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POST-DATA ESTIMATION OF BINOMIAL TESTING POWER

Chih-Chien Tsai* and C. Andy Tsao

Abstract. Under a robust Bayesian framework, we study the problem of
power estimation in binomial hypothesis testing problems. For testing the
binomial mean, the observed powers are maximum likelihood estimates of
power functions for one-sided and two-sided problems. With respect to these
functions, we show that the observed powers are too large when the data is
significant for some beta families of priors. A practical implication about the
problem of sample size calculation is discussed.

1. INTRODUCTION

Despite the popularity of hypothesis tests, the associated classical pre-data mea-
sures of performance such as significance level or power are not very satisfactory.
The practitioners often request supplemental post-data evidential measures once the
data is collected. The p-value is one of such measures. It is often taught as a data
sensitive evidence against null hypothesis in standard statistical courses. However,
whether this is a valid interpretation of the p-value is still subject to study and mo-
tivates active researches. See, for example, Berger and Delampady (1987), Berger
and Sellke (1987), Casella and Berger (1987), Hwang, et al (1992) and more recent
Oh and DasGupta (1999), Sellke, et al (2001), Tsao (2006). The observed power is
another emerging measure and has been required in some subject domains as mea-
sures of the strength of the experiments. Unfortunately, comparing with the p-values,
its theoretical properties are even less understood. See Gillett (1996), Hoenig and
Heisey (2001), Tsao and Tseng (2006b) and references therein. Particularly, Gillett
(1996) and Tsao and Tseng (2006b) suggest that the usual observed power, as a
plug-in estimate of power function, tends to be too large. Furthermore, because the
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power estimation is usually used in the sample size calculation in the experimental
design, this problematic feature in turn leads to unreliable sample size calculation.
See, comments and guidances in Lenth (2001).

Motivated by Hoenig and Heisey (2001) and the related works in p-values, for
example, Berger and Sellke (1987), Berger and Delampady (1987) and Casella and
Berger (1987), Tsao and Tseng (2006b) examines the validity of the observed power
under a robust Bayesian framework. They show that the observed power for testing
normal means overestimates the power for significant data yet underestimates the
power for insignificant data. Some misinterpretations of the observed power are
also discussed in their study. In this paper, we investigate the similar problem under
binomial setting. The observed powers can be considered as maximum likelihood
estimates of power functions. With respect to these functions, we show that the
observed powers are too large when the data is significant for some beta families of
priors. This conclusion holds both for one-sided and two-sided hypothesis testing
problems.

The rest of the paper is organized as follows. In Section 2, we will present
the formulation of problem. Some families of priors will be defined. Section 3
contains the main results on the bounds of Bayes estimates. Along with numerical
calculations detailed in Section 4, it is shown that the usual observed power tends to
be too large. A practical implication about the problem of sample size calculation is
discussed in Sections 3 and 4. Finally, the conclusion and discussion are summarized
in Section 5.

2. FORMULATION

Let X ∼ Bin(n, θ) with unknown 0 ≤ θ ≤ 1. Consider the hypothesis testing
problems:

H0 : θ ≤ θ0 vs. H1 : θ > θ0,(1)

H0 : θ = θ0 vs. H1 : θ �= θ0.(2)

The hypothesis testing problems (1) and (2), are well-studied, see, for example, Hol-
lander and Wolfe (1973), Conover (1980), and Gibbons (1985). Here we consider
the usual nonrandomized exact tests Φ1(X), uniformly most power (UMP) level α

test for (1), and Φ2(X), uniformly most power unbiased (UMPU) level α test for
(2). Specifically,

Φ1(X) =

{
1 if X ≥ c0

0 otherwise
(3)
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where the smallest c0 ∈ {0, 1, · · · , n} satisfies Pθ0(X ≥ c0) ≤ α.

Φ2(X) =

{
1 if X ≤ c1, X ≥ c2

0 otherwise
(4)

where the largest c1 and the smallest c2 ∈ {0, 1, · · · , n} satisfy Pθ0(X ≤ c1) ≤ α/2
and Pθ0(X ≥ c2) ≤ α/2. Their power functions for Φ1(X) and Φ2(X) are

β1(θ) = Pθ(X ≥ c0)

=
n∑

i=c0

C(n, i)θi(1− θ)n−i(5)

and

β2(θ) = Pθ(X ≤ c1) + Pθ(X ≥ c2)

=
c1∑

i=0

C(n, i)θi(1− θ)n−i +
n∑

i=c2

C(n, i)θi(1− θ)n−i,(6)

respectively. The usual observed powers β1(θ̂) and β2(θ̂) are simply substituting θ

in power functions (5) and (6) by its maximum likelihood estimate θ̂ = x̄ = x/n.
Because of invariance property of maximum likelihood estimate, they can be viewed,
respectively, as maximum likelihood estimates of power functions β1(θ) and β2(θ).

