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OSCILLATION THEOREMS FOR A CLASS OF SECOND ORDER
NONLINEAR DIFFERENTIAL EQUATIONS WITH DAMPING

Yuri V. Rogovchenko* and Fatoş Tuncay

Abstract. For a class of second order nonlinear differential equations with
damping, efficient oscillation criteria are derived by refining the standard in-
tegral averaging technique. Examples are provided to illustrate the relevance
of new theorems.

1. INTRODUCTION

We study the problem of oscillation of a class of nonlinear second order differ-
ential equations with damping

(1) [r(t)ψ(x(t))x′(t)]′ + p(t)x′(t) + q(t)f(x(t)) = 0,

where t ≥ t0 ≥ 0, r ∈ C1([t0,∞); (0,∞)), p, q ∈ C([t0,∞); R), f ∈ C(R; R)
and xf(x) > 0 for x �= 0.

By a solution of equation (1) we understand a function x : [t0, t1) → R, t1 > t0
such that substitution of x(t) in (1) turns it into identity for all t ∈ [t 0, t1). In the
sequel, we assume that solutions of equation (1) exist for all t ≥ t0 ≥ 0. A solution
x(t) of equation (1) is called oscillatory if it does not have the largest zero, otherwise
it is called non-oscillatory. We say that equation (1) is oscillatory if all its solutions
are oscillatory.

Oscillation of differential equations with damping has been discussed by many
authors, including quite a few papers dealing with equation (1), see, for instance,
Elabbasy et al. [3], Grace [4, 6], Grace and Lalli [7-11], Kirane and Rogovchenko
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[16], Lalli and Grace [18], Manojlović [21], Tiryaki and Zafer [31]. Several authors
were concerned with equations with nonlinear damping terms as, for example, Baker
[1], Bobisud [2], Grace and Lalli [7], Grace et al. [14], S. Rogovchenko and Yu.
Rogovchenko [26, 27], Tiryaki and Zafer [32]. Many papers deal with a special
case of equation (1) when ψ(x) ≡ 1,

(2) [r(t)x′(t)]′ + p(t)x′(t) + q(t)f(x(t)) = 0,

see [26], [29], and the references cited there.
A particular case of equation (1) without damping term, differential equation

(3) [r(t)ψ(x(t))x′(t)]′ + q(t)f(x(t)) = 0,

has been examined by Grace [4, 6], Lalli and Grace [18], Manojlović [22, 23],
Tiryaki and Çakmak [30] and others. As mentioned by Mahfoud [20], “in the case
p(t) = 0, the presence of the factor ψ(x) in (1) does not create a new problem.” He
asserted that, for p(t) = 0, using a simple change of variable, one can reduce (1) to
an equation withoutψ(x) and apply oscillation criteria known for a simpler equation.
Consequently, the importance of the factor ψ(x) is closely related to the presence
of a damping term in equation (1), which makes reduction to simpler differential
equation either very complicated or impossible. In fact, it has been shown recently
by Mustafa et al. [24] that integral transformations can be successfully used to
translate oscillation results established for the differential equation (1) to a new
class of differential equations,

(4) [r(t)y′(t)]′ + p(t)α(y(t))y′(t) + q(t)f(y(t)) = 0,

although certain difficulties may arise because coefficients in a transformed equa-
tion cannot be always computed explicitly. Hence, results specifically designed for
different classes are important in their own right and have both weak and strong
points. The reader can find in [24] more details regarding the change of variable
that reduces (1) to (4) and how this affects oscillation criteria.

In 1986, Yan [34] established an important generalization of the celebrated
Kamenev’s oscillation criterion [15] for the linear differential equation with a damp-
ing term

[r(t)x′(t)]′ + p(t)x′(t) + q(t)x(t) = 0,

which has been later extended by Grace [6] to equations (1) - (3) using advanced
integral averaging technique due to Philos [25].

Let D = {(t, s)| −∞ < s ≤ t < +∞} . We say that a function H(t, s) belongs
to the class W if

(i) H ∈ C (D, [0,+∞)) ;
(ii) H(t, t) = 0 and H(t, s) > 0 for −∞ < s < t < +∞;
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(iii) H has continuous partial derivative ∂H/∂s satisfying

∂H

∂s
= −h(t, s)

√
H(t, s),

where h ∈ Lloc (D,R) . In what follows, we use the notation

f+(x) def= max(f(x), 0).

