SOME INCLUSION PROPERTIES OF CERTAIN CLASS OF ANALYTIC FUNCTIONS

Jacek Dziok and Janusz Sokó

Abstract

We use a property of the Bernardi operator in the theory of the BriotBouquet differential subordinations to prove several theorems for some classes of analytic functions defined by using the Dziok-Srivastava operator. Some of these results we obtain applying the convolution property due to Rusheweyh. We take advantage of the Miller-Mocanu differential subordinations.

1. Introduction

Let \mathcal{A} denote the class of functions f of the form:

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

which are analytic in $\mathcal{U}=\mathcal{U}(1)$, where $\mathcal{U}(r)=\{z: z \in \mathbf{C}$ and $|z|<r\}$.
For analytic functions

$$
f(z)=\sum_{n=0}^{\infty} a_{n} z^{n} \quad \text { and } g(z)=\sum_{n=0}^{\infty} b_{n} z^{n} \quad(z \in \mathcal{U})
$$

by $f * g$ we denote the Hadamard product or convolution of f and g, defined by

$$
(f * g)(z)=\sum_{n=0}^{\infty} a_{n} b_{n} z^{n}
$$

Received October 8, 2007, accepted February 21, 2008.
Communicated by H. M. Srivastava.
2000 Mathematics Subject Classification: 30C45, 26A33.
Key words and phrases: Dziok-Srivastava operator, Bernardi operator, Hadamard product (or convolution), Subordination, Starlike functions, Convex functions.

Moreover, we say that a function f is subordinate to a function g, and write $f(z) \prec$ $g(z)$, if and only if there exists a function ω, analytic in \mathcal{U} such that

$$
\omega(0)=0,|\omega(z)|<1 \quad(z \in \mathcal{U}),
$$

and

$$
f(z)=g(\omega(z)) \quad(z \in \mathcal{U}) .
$$

In particular, if g is univalent in \mathcal{U}, we have the following equivalence

$$
\begin{equation*}
f(z) \prec g(z) \Longleftrightarrow f(0)=g(0) \text { and } f(\mathcal{U}) \subset g(\mathcal{U}) . \tag{2}
\end{equation*}
$$

Let \mathcal{K} denote the class of convex function defined by

$$
\mathcal{K}:=\left\{f \in \mathcal{A}: \operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>0, z \in \mathcal{U}\right\} .
$$

Moreover we recall the class of function introduced by Janowski [6]

$$
\begin{equation*}
\mathcal{S}^{*}\left[\frac{1+a z}{1+b z}\right]:=\left\{f \in \mathcal{A}: \frac{z f^{\prime}(z)}{f(z)} \prec \frac{1+a z}{1+b z}, z \in \mathcal{U}\right\}(-1 \leq b<a \leq 1) . \tag{3}
\end{equation*}
$$

In particular we have the class of starlike functions $\mathcal{S}^{*}:=\mathcal{S}^{*}\left[\frac{1+z}{1-z}\right]$. In this paper we take advantage of $\mathcal{S}^{*}\left[\frac{1+a z}{1+b z}\right]$ to define other class of functions.

Let $q, s \in \mathbf{N}=\{1,2, \ldots\}, q \leq s+1$. For complex parameters a_{1}, \ldots, a_{q} and $b_{1}, \ldots, b_{s}, \quad\left(b_{j} \neq 0,-1,-2, \ldots ; j=1, \ldots, s\right)$, the generalized hypergeometric function ${ }_{q} F_{s}\left(a_{1}, \ldots, a_{q} ; b_{1}, \ldots, b_{s} ; z\right)$ is defined by

$$
{ }_{q} F_{s}\left(a_{1}, \ldots, a_{q} ; b_{1}, \ldots, b_{s} ; z\right)=\sum_{n=0}^{\infty} \frac{\left(a_{1}\right)_{n} \cdot \ldots \cdot\left(a_{q}\right)_{n}}{\left(b_{1}\right)_{n} \cdot \ldots \cdot\left(b_{s}\right)_{n}} \frac{z^{n}}{n!} \quad(z \in \mathcal{U}),
$$

where $(\lambda)_{n}$ is the Pochhammer symbol defined by

$$
(\lambda)_{n}= \begin{cases}1 & (n=0) \\ \lambda(\lambda+1) \cdot \ldots \cdot(\lambda+n-1) & (n \in \mathbf{N}) .\end{cases}
$$

Let us consider the Dziok-Srivastava operator [4] (see also [3] and [5])

$$
\mathcal{H}: \mathcal{A} \rightarrow \mathcal{A}
$$

such that
$\mathcal{H} f(z)=\mathcal{H}\left(a_{1}, \ldots, a_{q} ; b_{1}, \ldots, b_{s}\right) f(z)=\left\{z \cdot{ }_{q} F_{s}\left(a_{1}, \ldots, a_{q} ; b_{1}, \ldots, b_{s} ; z\right)\right\} * f(z)$.