Here we study the problem of estimating power functions β1(θ) and β2(θ) from
a robust Bayesian viewpoint. We compare the observed powers with Bayes estimates
with respect to conjugate families of priors. The parameter of binomial distribution
θ is assumed to have a beta prior, i.e.

π(θ) =
1

B(α, β)
θα−1(1− θ)β−1

where 0 < θ < 1 and α, β > 0 and B(α, β) =
∫ 1
0 θα−1(1−θ)β−1dθ. The posterior

density is

π(θ|x) =
1

B(α + x, β + y)
θα+x−1(1− θ)β+y−1,

a Beta(α + x, β + y) density, where x is a realization of random variable X and
y = n − x. Under a squared error loss, the Bayes estimates for power functions
β1(θ) and β2(θ) are

Eπ(θ|x̄)β1(θ) =
∫ 1

0

β1(θ)π(θ|x)dθ

=
n∑

i=c0

C(n, i)
B(α + x + i, β + y + n − i)

B(α + x, β + y)
(7)
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and

Eπ(θ|x̄)β2(θ) =
∫ 1

0

β2(θ)π(θ|x)dθ

=
c1∑

i=0

C(n, i)
B(α + x + i, β + y + n − i)

B(α + x, β + y)

+
n∑

i=c2

C(n, i)
B(α + x + i, β + y + n − i)

B(α + x, β + y)
.(8)

Our problem is to compare the observed power functions β1(θ̂) and β2(θ̂) with

sup
π∈Γ

Eπ(θ|x̄)βi(θ), i = 1, 2,

where Γ is the family of beta priors or some of its subsets. Note that if the supremum
of Bayes estimates is less than the observed power, it implies that the observed power
is too large/optimistic to estimate the power function.

Here we use an alternative parameterization of beta prior: let p0 = α
α+β and

some constant c > 0 such that α = cp0, β = c(1− p0). Hence

Eπθ = p0 and V arπθ =
p0(1− p0)

c + 1
.

Then if π has a Beta(cp0, c(1−p0)) density, thus π(θ|x) has a Beta(αc, βc) density
where αc = cp0 + x and βc = c(1− p0) + y.

The families of beta priors are denoted as

Γ(p0) = {π : π ∼ Beta(cp0, c(1− p0)), c > 0} for p0 ∈ (0, 1);

Γc = {π : π ∼ Beta(cp0, c(1− p0)), p0 ∈ (0, 1)} for c > 0.

In this study, we focus on the prior family Γ(po) for p0 = 1/2 (also as Γ(1/2)).
The choice p0 = 1/2 reflects the noninformativeness or unbiasedness regarding
the parameter θ. Note that Γ(1/2) includes important priors such as uniform prior
(Beta(1, 1), c = 2) and reference prior (Beta(1/2, 1/2), c = 1), etc. The corre-
sponding Bayes estimates are denoted as EUβi(θ) and ERβi(θ), i = 1, 2, respec-
tively. There is an interesting connection between our approach and Walley (1996).
If the number of categories is two, Walley’s imprecise Dirichlet model approach
is similar to deriving bounds of the Bayes estimates with priors belonging to the
family Γc with c = 1 or 2. Restriction of c = 1 or 2 might be unreasonable, as
commented by O’Hagan (1996), Jennison (1996) and Levi (1996). In contrast, we
derive the bounds of Bayes estimate with π ∈ G(p0) and p0 = 1/2 allowing c to
vary. This approach calls for more involved derivation. The interested readers are
referred to Tsay and Tsao (2003), Tsao and Tseng (2004) for details.
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3. MAIN RESULTS

We characterize the ordering of Eπ(θ|x)βi(θ), i = 1, 2 under mild conditions.
In turn, the supremum of Bayes estimates with respect to priors in Γ(1/2) can be
readily obtained.