Theorem 1. [6, Theorem 6, pp. 239-240]. Suppose that f ′(x) exists,

(5) f ′(x) ≥ µ,

for some constant µ > 0 and for all x �= 0, and there exist functions H ∈ W ,
g ∈ C1([t0,∞); (0,∞)) such that

(6) 0 < inf
s≥t0

[
lim inf
t→∞

H(t, s)
H(t, t0)

]
≤ ∞

and

(7) lim sup
t→∞

1
H(t, t0)

∫ t

t0

r(s)g(s)
(
h(t, s) − γ(s)

√
H(t, s)

)2
ds <∞,

where γ(t) = (r(t)g′(t) − p(t)g(t))/(r(t)g(t)). Suppose also that there exists a
function κ ∈ C([t0,∞); R) such that, for every T ≥ t0,

lim sup
t→∞

1
H(t, T )

∫ t

T

[
H(t, s)g(s)q(s)− r(s)g(s)

4µ

×
(
h(t, s) − γ(s)

√
H(t, s)

)2
]
ds ≥ κ(T )

and

lim sup
t→∞

∫ t

t0

κ2
+(s)

g(s)r(s)
ds = ∞.

Then equation (2) is oscillatory.

Oscillation results for equation (1) under assumption of monotonicity of f were
obtained by Tiryaki and Zafer [31], and, in the case when f(x) is not monotoni-
cally increasing, by Kirane and Rogovchenko [16], who established the following
criterion.
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Theorem 2. [16, Theorem 2, pp. 125-130]. Assume that

(8) 0 < C ≤ ψ(x) ≤ C1,

for all x ∈ R,

(9)
f(x)
x

≥ µ,

for some constant µ > 0 and all x �= 0, whereas q(t) satisfies, for all t ≥ t 0,

(10) q(t) ≥ 0,

and q is not identical zero on [t0,∞). Suppose that there exist functions H ∈ W ,

ρ ∈ C1([t0,∞); (0,∞)) and κ∈ C([t0,∞); R) such that (6) holds and, for t > t0
and T ≥ t0,

(11)
lim sup

t→∞
1

H(t, t0)

∫ t

t0

r(s)ρ(s)Q2(t, s)ds <∞,

lim sup
t→∞

1
H(t, T )

∫ t

T

(
H(t, s)φ(s)− C1

4
ρ(s)r(s)Q2(t, s)

)
ds ≥ κ (T ) ,

and
lim sup

t→∞

∫ t

t0

κ2
+(s)

ρ(s)r(s)
ds = ∞,

where
φ(t) = ρ(t)

(
µq(t) −

(
1
C

− 1
C1

)
p2(t)
4r(t)

)
and

Q(t, s) = h(t, s) +
(

p(s)
C1r(s)

− ρ′(s)
ρ(s)

)√
H(t, s).

Then equation (1) is oscillatory.

The purpose of this paper is to strengthen Theorems 1 and 2, as well as related
results concerning oscillation of equation (1) by refining the standard integral aver-
aging technique developed by Grace [6], Philos [25], Rogovchenko [28], Yan [34],
and in other papers on the subject.

The major advantages of a modified approach are the following. Firstly, in
contrast to many recent results on oscillation of differential equations with damping,
we do not need conditions (7), (11) and likewise anymore. Secondly, we simplify
significantly the proof of Theorem 3, which is an analogue of Theorems 1 and
2, along with the proofs of similar results. As a by-product of the main result,
we immediately obtain a counterpart of Theorem 3, Theorem 4, where lim sup is
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replaced with lim inf (this required at least a page-long proof till now). It is also
important to note that, similarly to [16, 21, 29, 31], we do not impose additional
conditions on the damping coefficient p(t).

2. OSCILLATION FOR INCREASING f

Theorem 3. Assume that (5) and (8) hold. Suppose further that there exist
functions H ∈ W , g ∈ C1([t0,∞); R), and κ ∈ C([t0,∞); R) such that (6) is
satisfied and, for some β > 1, all t > t0 and T ≥ t0,

(12) lim sup
t→∞

1
H(t, T )

∫ t

T

(
H(t, s)φ(s)− βC1v(s)r(s)

4µ
h2(t, s)

)
ds ≥ κ(T ),

where

(13) v(t) = exp
(
−2µ
C1

∫ t(g(s)
r(s)

− p(s)
2µr(s)

)
ds

)

and

(14) φ(t) = v(t)
(
q(t) +

µg2(t)
C1r(t)

− p(t)g(t)
C1r(t)

− g′(t) +
(

1
C1

− 1
C

)
p2(t)
4µr(t)

)
.

If

(15) lim sup
t→∞

∫ t

t0

κ2
+(s)

v(s)r(s)
ds = ∞,

equation (1) is oscillatory.