We observe that for a function f of the form (1), we have

$$
\begin{equation*}
\mathcal{H}\left(a_{1}, \ldots, a_{q} ; b_{1}, \ldots, b_{s}\right) f(z)=z+\sum_{n=2}^{\infty} A_{n} a_{n} z^{n} \tag{4}
\end{equation*}
$$

where

$$
\begin{equation*}
A_{n}=\frac{\left(a_{1}\right)_{n-1} \cdot \ldots \cdot\left(a_{q}\right)_{n-1}}{\left(b_{1}\right)_{n-1} \cdot \ldots \cdot\left(b_{s}\right)_{n-1} \cdot(n-1)!} \tag{5}
\end{equation*}
$$

The Dziok-Srivastava operator $\mathcal{H}\left(a_{1}, \ldots, a_{q} ; b_{1}, \ldots, b_{s}\right)$ includes various other linear operators which were considered in earlier works (see [11], [12] and [13]). In particular we recall the Bernardi integral operator [1]

$$
\mathcal{J}_{\nu}: \mathcal{A} \rightarrow \mathcal{A},
$$

defined by

$$
\begin{equation*}
\mathcal{J}_{\nu}[f(z)]=\frac{\nu+1}{z^{\nu}} \int_{0}^{z} t^{\nu-1} f(t) d t \quad(\nu \in \mathbf{C}) \tag{6}
\end{equation*}
$$

For $f \in \mathcal{A}$ of the form (1) we have

$$
\begin{equation*}
\mathcal{J}_{\nu}[f(z)]=z+\sum_{n=2}^{\infty} \frac{\nu+1}{\nu+n} a_{n} z^{n} . \tag{7}
\end{equation*}
$$

The Bernardi operator and the Dziok-Srivastava operator are connected in the following way

$$
\mathcal{J}_{\nu}[f(z)]=\mathcal{H}(1+\nu, 1 ; \nu+2) f(z) .
$$

Let suppose

$$
\begin{equation*}
-1 \leq B \leq 0 \quad \text { and } \quad|A|<1 \quad(A \in \mathbf{C}) \tag{8}
\end{equation*}
$$

We denote by $V(q, s ; A, B)$ the class of functions f of the form (1) which satisfy the following condition:

$$
\begin{equation*}
\frac{z[\mathcal{H} f(z)]^{\prime}}{\mathcal{H} f(z)} \prec \frac{1+A z}{1+B z} \quad(z \in \mathcal{U}) . \tag{9}
\end{equation*}
$$

By (8) we have $\operatorname{Re}\left(\frac{1+A z}{1+B z}\right)>0$ for $z \in \mathcal{U}$, Thus

$$
\begin{equation*}
f \in V(q, s ; A, B) \Rightarrow \mathcal{H} f(z) \in S^{*} \tag{10}
\end{equation*}
$$

Moreover for $-1 \leq B<A \leq 1$ this means that $\mathcal{H} f(z)$ belongs to the class $\mathcal{S}^{*}\left[\frac{1+A z}{1+B z}\right]$ defined by (3). After some calculations we obtain

$$
\begin{equation*}
a_{i} \mathcal{H}\left(a_{i}+1\right) f(z)=z \mathcal{H}^{\prime} f(z)+\left(a_{i}-1\right) \mathcal{H} f(z), \quad i=1, \ldots, q, \tag{11}
\end{equation*}
$$

where, for convenience,

$$
\mathcal{H}\left(a_{i}+m\right) f(z)=\mathcal{H}\left(a_{1}, \ldots, a_{i}+m, \ldots, a_{q} ; b_{1}, \ldots, b_{s}\right) f(z), \quad i=1, \ldots, q .
$$

By (11) the condition (9) is for each $a_{i}, i=1, \ldots, q$ equivalent the following subordination

$$
\begin{equation*}
a_{i} \frac{\mathcal{H}\left(a_{i}+1\right) f(z)}{\mathcal{H} f(z)}+1-a_{i} \prec \frac{1+A z}{1+B z} \quad(z \in \mathcal{U}) . \tag{12}
\end{equation*}
$$