3.1. One-sided Problems
Firstly, we establish the monotonicity of β1(θ).

Lemma 1. The power function β1(θ) is strictly increasing in θ for 0 < θ < 1.

Proof. The proof follows by noting that

β1(θ) = P (X ≥ c0) = P (Z ≤ θ)(9)

where X ∼ Bin(n, θ) and Z ∼ Beta(c0, n−c0+1), cf. Casella and Berger (1990),
p449, for example. Then, it is clear that β1(θ) is strictly increasing in θ.

The following proposition establishes the ordering of the Bayes estimates of
power function Eπ(θ|x)β1(θ). Recall that x denotes a realization of random variable
X and y = n − x.

Proposition 1. If π ∈ Γ(1/2) and x ≥ y, Eπ(θ|x)β1(θ) is decreasing in c for
c > 0.

Proof. We denote π(θ|c) = π(θ|c, x) where the dependence of x is notationally
suppressed. Let π ∈ Γ(1/2) with

π(θ|c) =
1

B(αc, βc)
exp

(c

2
ln(θ(1 − θ))

)
h(θ)

where h(θ) = θx−1(1 − θ)y−1. It is easy to see that π(θ|c) has the monotone
likelihood ratio property (MLR) in T (θ) = ln(θ(1−θ)) since c is strictly increasing.
By Lemma 2 on p. 85 of Lehmann (1986), the proof is completed if we can
write Eπ(θ|x)β1(θ) =

∫
H(t)fT (t|c)dt with fT (t|c) being the density function of

ln(θ(1 − θ)) when θ has posterior π(θ|c) and H(t) being a decreasing function in
t.

First, fT (t|c) can be derived easily by noting that for t < − ln 4

Pc(T ≤ t) = Pc[ln(θ(1 − θ)) ≤ t]

= Pc(θ ≤ 1
2
(1 −

√
1 − 4et)) + Pc(θ ≥ 1

2
(1 +

√
1 − 4et))
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where Pc denotes the probability calculated under the density π(θ|c). Thus the
density of T is

fT (t|c) =
et

√
1− 4et

[π(θt|c) + π(1− θt|c)]

with t < − ln 4 and 0 < θt = (1 −√
1 − 4et)/2 < 1/2. Let D(θt) = h(θt)

h(θt)+h(1−θt)
and follow similar steps in Tsao and Tseng (2004), it is left to show that

H(θt) = β1(θt)D(θt) + β1(1 − θt)D(1− θt)

is decreasing in t for all t ∈ (−∞,− ln 4). Thus it suffices to show d
dθH(θ) ≤ 0

for 0 < θ < 1/2 since

d

dt
H(θt) =

d

dθt
H(θt)

d

dt
θt and

d

dt
θt =

et

√
1 − 4et

> 0.

Note that D(1− θ) = 1 − D(θ), hence

(10)

d
dθH(θ) = D(θ)

d

dθ
β1(θ) + β1(θ)

d

dθ
D(θ)

+β1(1 − θ) d
dθ (1− D(θ))− β1(1 − θ) d

dθD(θ)

= (β1(θ) − β1(1− θ))
d

dθ
D(θ)

+
[
D(θ)

d

dθ
β1(θ) + D(1− θ)

d

dθ
β1(1− θ)

]
.

Now, for 0 < θ < 1/2, Lemma 1 implies β1(θ)−β1(1−θ) < 0 and easy calculations
show

d

dθ
D(θ) =

θn−3(1− θ)n−3

[h(θ) + h(1− θ)]2
(1 − 2θ)(x − y) ≥ 0.

The last inequality holds since it is assumed that x ≥ y. Hence

(β1(θ) − β1(1− θ))
d

dθ
D(θ) ≤ 0.(11)

Next, recalling (9), then

d

dθ
β1(θ) =

1
B(c0, n− c0 + 1)

θc0−1(1 − θ)n−c0+1−1

and similarly

d

dθ
β1(1− θ) =

−1
B(c0, n − c0 + 1)

(1− θ)c0−1θn−c0+1−1.
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Combining these results and definitions of D(θ) and h(θ), we have

D(θ)
d

dθ
β1(θ)+D(1−θ)

d

dθ
β1(1−θ)=

θ−2(1− θ)−2

B(c0, n − c0 + 1) [h(θ) + h(1 − θ)]
G(θ)

where G(θ) = θc0+x(1−θ)2n−c0−x+1−θ2n−c0−x+1(1−θ)c0+x. Since 2(c0+x) ≥
2n + 1, we have

θ2(c0+x)−2n−1 ≤ (1 − θ)2(c0+x)−2n−1 for 0 < θ < 1/2.