Proof. Let x(t) be a non-oscillatory solution of the differential equation (1).
Then there exists a T0 ≥ t0 such that x(t) �= 0 for all t ≥ T0. Without loss of
generality, we may assume that x(t) > 0 for all t ≥ T0. For t ≥ T0, define a
generalized Riccati transformation by

(16) u(t) = v(t)
[
r(t)ψ(x(t))x′(t)

f(x(t))
+ g(t)

]
,

where v(t) is given by (13). Differentiating (16) and using (1), we obtain

u′(t) =
v′(t)
v(t)

u(t) + v(t)
{

[r(t)ψ(x(t))x′(t)]′

f(x(t))
+ g′(t)

−r(t)ψ(x(t)) [x′(t)]2 f ′(x(t))
[f(x(t))]2

}
=
[
−2µ

g(t)
C1r(t)

+
p(t)
C1r(t)

]
u(t)

+v(t)

{
−p(t)x

′(t)
f(x(t))

− q(t)f (x (t))
f(x(t))

+g′(t)− r(t)ψ(x(t)) [x′(t)]2 f ′(x(t))
[f(x(t))]2

}
.
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Therefore, for all t ≥ T0,

(17)

u′(t) ≤
[
−2µ

g(t)
C1r(t)

+
p(t)
C1r(t)

]
u(t)+v(t)

{
− p(t)
ψ(x(t))r(t)

[
u(t)
v(t)

−g(t)
]

−q(t) + g′(t)− µ

ψ(x(t))r(t)

[
u(t)
v(t)

− g(t)
]2}

.

In view of (8) and (16), for all t ≥ T0, (17) yields

(18) u′(t) ≤ −φ(t) − µ

C1v(t)r(t)
u2(t),

where φ(t) is defined by (14). Multiplying (18) by H(t, s), integrating from T to
t, and using the properties of the function H(t, s), we have, for all t ≥ T ≥ T0,

∫ t

T
H(t, s)φ(s)ds ≤ −

∫ t

T
H(t, s)u′(s)ds−

∫ t

T
H(t, s)

µ

C1v(s)r(s)
u2(s)ds

= −H(t, s)u(s)|tT −
∫ t

T

[
−∂H
∂s

(t, s)u(s) +H(t, s)
µ

C1v(s)r(s)
u2(s)

]
ds

= H(t, T )u(T )−
∫ t

T

(
h(t, s)

√
H(t, s)u(s) +H(t, s)

µ

C1v(s)r(s)
u2(s)

)
ds.

Then, for any β > 1, the latter inequality can be written as

(19)

∫ t

T
H(t, s)φ(s)ds ≤ H(t, T )u(T )

−
∫ t

T

(√
µH(t, s)

βC1v(s)r(s)
u(s) +

√
βC1v(s)r(s)

4µ
h(t, s)

)2

ds

+
βC1

4µ

∫ t

T

v(s)r(s)h2(t, s)ds−
∫ t

T

µ (β − 1)H(t, s)
βC1v(s)r(s)

u2(s)ds,

and, for all t ≥ T ≥ T0,

(20)

∫ t

T

[
H(t, s)ψ(s)− βC1

4µ
v(s)r(s)h2(t, s)

]
ds ≤ H(t, T )u(T )

−
∫ t

T

(√
µH(t, s)

βC1v(s)r(s)
u(s) +

√
βC1v(s)r(s)

4µ
h(t, s)

)2

ds

−
∫ t

T

µ (β − 1)H(t, s)
βC1v(s)r(s)

u2(s)ds.
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It follows from (20) that, for t > T ≥ T0,

1
H(t, T )

∫ t

T

[
H(t, s)φ(s)− βC1

4µ
v(s)r(s)h2(t, s)

]
ds ≤ u(T )

− 1
H(t, T )

∫ t

T

(√
µH(t, s)

βC1v(s)r(s)
u(s) +

√
βC1v(s)r(s)

4µ
h(t, s)

)2

ds

− 1
H(t, T )

∫ t

T

µ (β − 1)H(t, s)
βC1v(s)r(s)

u2(s)ds

≤ u(T )− 1
H(t, T )

∫ t

T

µ (β − 1)H(t, s)
βC1v(s)r(s)

u2(s)ds

and

(21)
lim sup

t→∞
1

H(t, T )

∫ t

T

[
H(t, s)φ(s)− βC1

4µ
v(s)r(s)h2(t, s)

]
ds

≤ u(T )− lim inf
t→∞

1
H(t, T )

∫ t

T

µ (β − 1)H(t, s)
βC1v(s)r(s)

u2(s)ds.

In virtue of (12), for all T ≥ T0,

u(T ) ≥ κ(T ) + lim inf
t→∞

1
H(t, T )

∫ t

T

µ (β − 1)H(t, s)
βC1v(s)r(s)

u2(s)ds.

Consequently,

(22) u(T ) ≥ κ(T ), for all T ≥ T0,

and

(23)
lim inf
t→∞

1
H(t, T0)

∫ t

T0

H(t, s)
v(s)r(s)

u2(s)ds ≤M

def=
βC1

µ (β − 1)
(u(T0) − κ(T0)) <∞.

To show that

(24)
∫ ∞

T0

u2(s)
v(s)r(s)

ds <∞,

assume the contrary, that is,

(25)
∫ ∞

T0

u2(s)
v(s)r(s)

ds = ∞.