Therefore we use following alternatively notation

$$
V(q, s ; A, B)=V\left(a_{i} ; A, B\right) .
$$

Dziok and Srivastava [4] making use of the generalized hypergeometric function, have introduced a class of analytic functions with negative coefficients. They considered the class $V(q, s ; A, B)$ defined by condition (12) where parameters a_{1}, \ldots, a_{q}, b_{1}, \ldots, b_{s} are positive real and $-1 \leq A<B \leq 1$. Some inclusion for this class was given in [2].

The main object of this paper is to investigate a inclusion properties of the classes $V(q, s ; A, B)$.

2. Main Results

We begin with a lemma, which will be useful later on.
Lemma 1. [8]. Let $\nu, A \in \mathbf{C}$ and $B \in[-1 ; 0]$ satisfy either

$$
\begin{equation*}
\operatorname{Re}\left[1+A B+\nu\left(1+B^{2}\right)\right] \geq|A+B+B(\nu+\bar{\nu})| \text { for } B \in(-1 ; 0], \tag{13}
\end{equation*}
$$

or

$$
\begin{equation*}
1+A>0 \text { and } \operatorname{Re}[1-A+2 \nu] \geq 0 \text { for } B=-1 \tag{14}
\end{equation*}
$$

If $f \in \mathcal{A}$ and $F(z)=\mathcal{J}_{\nu}[f(z)]$ is given by (6), then $F \in \mathcal{A}$ and

$$
\frac{z f^{\prime}(z)}{f(z)} \prec \frac{1+A z}{1+B z} \Rightarrow \frac{z F^{\prime}(z)}{F(z)} \prec \frac{1+A z}{1+B z} .
$$

Lemma 1 in the more general case is in [8], p. 111.
Lemma 2. If the function f is of the form (1), then

$$
\begin{equation*}
\mathcal{H} f(z)=\mathcal{J}_{a_{i}-1}\left[\mathcal{H}\left(a_{i}+1\right) f(z)\right] \quad(i=1,2, \ldots, q), \tag{15}
\end{equation*}
$$

where $\mathcal{J}_{a_{i}-1}$ is the Bernardi operator (6).

Proof. From (4) and from (5) we have

$$
\begin{aligned}
\mathcal{H} f(z) & =z+\sum_{n=2}^{\infty} \frac{\left(a_{1}\right)_{n-1} \cdot \ldots \cdot\left(a_{q}\right)_{n-1}}{\left(b_{1}\right)_{n-1} \cdot \ldots \cdot\left(b_{s}\right)_{n-1} \cdot(n-1)!} a_{n} z^{n} \\
& =z+\sum_{n=2}^{\infty} \frac{\left(a_{1}\right)_{n-1} \cdot \ldots \cdot \frac{a_{i}}{a_{i}+n-1} \cdot\left(a_{i}+1\right)_{n-1} \cdot \ldots \cdot\left(a_{q}\right)_{n-1}}{\left(b_{1}\right)_{n-1} \cdot \ldots \cdot\left(b_{s}\right)_{n-1} \cdot(n-1)!} a_{n} z^{n} \\
& =\left[\sum_{n=1}^{\infty} \frac{a_{i}}{a_{i}+n-1} z^{n}\right] *\left[\mathcal{H}\left(a_{i}+1\right) f(z)\right] \\
& =\left[\sum_{n=1}^{\infty} \frac{\left(a_{i}-1\right)+1}{\left(a_{i}-1\right)+n} z^{n}\right] *\left[\mathcal{H}\left(a_{i}+1\right) f(z)\right] .
\end{aligned}
$$

Thus by (7) with $\nu=a_{i}+1$ we obtain (15).
Theorem 1. If $m \in \mathbf{N}$ and $i \in\{1, \ldots, q\}$, then

$$
\begin{equation*}
V\left(a_{i}+m ; A, B\right) \subseteq V\left(a_{i} ; A, B\right), \tag{16}
\end{equation*}
$$

whenever A, B satisfy either (13) or (14) with $\nu=a_{i}-1$.
Proof. It is clear that it is sufficient to prove (16) only for $m=1$. Let $f \in V\left(a_{i}+1 ; A, B\right)$, then from (9) we have

$$
\frac{z\left[\mathcal{H}\left(a_{i}+1\right) f(z)\right]^{\prime}}{\mathcal{H}\left(a_{i}+1\right) f(z)} \prec \frac{1+A z}{1+B z} \quad(z \in \mathcal{U})
$$

Applying Lemma 1 and Lemma 2, by (9) we obtain that $f \in V\left(a_{i} ; A, B\right)$.
It is natural to ask about the inclusion relation (16) when m is not positive integer. Using a different method we will give a partial answer to this question. We will need the following lemma.