Cross-multiplying the numerators and denominators then rearranging the terms, we
have

G(θ) = θc0+x(1− θ)2n−c0−x+1 − θ2n−c0−x+1(1 − θ)c0+x ≤ 0.

Hence,

D(θ)
d

dθ
β1(θ) + D(1− θ)

d

dθ
β1(1 − θ) ≤ 0.(12)

Combining (10), (11) and (12), it is shown that d
dθH(θ) ≤ 0 for 0 < θ < 1/2. Thus

this completes the proof.

Note that although the power function β1(θ) seems similar to the probability of
winning in the division problem discussed in Tsao and Tseng (2004), Proposition
1 does not easily follow from the similar theorem therein. Particularly, the proof
of main theorem in Tsao and Tseng (2004) relies on the crucial condition m =
a+ b−1. In contrast, that condition is no longer needed in our proof. Despite their
resemblance, the proof in the above proposition calls for different calculation.

3.2. Two-sided Problems

Lemma 2. If c1 + c2 = n, we have β2(θ) = β2(1 − θ) for 0 < θ < 1.
The proof of Lemma 2 is straightforward and skipped.
The technical condition c1 + c2 = n is satisfied in all our calculated examples

for the two-sided hypothesis testing problems (2) with θ0 = 1/2. Note that the
condition imposes a symmetric-like condition on the cutoff points c1 < c2. For the
symmetric hypothesis testing problem where θ0 = 1/2 , it is a natural condition and
suitable c1, c2 can be found.

Lemma 3. If c1 + c2 = n, β2(θ) is decreasing in θ for 0 < θ < 1/2 and
increasing in θ for 1/2 < θ < 1.
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Proof. Note that

β2(θ) = P (X ≤ c1) + P (X ≥ c2)

= 1 − P (X ≥ c1 + 1) + P (X ≥ c2)

= 1 − P (Z1 ≤ θ) + P (Z2 ≤ θ)

where X ∼ Bin(n, θ) and Z1 ∼ Beta(c1 +1, n−(c1+1)+1), Z2 ∼ Beta(c2, n−
c2 + 1). Since c1 + c2 = n, Z1 ∼ Beta(c1 + 1, c2), Z2 ∼ Beta(c2, c1 + 1). Hence,

(13)

d

dθ
β2(θ)

= − d

dθ
P (Z1 ≤ θ) +

d

dθ
P (Z2 ≤ θ)

=
1

B(c2, c1 + 1)
θc2−1(1− θ)c1+1−1 − 1

B(c1 + 1, c2)
θc1+1−1(1 − θ)c2−1

=
1

B(c2, c1 + 1)
[
θc2−1(1 − θ)c1 − θc1(1 − θ)c2−1

]
.

Since c1 < c2 and for 0 < θ < 1/2 we have(
θ

1 − θ

)c2−1

≤
(

θ

1 − θ

)c1

.

Cross-multiplying the numerators and denominators then rearranging the terms, we
have

θc2−1(1 − θ)c1 − θc1(1− θ)c2−1 ≤ 0.

That is d
dθβ2(θ) ≤ 0 for θ ∈ (0, 1/2) and d

dθβ2(θ) ≥ 0 for θ ∈ (1/2, 1). This
completes the proof.

This proposition establishes the ordering of the Bayes estimate of power function
Eπ(θ|x)β2(θ).

Proposition 2. If π ∈ Γ(1/2) and c1 + c2 = n, Eπ(θ|x)β2(θ) is decreasing in
c for c > 0.

Proof. The proof is similar to that of Proposition 1. It suffices to show that
d
dθH(θ) ≤ 0 for 0 < θ < 1/2. Using β2(θ) in (10) for two-sided problem instead
of β1(θ), we have

(14)

d

dθ
H(θ) = (β2(θ) − β2(1− θ))

d

dθ
D(θ)

+
[
D(θ)

d

dθ
β2(θ) + D(1− θ)

d

dθ
β2(1− θ)

]
.
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Now, for 0 < θ < 1, Lemma 2 implies β2(θ) − β2(1 − θ) = 0 if c1 + c2 = n and
thus

(β2(θ) − β2(1− θ))
d

dθ
D(θ) = 0.(15)

Next, recalling (13) and similarly

d

dθ
β2(1 − θ) =

−1
B(c2, c1 + 1)

[
(1− θ)c2−1θc1 − (1− θ)c1θc2−1

]
=

d

dθ
β2(θ).