It follows from (6) that there exists a constant ν > 0 such that

(26) inf
s≥t0

[
lim inf
t→∞

H(t, s)
H(t, t0)

]
> ν.
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On the other hand, by virtue of (25), for any positive number δ, there exists a
T1 > T0 such that ∫ t

T0

u2(s)
v(s)r(s)

ds ≥ δ

ν
, for all t ≥ T1.

Using integration by parts, we conclude that, for all t ≥ T1,

1
H(t, T0)

∫ t

T0

H(t, s)
u2(s)
v(s)r(s)

ds =
1

H(t, T0)

∫ t

T0

[
−∂H(t, s)

∂s

][∫ s

T0

u2(τ)
v(τ)r(τ)

dτ

]
ds

≥ 1
H(t, T0)

∫ t

T1

[
−∂H(t, s)

∂s

][∫ s

T0

u2(τ)
v(τ)r(τ)

dτ

]
ds.

Therefore,

(27)

1
H(t,T0)

∫ t
T0
H(t, s) u2(s)

v(s)r(s)ds ≥ δ

ν

1
H(t, T0)

∫ t

T1

[
−∂H(t, s)

∂s

]
ds

=
δ

ν

H(t, T1)
H(t, T0)

.

It follows from (26) that

lim inf
t→∞

H(t, s)
H(t, t0)

> ν > 0,

and there exists a T2 ≥ T1 such that

H(t, T1)
H(t, t0)

≥ ν, for all t ≥ T2.

Consequently, by (27),

1
H(t, T0)

∫ t

T0

H(t, s)
u2(s)
v(s)r(s)

ds ≥ δ, for all t ≥ T2.

Since δ is an arbitrary constant, we have

lim inf
t→∞

1
H(t, T0)

∫ t

T0

H(t, s)
u2(s)
v(s)r(s)

ds = +∞,

which contradicts (23). Thus, (24) should hold, and, by virtue of (22),
∫ ∞

T0

κ2
+(s)

v(s)r(s)
ds ≤

∫ ∞

T0

u2(s)
v(s)r(s)

ds < +∞,
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but this contradicts (15). Therefore, our initial assumption that x(t) has constant
sign on [T0,∞) is wrong, and since x(t) is an arbitrary solution, equation (1) is
oscillatory.

Theorem 4. Let (5) and (8) hold. Assume that there exist functions H ∈ W ,
g ∈ C1([t0,∞); R), and κ ∈ C([t0,∞); R) such that (6) is satisfied and, for some
β > 1 and all T ≥ t0,

lim inf
t→∞

1
H(t, T )

∫ t

T

(
H(t, s)φ(s)− βC1v(s)r(s)

4µ
h2(t, s)

)
ds ≥ κ(T ),

where v(s) and φ(s) are as in Theorem 3. Suppose also that (15) holds. Then
equation (1) is oscillatory.

Proof. By virtue of the obvious inequality

κ(T ) ≤ lim inf
t→∞

1
H(t, T )

∫ t

T

(
H(t, s)φ(s)− βC1v(s)r(s)

4µ
h2(t, s)

)
ds

≤ lim sup
t→∞

1
H(t, T )

∫ t

T

(
H(t, s)φ(s)− βC1v(s)r(s)

4µ
h2(t, s)

)
ds,

the conclusion follows immediately from Theorem 3.

In the remaining part of this section, we present oscillation criteria analogous to
Theorems 3 and 4. They are proved in a similar manner, although a different trick
is being used for deriving an analogue of the inequality (18). These results neither
include, nor are included in Theorem 3 and Theorem 4 and are interesting in their
own right.

Theorem 5. Let (5) and (8) hold. Suppose also that there exist functions
H ∈ W , g ∈ C1([t0,∞); R), and κ ∈ C([t0,∞); R) such that (6) is satisfied and,
for some β > 1, all t > t0, and T ≥ t0,

(28)
lim sup

t→∞
1

H(t, T )

∫ t

T

(
H(t, s)φ(s)− H(t, s)p2(s)v(s)

2µC1r(s)

−βC1v(s)r(s)
2µ

h2(t, s)
)
ds ≥ κ(T ),

where φ(s) is defined by (14) and

(29) v(t) = exp
(
−2µ
C1

∫ t g(s)
r(s)

ds

)
.

If (15) is satisfied, equation (1) is oscillatory.
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Proof. As in the proof of Theorem 3, assume, without loss of generality, that
a non-oscillatory solution x(t) of the differential equation (1) is positive for all
t ≥ T0. Define a generalized Riccati transformation (16) with v(t) given by (29).
Differentiating (16) and using (1), we obtain, for all t ≥ T0,

u′(t) = −2µ
g(t)u(t)
C1r(t)

+ v(t)
{
−p(t)x

′(t)
f(x(t))

− q(t)f (x (t))
f(x(t))

−r(t)ψ(x(t)) [x′(t)]2 f ′(x(t))
[f(x(t))]2

+ g′(t)