Lemma 3. [10]. If $f \in \mathcal{K}, g \in \mathcal{S}^{*}$, then for each analytic function h in \mathcal{U},

$$
\frac{(f * h g)(\mathcal{U})}{(f * g)(\mathcal{U})} \subseteq \overline{c o h}(\mathcal{U})
$$

where $\overline{c o} h(\mathcal{U})$ denotes the closed convex hull of $h(\mathcal{U})$.
Theorem 2. If $G(z)=\sum_{n=0}^{\infty} \frac{\left(a_{i}\right)_{n}}{\left(\tilde{a}_{i}\right)_{n}} z^{n+1} \in \mathcal{K}$, then $V\left(\tilde{a}_{i} ; A, B\right) \subset V\left(a_{i} ; A, B\right)$.

Proof. Let $f \in V\left(\tilde{a}_{i} ; A, B\right)$. By the definition of the subordination we have

$$
\begin{equation*}
\frac{z\left[\mathcal{H}\left(\tilde{a}_{i}\right) f(z)\right]^{\prime}}{\mathcal{H}\left(\tilde{a}_{i}\right) f(z)}=\frac{1+A \omega(z)}{1+B \omega(z)}:=\phi[\omega(z)] \quad(z \in \mathcal{U}) \tag{17}
\end{equation*}
$$

where ϕ is convex univalent mapping of \mathcal{U} and $|\omega(z)|<1$ in \mathcal{U} with $\omega(0)=0=$ $\phi(0)-1$. Moreover, $\operatorname{Re}[\phi(z)]>0, z \in \mathcal{U}$. Applying (17) and the properties of convolution we get

$$
\begin{align*}
\frac{z\left[\mathcal{H}\left(a_{i}\right) f(z)\right]^{\prime}}{\mathcal{H}\left(a_{i}\right) f(z)} & =\frac{z\left[\sum_{n=0}^{\infty} \frac{\left(a_{i}\right)_{n}}{\left(\tilde{a}_{i}\right)_{n}} z^{n+1} * \mathcal{H}\left(\tilde{a}_{i}\right) f(z)\right]^{\prime}}{\sum_{n=0}^{\infty} \frac{\left(a_{i}\right)_{n}}{\left(\tilde{a}_{i}\right)_{n}} z^{n+1} * \mathcal{H}\left(\tilde{a}_{i}\right) f(z)} \tag{18}\\
& =\frac{G(z) * z H^{\prime}(z)}{G(z) * H(z)}=\frac{G(z) * \phi[\omega(z)] H(z)}{G(z) * H(z)}=: g(z)
\end{align*}
$$

Because $H(z) \in \mathcal{S}^{*}, G(z) \in \mathcal{K}$ and ϕ is convex univalent, then by Lemma 3 we obtain that for $z \in \mathcal{U}$ the quantity (18) lies in $\overline{c o} \phi[\omega(\mathcal{U})]$. By (2) and from the above-mentioned properties of ϕ we conclude that g defined by(18) is subordinated to ϕ. Thus, by (9) we have that $\mathcal{H}\left(a_{i}\right) f(z) \in \mathcal{S}^{*}\left[\frac{1+A z}{1+B z}\right] \subseteq \mathcal{S}^{*}$ and finally $f \in$ $V\left(a_{i} ; A, B\right)$.

Lemma 4. [9]. If either $0<a \leq c$ and $c \geq 2$ when a, c are real number, or $\operatorname{Re}[a+c] \geq 3, \operatorname{Re}[a] \leq \operatorname{Re}[c]$ and $\operatorname{Im}[a]=\operatorname{Im}[c]$ when a, c are complex, then the function

$$
f(z)=\sum_{n=0}^{\infty} \frac{(a)_{n}}{(c)_{n}} z^{n+1} \quad(z \in \mathcal{U})
$$

belongs to the class \mathcal{K} of convex functions.
Lemma 4 is a special case of Theorem 2.12 or Theorem 2.13 contained in [9].