Combining the result d
dθβ2(1− θ) = d

dθβ2(θ) and definitions of D(θ) and h(θ), we
have

D(θ)
d

dθ
β2(θ) + D(1− θ)

d

dθ
β2(1 − θ) =

d

dθ
β2(θ) ≤ 0.(16)

The last inequality holds since Lemma 3 implies β2(θ) is decreasing for 0 < θ <

1/2.
Combining (14), (15) and (16), we show d

dθH(θ) ≤ 0 for 0 < θ < 1/2. This
completes the proof.

Applying Proposition 2 in Tsay and Tsao (2003), we immediately have Proposi-
tion 3 that characterizes the convergence of the Bayes estimate of power functions
Eπ(θ|x̄)β1(θ) and Eπ(θ|x̄)β2(θ) as c goes to infinity. Its proof is omitted.

Proposition 3. For π ∈ Γ(p0),

| Eπ(θ|x̄)βi(θ) − βi(θ̂π) |≤ K V arπ(θ|x)θ, i = 1, 2,

where K > 0 is a generic constant and

θ̂π = Eπ(θ|x)θ =
cp0 + x

c + n
,

V arπ(θ|x)θ =
θ̂π(1− θ̂π)
c + n + 1

=
(cp0 + x)(c(1− p0) + n − x)

(c + n)2(c + n + 1)
.

As c goes to infinity, the limit of the Bayes estimate of power function, Eπ(θ|x̄)β1

(θ)(Eπ(θ|x̄)β2(θ)), is β1(p0) (β2(p0)). Besides, when the sample size n is large
enough, Eπ(θ|x)θ goes to sample mean θ̂ and V arπ(θ|x)θ goes to 0. Thus this
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proposition also suggests that the Bayes estimate of power function, Eπ(θ|x̄)β1(θ)
(Eπ(θ|x̄)β2(θ)) is close to the corresponding observed power β1(θ̂) (β2(θ̂)) for large
n.

In light of Propositions 1-3, Proposition 4 and Proposition 5 immediately follow.

Proposition 4. If x ≥ y,

inf
π∈Γ(1/2)

Eπ(θ|x̄)β1(θ) = limc→∞,π∈Γ(1/2) Eπ(θ|x̄)β1(θ)

and sup
π∈Γ(1/2)

Eπ(θ|x̄)β1(θ) = limc→0,π∈Γ(1/2) Eπ(θ|x̄)β1(θ).

Unfortunately, we do not have parallel theoretical results when x < y. However,
at least for θ0 ≥ 1/2, the test (3) does not reject H0 when x < y for any α < 1/2.
From the practical viewpoint, the results for x ≥ y are of greater concern.

Proposition 5. If c1 + c2 = n,

inf
π∈Γ(1/2)

Eπ(θ|x̄)β2(θ) = limc→∞,π∈Γ(1/2) Eπ(θ|x̄)β2(θ)

and sup
π∈Γ(1/2)

Eπ(θ|x̄)β2(θ) = limc→0,π∈Γ(1/2) Eπ(θ|x̄)β2(θ).

4. NUMERICAL CALCULATION

For one-sided and two-sided hypothesis testing problems, we show that the ob-
served powers are too large when the data is significant (contrasting with Bayes
estimates with respect to priors in Γ(1/2)). In addition, the sample size determina-
tion method based on the observed power fails to meet the claimed level of power
for all cases we calculated. More reasonable methods of sample size determination
are introduced.