}
,

which yields

(30) u′(t) ≤ −φ(t) − p(t)
C1r(t)

u(t) − µ

C1v(t)r(t)
u2(t),

where φ(t) is defined by (14). Using, as in [19], an elementary inequality

(31) bz − az2 ≤ b2

2a
− a

2
z2,

which is valid for all a > 0 and all b, z ∈ R, we deduce from (30) that

(32) φ(t) − p2(t)v(t)
2µC1r(t)

≤ −u′(t) − µ

2C1v(t)r(t)
u2(t),

for all t ≥ T0. As in the proof Theorem 3, multiplying (32) byH(t, s) and integrating
from T to t, one has, for any β > 1 and all t ≥ T ≥ T0,∫ t

T
H(t, s)

(
φ(s) − p2(s)v(s)

2µC1r(s)

)
ds ≤ H(t, T )u(T )

−1
2

∫ t

T

(√
µH(t, s)

βC1v(s)r(s)
u(s) +

√
βC1v(s)r(s)

µ
h(t, s)

)2

ds

+
βC1

2µ

∫ t

T
v(s)r(s)h2(t, s)ds−

∫ t

T

µ (β − 1)H(t, s)
2βC1v(s)r(s)

u2(s)ds.

Consequently, we conclude that, for all t ≥ T ≥ T0,∫ t

T

[
H(t, s)φ(s)−H(t, s)

p2(s)v(s)
2µC1r(s)

− βC1

2µ
v(s)r(s)h2(t, s)

]
ds

≤ H(t, T )u(T )−
∫ t

T

µ (β − 1)H(t, s)
2βC1v(s)r(s)

u2(s)ds

−1
2

∫ t

T

(√
µH(t, s)

βC1v(s)r(s)
u(s) +

√
βC1v(s)r(s)

µ
h(t, s)

)2

ds,
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which is an analogue of (20). Correspondingly, we have the inequality

lim sup
t→∞

1
H(t, T )

∫ t

T

(
H(t, s)φ(s)−H(t, s)p2(s)v(s)

2µC1r(s)
−βC1

2µ
v(s)r(s)h2(t, s)

)
ds

≤ u(T )− lim inf
t→∞

1
H(t, T )

∫ t

T

µ (β − 1)H(t, s)
2βC1v(s)r(s)

u2(s)ds,(33)

similar to (21). Using (33) and following the same lines as in the proof of Theorem 3,
one arrives at the contradiction with the assumption (15) of the theorem. Therefore,
equation (1) is oscillatory.

The next result follows immediately from Theorem 5 and properties of lim inf
and lim sup, cf. Theorem 4.

Theorem 6. Suppose that all assumptions of Theorem 5 are satisfied except
that condition (28) be replaced with

lim inf
t→∞

1
H(t, T )

∫ t

T

(
H(t, s)φ(s)− H(t, s)p2(s)v(s)

2µC1r(s)

−βC1v(s)r(s)
2µ

h2(t, s)
)
ds ≥ κ(T ).

Then equation (1) is oscillatory.

3. OSCILLATION FOR NON-MONOTONIC f

In what follows, we obtain counterparts of the oscillation criteria derived in
the previous section without requiring that f satisfies (5), which allows to study
oscillation of differential equations with a nonlinearity that may not be strictly
increasing. Although the class of equations to which new criteria apply is different
from the one discussed above, all results have appearance similar to that of Theorems
3-6. They are established by modifying the proofs of corresponding theorems in
Section 2. Therefore, we concentrate our attention on the differences in the proofs
and skip similar details.

Theorem 7. Suppose that ψ, f and q satisfy (8), (9), and (10). Assume further
that there exist functions H ∈ W , g ∈ C 1([t0,∞); R), and κ ∈ C([t0,∞); R) such
that (6) holds and, for some β > 1, all t > t 0, and any T ≥ t0,

(34) lim sup
t→∞

1
H(t, T )

∫ t

T

(
H(t, s)φ(s)− βC1v(s)r(s)

4
h2(t, s)

)
ds ≥ κ(T ),
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where

(35) v(t) = exp
(
− 2
C1

∫ t (g(s)
r(s)

− p(s)
2r(s)

)
ds

)

and

(36) φ(t) = v(t)
(
µq(t) +

g2(t)
C1r(t)

− p(t)g(t)
C1r(t)

− g′(t) +
(

1
C1

− 1
C

)
p2(t)
4r(t)

)
.

Suppose also that (15) is satisfied. Then equation (1) is oscillatory.