Theorem 3. Let $i \in\{1,2, \ldots, q\}$. If a_{i}, \tilde{a}_{i} are real number such that

$$
0<a_{i} \leq \tilde{a}_{i} \text { and } \tilde{a}_{i} \geq 2
$$

or a_{i}, \tilde{a}_{i} are complex number such that

$$
\operatorname{Re}\left[a_{i}+\tilde{a}_{i}\right] \geq 3, \operatorname{Re}\left[a_{i}\right] \leq \operatorname{Re}\left[\tilde{a}_{i}\right] \text { and } \operatorname{Im}\left[a_{i}\right]=\operatorname{Im}\left[\tilde{a}_{i}\right]
$$

then

$$
V\left(\tilde{a}_{i} ; A, B\right) \subseteq V\left(a_{i} ; A, B\right)
$$

Proof. Since $\mathcal{H}\left(\tilde{a}_{i}\right) f(z) \in \mathcal{S}^{*}$, by Lemma 4 the function

$$
G(z)=\sum_{n=0}^{\infty} \frac{\left(a_{i}\right)_{n}}{\left(\tilde{a}_{i}\right)_{n}} z^{n+1}(z \in \mathcal{U})
$$

belongs to the class of convex functions \mathcal{K}. Using Theorem 1 we obtain that $f \in V\left(a_{i} ; A, B\right)$.

Lemma 5. ([8], p.240). If a, b, c are real and satisfy $-2 \leq a<0, b \neq 0$, $-1 \leq b$ and $c>M(a, b)$, where

$$
M(a, b)=\max \{2+|a+b|, 1-a b\}
$$

then the Gaussian hypergeometric function

$$
{ }_{2} F_{1}(a, b, c ; z)=\sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n} n!} z^{n}
$$

is convex in \mathcal{U}.
Lemma 6. Let $-1 \leq a_{i}<1, i \in\{1, \ldots, q\}$. If $\tilde{a}_{i}>3+\left|a_{i}\right|$, then

$$
\sum_{n=0}^{\infty} \frac{\left(a_{i}\right)_{n}}{\left(\tilde{a}_{i}\right)_{n}} z^{n+1} \in \mathcal{K}
$$

Proof. Let we chose $b=1, a=a_{i}-1, c=\tilde{a}_{i}-1$ in Lemma 5. Then we obtain that the function

$$
F(z)=\sum_{n=0}^{\infty} \frac{\left(a_{i}-1\right)_{n}}{\left(\tilde{a}_{i}-1\right)_{n}} z^{n}
$$

is convex for $-2 \leq a_{i}-1<0$ and $\tilde{a}_{i}-1>M(a, b)=2+\left|a_{i}\right|$. It is clear that $G(z)=\frac{\tilde{a}_{i}-1}{a_{i}-1}[F(z)-1] \in \mathcal{K}$. After some calculations we obtain that

$$
G(z)=\sum_{n=0}^{\infty} \frac{\left(a_{i}\right)_{n}}{\left(\tilde{a}_{i}\right)_{n}} z^{n+1}
$$

and this ends the proof.
Theorem 4. Let $-1 \leq a_{i}<1, i \in\{1, \ldots, q\}$. If $\tilde{a}_{i}>3+\left|a_{i}\right|$, then

$$
V\left(\tilde{a}_{i} ; A, B\right) \subseteq V\left(a_{i} ; A, B\right)
$$

Proof. The proof runs as the proof of Theorem 3 by using Lemma 6.

Theorem 5. Let $m \in \mathbf{N}, i \in\{1, \ldots, q\}$. If $\operatorname{Re} a_{i}>1$, then

$$
\begin{equation*}
V\left(a_{i}+m ; A, B\right) \subseteq V\left(a_{i} ; A, B\right) . \tag{19}
\end{equation*}
$$