4.1. Comparison with supremum of Bayes estimates
We consider the hypothesis testing problems for (1) with θ0 = 1/2, 3/4 and

(2) with θ0 = 1/2. For each case, the sample size n equals 30. Propositions 4,
5 alleviate the task of the numerical computation for finding bounds. Along with
these propositions, we have the lower bounds for Eπ(θ|x̄)β1(θ) and Eπ(θ|x̄)β2(θ) are
β1(1/2) and β2(1/2), respectively, when π belongs to conjugate priors Γ(1/2). For
one-sided problem, Table 1 and Table 2 give the estimates and bounds to θ0 = 1/2
and 3/4, respectively. For two-sided problem with θ0 = 1/2, see Table 3. Recall
that EUβi(θ) and ERβi(θ) denote the Bayes estimates with respect to uniform prior
and reference prior. It can be readily seen that
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Table 1. One-sided testing problem with θ0 = 1/2, n = 30, when x ≥ 20 the test
rejects H0 at level α = 0.05

infπ∈Γ(1/2) supπ∈Γ(1/2)

n x Eπ(θ|x̄)β1(θ) EUβ1(θ) ERβ1(θ) Eπ(θ|x̄)β1(θ) β1(θ̂)
30 15 0.0494 0.1180 0.1199 0.1218 0.0494
30 16 0.0494 0.1750 0.1791 0.1834 0.0993
30 17 0.0494 0.2475 0.2545 0.2619 0.1790
30 18 0.0494 0.3344 0.3448 0.3559 0.2915
30 19 0.0494 0.4326 0.4466 0.4613 0.4316
30 20 0.0494 0.5371 0.5540 0.5718 0.5848
30 21 0.0494 0.6413 0.6600 0.6795 0.7304
30 22 0.0494 0.7384 0.7574 0.7766 0.8489
30 23 0.0494 0.8224 0.8398 0.8571 0.9298
30 24 0.0494 0.8893 0.9037 0.9176 0.9744
30 25 0.0494 0.9378 0.9484 0.9582 0.9933
30 26 0.0494 0.9693 0.9761 0.9821 0.9989
30 27 0.0494 0.9871 0.9909 0.9939 0.9999
30 28 0.0494 0.9957 0.9973 0.9985 1.0000
30 29 0.0494 0.9990 0.9995 0.9998 1.0000
30 30 0.0494 0.9999 1.0000 1.0000 1.0000

Table 2. One-sided testing problem with θ0 = 3/4, n = 30, when x ≥ 27 the test
rejects H0 at level α = 0.05

infπ∈Γ(1/2) supπ∈Γ(1/2)

n x Eπ(θ|x̄)β1(θ) EUβ1(θ) ERβ1(θ) Eπ(θ|x̄)β1(θ) β1(θ̂)
30 15 0.0000 0.0005 0.0005 0.0005 0.0000
30 16 0.0000 0.0010 0.0011 0.0013 0.0000
30 17 0.0000 0.0023 0.0025 0.0028 0.0001
30 18 0.0000 0.0047 0.0054 0.0061 0.0003
30 19 0.0000 0.0095 0.0108 0.0124 0.0011
30 20 0.0000 0.0183 0.0210 0.0242 0.0033
30 21 0.0000 0.0337 0.0389 0.0451 0.0093
30 22 0.0000 0.0596 0.0690 0.0801 0.0241
30 23 0.0000 0.1010 0.1169 0.1357 0.0569
30 24 0.0000 0.1636 0.1889 0.2186 0.1227
30 25 0.0000 0.2531 0.2906 0.3337 0.2396
30 26 0.0000 0.3725 0.4234 0.4804 0.4194
30 27 0.0000 0.5189 0.5813 0.6482 0.6474
30 28 0.0000 0.6802 0.7467 0.8128 0.8635
30 29 0.0000 0.8332 0.8904 0.9398 0.9831
30 30 0.0000 0.9475 0.9806 1.0000 1.0000

inf
π∈Γ(1/2)

Eπ(θ|x̄)βi(θ) ≤ EUβi(θ) ≤ ERβi(θ) ≤ sup
π∈Γ(1/2)

Eπ(θ|x̄)βi(θ), i = 1, 2,
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for all cases we calculated. Note that these are Bayes estimates with respect to
priors belonging to Γ(1/2) when c → ∞, c = 2, c = 1 and c → 0, respectively.
These numerical calculations are consistent with our theoretical findings that the
Bayes estimate increases in c when the prior belonging to Γ(1/2).