Proof. As above, assume, without loss of generality, that x(t) is a non-
oscillatory solution of the differential equation (1) which is positive for all t ≥ T0.
Define u(t) by

(37) u(t) = v(t)
[
r(t)ψ(x(t))x′(t)

x(t)
+ g(t)

]
,

where v(t) is given by (35). Differentiating (37) and using (1), we obtain

u′(t) =
[
−2

g(t)
C1r(t)

+
p(t)
C1r(t)

]
u(t) + v(t)

{
−p(t)x

′(t)
x(t)

−q(t)f (x (t))
x(t)

− r(t)ψ(x(t)) [x′(t)]2

x2(t)
+ g′(t)

}

≤
[
−2

g(t)
C1r(t)

+
p(t)
C1r(t)

]
u(t) + v(t)

{ −p(t)
ψ(x(t))r(t)

[
u(t)
v(t)

− g(t)
]

−µq(t) − 1
ψ(x(t))r(t)

[
u(t)
v(t)

− g(t)
]2

+ g′(t)

}
,

which yields, for all t ≥ T0,

(38) u′(t) ≤ −φ(t) − 1
C1v(t)r(t)

u2(t),

where φ(t) is defined by (36). Multiplying (38) by H(t, s), integrating from T to
t, and using the properties of the function H(t, s), we conclude that, for any β > 1
and for all t ≥ T ≥ T0,

(39)

∫ t

T

[
H(t, s)φ(s)− βC1

4
v(s)r(s)h2(t, s)

]
ds ≤ H(t, T )u(T )

−
∫ t

T

(√
H(t, s)

βC1v(s)r(s)
u(s) +

1
2

√
βC1v(s)r(s)h(t, s)

)2

ds

−
∫ t

T

(β − 1)H(t, s)
βC1v(s)r(s)

u2(s)ds.
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Then, (39) yields the inequality similar to (21), that is, for all T ≥ T0,

lim sup
t→∞

1
H(t, T )

∫ t

T

[
H(t, s)φ(s)− βC1

4
v(s)r(s)h2(t, s)

]
ds

≤ u(T ) − lim inf
t→∞

1
H(t, T )

∫ t

T

(β − 1)H(t, s)
βC1v(s)r(s)

u2(s)ds.

Proceeding as in the proof of Theorem 3, we complete the proof.

Theorem 8. Let all assumptions of Theorem 7 be satisfied except that lim sup
in condition (34) be replaced with lim inf . Then conclusion of Theorem 7 remains
intact.

Theorem 9. Let (8), (9), and (10) be satisfied, and suppose that there exist
functions H ∈ W , g ∈ C1([t0,∞); R), and κ ∈ C([t0,∞); R) such that (6) holds
and, for some β > 1, all t > t0, and any T ≥ t0,

(40)
lim sup

t→∞
1

H(t, T )

∫ t

T

(
H(t, s)φ(s)− H(t, s)p2(s)v(s)

2C1r(s)

−βC1v(s)r(s)
2

h2(t, s)
)
ds ≥ κ(T ),

where ψ is defined by (36) and

(41) v(t) = exp
(
− 2
C1

∫ t g(s)
r(s)

ds

)
.

Assume also that (15) holds. Then equation (1) is oscillatory.

Proof. As usual, suppose, without loss of generality, that a non-oscillatory
solution x(t) of the differential equation (1) satisfies x(t) > 0 for all t ≥ T0.
Define a generalized Riccati transformation (37), where this time v(t) is given by
(41). Differentiating (37) and using (1), we obtain, for all t ≥ T0,

(42)

u′(t) = −2
g(t)u(t)
C1r(t)

+ v(t){
−p(t)x

′(t)
x(t)

− q(t)f (x (t))
x(t)

− r(t)ψ(x(t)) [x′(t)]2

x2(t)
+ g′(t)

}

≤ −2
g(t)u(t)
C1r(t)

+v(t)
{
− p(t)
ψ(x(t))r(t)

[
u(t)
v(t)

−g(t)
]
−µq(t)+g′(t)

− 1
ψ(x(t))r(t)

[
u(t)
v(t)

− g(t)
]2}

≤ −φ(t) − p(t)
C1r(t)

u(t) − 1
C1v(t)r(t)

u2(t),
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where ψ(t) is defined by (36). Using the inequality (31), we conclude from (42)
that, for all t ≥ T0,

(43) φ(t) − p2(t)v(t)
2C1r(t)

≤ −u′(t) − 1
2C1v(t)r(t)

u2(t).

As in Theorem 3, multiplying (43) by H(t, s) and integrating from T to t, we have,
for any β > 1 and all t ≥ T ≥ T0,∫ t

T

[
H(t, s)φ(s)−H(t, s)

p2(s)v(s)
2C1r(s)

− βC1

2
v(s)r(s)h2(t, s)

]
ds

≤ H(t, T )u(T )−
∫ t

T

(β − 1)H(t, s)
2βC1v(s)r(s)

u2(s)ds

−1
2

∫ t

T

(√
H(t, s)

βC1v(s)r(s)
u(s) +

√
βC1v(s)r(s)h(t, s)

)2

ds,

and the analogue of the fundamental inequality (21) assumes now the form

lim sup
t→∞

1
H(t, T )

∫ t

T

[
H(t, s)φ(s)−H(t, s)

p2(s)v(s)
2C1r(s)

−βC1

2
v(s)r(s)h2(t, s)

]
ds ≤ u(T )

− lim inf
t→∞

1
H(t, T )

∫ t

T

(β − 1)H(t, s)
2βC1v(s)r(s)

u2(s)ds.