Proof. It is clear that it is sufficient to prove (19) only for $m=1$. If $f \in$ $V\left(a_{i}+1 ; A, B\right)$, then by (10) we have $H(z):=\mathcal{H}\left(a_{i}+1\right) f(z) \in \mathcal{S}^{*}\left[\frac{1+A z}{1+B z}\right] \subseteq \mathcal{S}^{*}$.
Let us denote

$$
\frac{z H^{\prime}(z)}{H(z)}=\frac{1+A \omega(z)}{1+B \omega(z)}:=\phi[\omega(z)] \quad(z \in \mathcal{U})
$$

where ϕ is convex univalent and $|\omega(z)|<1$ in \mathcal{U} with $\omega(0)=0=\phi(0)-1$ Moreover $\operatorname{Re}[\phi(z)]>0$. If $\operatorname{Re} a_{i}>1$, then the function

$$
G(z)=\sum_{n=1}^{\infty} \frac{\left(a_{i}-1\right)+1}{\left(a_{i}-1\right)+n} z^{n} \quad(z \in \mathcal{U})
$$

belongs to the class of convex functions \mathcal{K}, (Ruscheweych,[9]). Recall that

$$
f(z) * G(z)=\mathcal{J}_{1, a_{i}-1}[f(z)],
$$

where $\mathcal{J}_{a_{i}-1}$ is the Bernardi operator defined by (6). From the proof of Lemma 2 we have

$$
\mathcal{H}\left(a_{i}\right) f(z)=G(z) * \mathcal{H}\left(a_{i}+1\right) f(z) .
$$

Thus

$$
\begin{aligned}
\frac{z\left[\mathcal{H}\left(a_{i}\right) f(z)\right]^{\prime}}{\mathcal{H}\left(a_{i}\right) f(z)} & =\frac{[G(z) * z H(z)]^{\prime}}{G(z) * H(z)}=\frac{G(z) * z H^{\prime}(z)}{G(z) * H(z)} \\
& =\frac{G(z) * \phi[\omega(z)] H(z)}{G(z) * H(z)} \in \overline{c o} \phi(\mathcal{U}) .
\end{aligned}
$$

For the same reasons as in the proof of Theorem 2 we obtain that $f \in V\left(a_{i} ; A, B\right)$.

References

1. S. D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc., 135 (1969), 429-446.
2. J. Dziok, On some applications of the Briot-Bouquet differential subordinations, J. Math. Anal. Appl., (2007), 295-301.
3. J. Dziok and H. M. Srivastava, Certain subclasses of analytic functions associated with the generalized hypergeometric function, Integral Transform. Spec. Funct., 14 (2003), 7-18.
4. J. Dziok and H. M. Srivastava, Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput., 103 (1999), 1-13.
5. J. Dziok and H. M. Srivastava, Some subclasses of analytic functions with fixed argument of coefficients associated with the generalized hypergeometric function, Advanced Studies in Contemporary Mathematics, 5(2) (2002), 115-125.
6. W. Janowski, Extremal problems for a family of functions with positive real part and for some related families, Ann. Polon. Math., 23 (1970), 159-177.
7. Y. C. Kim and H. M. Srivastava, Fractional integral and other linear operators associated with the Gaussian hypergeometric function, Complex Variables Theory Appl., 34 (1997), 293-312.
8. S. S. Miller and P. T. Mocanu, Differential subordinations: theory and applications, Series of Monographs and Textbooks in Pure and Applied Mathematics, Vol. 225, Marcel Dekker Inc., New York • Basel, 2000.
9. St. Ruscheweyh, Convolutions in Geometric Function Theory, Sem. Math. Sup., 83, Presses Univ. Montreal, 1982.
10. St. Ruscheweyh and T. Sheil-Small, Hadamard product of schlicht functions and the Poyla-Schoenberg conjecture, Comm. Math. Helv., 48 (1973), 119-135.
11. H. M. Srivastava and M. K. Aouf, A certain fractional derivative operator and its applications to a new class of analytic and multivalent functions with negative coefficients. I and II, J. Math. Anal. Appl., 171 (1992), 1-13; ibid. 192 (1995), 673-688.
12. H. M. Srivastava and S. Owa, Some characterization and distortion theorems involving fractional calculus, generalized hypergeometric functions, Hadamard products, linear operators, and certain subclasses of analytic functions, Nagoya Math. J., 106 (1987), 1-28.
13. H. M. Srivastava and S. Owa (eds.), Current Topics in Analytic Function Theory, World Scientific Publishing Company, Singapore, New Jersey, London, and Hong Kong, 1992.
```
Jacek Dziok
Institute of Mathematics,
University of Rzeszow,
ul. Rejtana 16A,
PL-35-310 Rzeszów,
Poland
E-mail: jdziok@univ.rzeszow.pl
Janusz Sokol
Department of Mathematics,
Rzeszow University of Technology,
ul. W. Pola 2,
PL-35-959 Rzeszow,
Poland
E-mail: jsokol@ prz.edu.pl
```