Furthermore, it is noted that

sup
π∈Γ(1/2)

Eπ(θ|x̄)βi(θ) ≤ βi(θ̂), i = 1, 2,

Table 3. Two-sided testing problem with θ0 = 1/2, n = 30, when x ≤ 9 and
x ≥ 21 the test rejects H0 at level α = 0.05

infπ∈Γ(1/2) supπ∈Γ(1/2)

n x Eπ(θ|x̄)β2(θ) EUβ2(θ) ERβ2(θ) Eπ(θ|x̄)β2(θ) β2(θ̂)
30 0 0.0428 0.9997 0.9999 1.0000 1.0000
30 1 0.0428 0.9976 0.9988 0.9995 1.0000
30 2 0.0428 0.9910 0.9943 0.9967 1.0000
30 3 0.0428 0.9751 0.9820 0.9876 0.9995
30 4 0.0428 0.9451 0.9566 0.9667 0.9958
30 5 0.0428 0.8969 0.9132 0.9284 0.9803
30 6 0.0428 0.8288 0.8490 0.8688 0.9389
30 7 0.0428 0.7424 0.7649 0.7876 0.8591
30 8 0.0428 0.6424 0.6651 0.6886 0.7384
30 9 0.0428 0.5359 0.5568 0.5787 0.5888
30 10 0.0428 0.4309 0.4484 0.4670 0.4318
30 11 0.0428 0.3351 0.3485 0.3629 0.2895
30 12 0.0428 0.2547 0.2641 0.2742 0.1771
30 13 0.0428 0.1945 0.2006 0.2071 0.1001
30 14 0.0428 0.1573 0.1612 0.1654 0.0566
30 15 0.0428 0.1448 0.1479 0.1513 0.0428
30 16 0.0428 0.1573 0.1612 0.1654 0.0566
30 17 0.0428 0.1945 0.2006 0.2071 0.1001
30 18 0.0428 0.2547 0.2641 0.2742 0.1771
30 19 0.0428 0.3351 0.3485 0.3629 0.2895
30 20 0.0428 0.4309 0.4484 0.4670 0.4318
30 21 0.0428 0.5359 0.5568 0.5787 0.5888
30 22 0.0428 0.6424 0.6651 0.6886 0.7384
30 23 0.0428 0.7424 0.7649 0.7876 0.8591
30 24 0.0428 0.8288 0.8490 0.8688 0.9389
30 25 0.0428 0.8969 0.9132 0.9284 0.9803
30 26 0.0428 0.9451 0.9566 0.9667 0.9958
30 27 0.0428 0.9751 0.9820 0.9876 0.9995
30 28 0.0428 0.9910 0.9943 0.9967 1.0000
30 29 0.0428 0.9976 0.9988 0.9995 1.0000
30 30 0.0428 0.9997 0.9999 1.0000 1.0000
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are found in all cases we calculated when the data is significant. These inequalities
do not follow from earlier theoretical results in Section 3. Specifically, we establish
only the ordering of Bayes estimates therein but not the comparison with the observed
powers. For one-sided testing problem (cf. Tables 1 and Table 2 for θ0 = 1/2 and
3/4, respectively), when the test rejects null hypothesis at level α, the observed
powers are larger than all Bayes estimates with respect to priors in Γ(1/2). Take
Table 1 for example, when X ≥ 15 the test rejects null hypothesis at level α,
the observed powers are larger than the upper bounds supπ∈Γ(1/2) Eπ(θ|x̄)β1(θ).
For two-sided testing problem (cf. Table 3), when the test rejects null hypothesis at
level α, the observed powers are larger than all Bayes estimates with respect to priors
in Γ(1/2). Take Table 3 for example, when X ≤ 5 or X ≥ 15 the test rejects null
hypothesis at level α, the observed powers are larger than supπ∈Γ(1/2) Eπ(θ|x̄)β2(θ).

4.2. Sample size calculation
The results of extremity of observed powers have important implication on sam-

ple size calculation. For testings (1) and (2), we consider the nonrandomized exact
tests (3) and (4). The objective, basically, is to determine the sample sizes such that

β1(θ) ≥ β0 and β2(θ) ≥ β0(17)

for one-sided and two-sided testing problems, respectively, where β0 is a given
desired level of power. In practice, there is uncertainty in the parameter θ, the
sample size is usually determined by substituting in (17) an estimate of θ̂ = x̄ = x/n

derived from a pilot study. It is natural to consider a pilot-main experiment setup.
Let Xp ∼ Bin(m, θ) be the sample from the pilot study. We assess