Following the same lines as in the proof of Theorem 3, we conclude that
equation (1) is oscillatory.

Theorem 10. Suppose that all assumptions of Theorem 9 are satisfied, ex-
cept that lim sup in condition (40) be replaced with lim inf . Then equation (1) is
oscillatory.

4. APPLICATIONS

With an appropriate choice of the functions H and h, one can derive from
general Theorems 3-10 a number of efficient oscillation criteria for equation (1).
One of the most popular choices for the function H(t, s), originally due to Kamenev
[15], is

H(t, s) = (t− s)n−1, (t, s) ∈ D,

where n > 2 is an integer. Clearly, H ∈ W , the function

h(t, s) = (n− 1)(t− s)(n−3)/2, (t, s) ∈ D,
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is continuous on [t0,∞) and satisfies condition (iii). Then, by Theorem 3, we obtain
the following oscillation criterion.

Corollary 11. Let assumptions (5) and (8) hold. Suppose that there exist
functions g ∈ C1([t0,∞); R) and κ ∈ C([t0,∞); R) such that for all T ≥ t0, some
β > 1, and some integer n > 2,

(44) lim sup
t→∞

t1−n

∫ t

T

[
(t−s)n−1φ(s)−βC1 (n−1)2

4µ
(t−s)n−3v(s)r(s)

]
ds≥κ(T ),

where v(t) and φ(t) are as in Theorem 3. Assume also that (15) is satisfied. Then
equation (1) is oscillatory.

Proof. It is only necessary to verify the condition (6), but with our choice of
the functions H and h it is fulfilled automatically since

lim
t→∞

H(t, s)
H(t, t0)

= lim
t→∞

(t− s)n−1

(t− t0)n−1
= 1,

for any s ≥ t0.

Example 12. For t ≥ 1, consider the nonlinear differential equation

(45)
(
t2ψ(x (t))x′ (t)

)′ + (t cos t) x′ (t) + q(t)f (x (t)) = 0,

where f(x) is any function satisfying (5) with µ = 1, ψ(x) is any function that
satisfies (8) with C = 1/4 and C1 = 1, whereas

q (t) =
(
t2 + 1

)
cos2 t− 1

2
(
t2 − cos t+ t sin t

)
+ 2.

We apply Corollary 11, letting β = 2 and g(t) = (t cos t) /2. Then v(t) = 1 and
φ(t) = t2 cos2 t− t2/2+2. A straightforward computation of the limit in (44) with
n = 3 gives

lim sup
t→∞

1
t2

∫ t

T

[
(t− s)2

(
s2 cos2 s − 1

2
s2 + 2

)
− 2 · 1 · 22

4 · 1 · 1 · s2
]
ds

=
1
4
(
1 + sinT cosT − 2T cos2 T − 7T − 2T 2 sinT cos T

)
= κ(T ),

and it follows from the relation

(46)
κ2

+(t)
v(t)r(t)

= O(t2) as t→ ∞
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that condition (15) is satisfied. Therefore, equation (45) is oscillatory by Corollary
11.

In a similar manner, one can derive efficient tests for oscillation of equation (1)
from any theorem in Sections 2 and 3. For instance, with the same choice of H as
in Corollary 11, as an immediate consequence of Theorem 7, we have the following
result.

Corollary 13. Let (9) and (10) hold, and assume that there exist functions
g ∈ C1([t0,∞); R) and κ ∈ C([t0,∞); R) such that for some β > 1, all t > t0,
and any T ≥ t0,

(47)

lim sup
t→∞

t1−n

∫ t

T

[
(t−s)n−1φ(s)−βC1 (n−1)2

4
(t−s)n−3v(s)r(s)

]
ds≥κ(T ),

where v(t) and φ(t) are as in Theorem 7. If (15) holds, equation (1) is oscillatory.

Example 14. For t ≥ 1, consider the nonlinear differential equation

(48)
(
ψ(x)x′ (t)

)′ + (sin 2t) x′ (t) +
(

2
t2

+ sin2 2t
)
f (x (t)) = 0,

where f(x) and ψ(x) are any functions satisfying conditions of Corollary 13 with
µ = 1, C = 1/4, and C1 = 1. Choosing β = 2 and g(t) = (sin 2t) /2 − t−1, we
conclude that v(t) = t2. Correspondingly, φ(t) = t2+2−2t2 cos2 t, and, for n = 3,
the limit in (47) reads as

lim sup
t→∞

1
t2

∫ t

T

[
(t− s)2

(
2 + s2 − 2s2 cos2 s

) − 2 · 1 · 22

4 · 1 · 1 · s2
]
ds

=
1
2
(
1 − sinT cosT − 5T + 2T cos2 T + 2T 2 sinT cos T

)
= κ(T ).

