1
ε (t))
q

+ εp−1 ((Ψ−1
ε )′(t))p

p

)
dt

≤ γε

∫ ηε

0

(
1
ε

W (Ψ−1
ε (t))
q

+
Cε,p

ε
+ εp−1 ((Ψ−1

ε )′(t))p

p

)
dt

= γε

∫ ηε

0

(
1
ε
(W (Ψ−1

ε (t)) + qCε,p)
)1/q (

ε1/q(Ψ−1
ε )′(t)

)
dt

= γε

∫ 1

0
(W (t) + qCε,p)

1/q dt.

The last second equality follows from the Young’s inequality with equality holds and
Ψ−1

ε is a solution of Equation (27). The last equality is by the change of variables
formula. Since (36) and limε→0+ Cε,p = 0, it implies
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lim sup
ε→0+

Jε(uε) ≤ lim sup
ε→0+

[
γε

∫ 1

0
(W (t) + qCε,p)

1/q dt

]
=

(∫ 1

0
W 1/q(t)dt

)
PerΩ(A) = J0(u),

where the last equality followed by (17) for u = χA where A is a polygonal domain.
If u ∈ L1(Ω) and u is not of the form u = χA with a set A of finite perimeter in
Ω, then J0(u) = ∞ and lim sup

ε→0+

Jε(uε) ≤ J0(u) are trivial.

Finally, by Theorem 3.6 and 3.9, the Γ-convergence has been achieved.
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