Taking into account that (46) holds, it is not hard to see that condition (15) is
satisfied. Thus, by Corollary 13, equation (48) is oscillatory.

5. CONCLUSIONS

One of the principal advantages of the refined integral averaging technique
suggested in this paper is simplification of both assumptions in oscillation results and
their proofs. To notice this, it suffices to compare conditions and proofs of Theorems
3-10 with tests for oscillation of differential equations with damping established by
Grace [6, Theorems 3, 4, 6, 7], Kirane and Rogovchenko [16, Theorems 2, 3], Li
et al. [19, Theorems 2.2, 2.3], Rogovchenko [28, Theorems 2, 3, 5, 6, 8, 9], [29,
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Theorems 2, 3], or Tiryaki and Zafer [31, Theorems 2.2, 2.3]. Our criteria have
one assumption less, and it is not hard to construct examples where, for the same
choice of v(t), conditions like (7) or (11) do not hold, but oscillatory nature of
given differential equations can be established using theorems proved in this paper.
In addition, the proofs of all our results are simpler and shorter.

We note that the inequality (19) and alike hold also for β = 1. However, in this
case (21) reduces to

lim sup
t→∞

1
H(t, T )

∫ t

T

[
H(t, s)φ(s)− βC1

4µ
v(s)r(s)h2(t, s)

]
ds ≤ u(T ),

and it is necessary to impose conditions analogous to (7) or (11) in Theorem 3,
which reduces it to known results. Similar reasoning applies to other theorems
proved in this paper.

A significant drawback of many oscillation results for differential equations with
damping reported in the literature is a necessity to impose a variety of additional
restrictions on the sign of the damping term p(t). We emphasize that our theorems
are free of particular restrictions on p(t). On the other hand, oscillation criteria
derived by Elabbasy et al. [3], Grace [4]-[6], Grace and Lalli [9]-[13], Grace et al.
[14] require, for t ≥ t0, specific technical conditions on coefficients like ρ ′(t) ≥ 0,
(r(t)ρ(t))′ ≥ 0, (r(t)ρ(t))′′ ≤ 0, and (r(t)ρ(t)− ρ(t)p(t))′ ≤ 0 [3, Theorems 2.1
and 2.4], p(t) ≤ 0 and (p(t)ρ(t))′ ≥ 0 [4, Theorem 3], [6, Theorem 1], ρ′(t) ≥ 0
and(r(t)ρ′(t))′ ≤ 0 [6, Theorem 2], [14, Theorem 1], p(t)ρ′(t) ≤ 0 [9, Theorem 2],
p′(t) ≥ 0 [9, Theorem 3], p′(t) ≥ 2q(t) [9, Theorem 4], r(t)ρ′(t)− p(t)ρ(t)/C1 =
γ(t) ≥ 0 [11, Theorem 1], γ(t) ≥ 0 and γ ′(t) ≤ 0 [10, Theorem 1], [11, Theorem
5], cf. also [12, Theorems 2.1-2.4], ρ′(t) ≤ 0 [14, Theorems 1 and 2]. If a damping
coefficient p(t) oscillates, which is the case in both our examples (45) and (48),
conditions mentioned above fail to hold, which does not allow application of the
corresponding oscillation criteria, see also comments in [16, 17, 29].

We also note that instead of condition (8), one can require that the function
ψ(x) be bounded below by a positive constant, that is,

0 < C ≤ ψ(x) < +∞, x ∈ R.

However, in this case it is possible to discuss oscillatory behavior only for bounded
solutions of equation (1) as in [4, Remark 2], or additional sign conditions on the
damping coefficient should be imposed as, for example, in [4, Theorem 3] and
[11, Theorems 2, 4, and 6]. Furthermore, for a strongly sublinear equation (1),
Manojlović [21] removed the assumption of positivity of ψ(x) requesting that, for
all x �= 0,

xf(x)
ψ(x)

> 0 and
d

dx

[
f(x)
ψ(x)

]
≥ 0.
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In addition, other assumptions on f and ψ are imposed like

f(x)ψ′(x)
ψ2(x)

≥ 1
k
> 0 and |ψ(x)| ≥ c > 0,

or
f(x)ψ′(x) ≥ k > 0,

for all x �= 0. Finally, we mention that another alternative is to consider (8) along
with the condition

(49)
f ′(x)
ψ(x)

≥ K > 0 for x �= 0,

as in the paper by Grace and Lalli [11], but this requires unpleasant additional
restriction on the sign of the damping coefficient p(t). On the other hand, Grace [6]
used (49) without additional restrictions on ψ(x), but under too stringent hypotheses
on p(t). This condition has been also exploited for studying undamped equation,
cf. [4, 10]. We do not consider such conditions on ψ here because they restrict
classes of differential equations to which new oscillation criteria may apply. Further
details regarding the effect of imposing different conditions on the coefficients and
nonlinearities can be found, for instance, in the recent papers [24] and [26].
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