PXp|θ=θ0+δ(β1(θ) ≥ β0)(18)

and

PXp|θ=θ0+δ(β2(θ) ≥ β0)(19)

for one-sided and two-sided testing problems, respectively, where δ is effect size and
n∗ represents a sample size from a determination method. Note that β1(θ) in (18)
relates with the estimated sample size n∗ in two aspects: First, n∗ is the smallest
integer such that β1(θ) ≥ β0. Secondly, β1(θ) is in turn a function of n∗ inside the
probability in (18). The comments apply similarly to β2(θ) in (19). For reasonable
θ, if (18) and (19) are large enough (close to 1), then that determination method is
acceptable. Otherwise, it suggests the calculated sample size might be unreliable.
This approach is closely related to β content/(1 − α) confidence type evaluation,
see, for example, Tsao and Tseng (2006a).

Here we consider EUβi(θ), ERβi(θ) and supπ∈Γ(1/2) Eπ(θ|x̄)βi(θ), as alterna-
tives to the observed power as estimates of βi(θ). Let n̂PI , n̂U , n̂R and n̂sup denote
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the sample size estimates are calculated by using power estimates βi(θ̂), EUβi(θ),
ERβi(θ) and supπ∈Γ(1/2) Eπ(θ|x̄)βi(θ). Simulations follow the steps.

Step 1. Specify m, θ0, δ, α and β0 and generate sample Xp ∼ Bin(m, θ) from
the pilot study. Then calculate βi(θ̂), EUβi(θ), ERβi(θ) andsupπ∈Γ(1/2) Eπ(θ|x̄)βi(θ).

Step 2. Calculate the sample sizes n∗ = n̂PI , n̂sup, n̂R and n̂U that guarantee
(17) with different estimation methods of βi(θ).

Step 3. Under true parameter θ, use sample size estimates n∗ = n̂PI , n̂sup,
n̂R and n̂U to calculate βi(θ), i = 1, 2.

Step 4. Repeat above steps N times. Approximate (18) and (19) by
1
N

∑N
i=1 1 [β1(θ) ≥ β0] and 1

N

∑N
i=1 1 [β2(θ) ≥ β0] where N = 1000.

Table 4 and Table 5 give the simulated results for one-sided and two-sided
cases respectively with θ0 = 1/2, δ = 1/4 (3/8), α = 0.05, β0 = 0.8 and
m = 30, 60, 90, 120. When δ equals 1/4, we find that (18), (19) are much smaller
then 1. That means all of the estimates (n̂PI , n̂U , n̂R and n̂sup ) yield the power
that falls below the desired level β0. However, when δ equals 3/8, we find that
(18) and (19) are close to or equal 1 for estimates n̂U and n̂R while (18) and (19)
are much smaller then 1 for estimates n̂PI and n̂sup. Overall, it implies that the
practice of substituting an estimate θ̂ from pilot study in formula fails to meet the
given desired level β0, yielding a power that falls below the desired level β0 for
all cases we calculated. Therefore, the estimates n̂U and n̂R are more reasonable
choices over the estimates n̂PI and n̂sup.

Table 4. One-sided testing problem with θ0 = 1/2, δ = 1/4 (3/8), β0 = 0.8 and
α = 0.05

m 30 60 90 120
n∗ = n̂PI , PXp|θ(β1(θ)≥β0) 0.652 (0.550) 0.664 (0.715) 0.681 (0.735) 0.696 (0.805)
n∗= n̂sup , PXp|θ(β1(θ)≥β0) 0.652 (0.773) 0.767 (0.833) 0.835 (0.825) 0.828 (0.885)
n∗= n̂R , PXp|θ(β1(θ)≥β0) 0.797 (0.904) 0.859 (0.997) 0.891 (1.000) 0.918 (1.000)
n∗= n̂U , PXp|θ(β1(θ)≥β0) 0.797 (1.000) 0.859 (1.000) 0.932 (1.000) 0.947 (1.000)

Table 5. Two-sided testing problem with θ0 = 1/2, δ = 1/4 (3/8), β0 = 0.8 and
α = 0.05

m 30 60 90 120
n∗= n̂PI , PXp|θ(β2(θ)≥β0) 0.486 (0.718) 0.550 (0.760) 0.589 (0.826) 0.618 (0.854)
n∗= n̂sup , PXp|θ(β2(θ)≥β0) 0.652 (0.718) 0.769 (0.760) 0.765 (0.900) 0.828 (0.922)
n∗= n̂R , PXp|θ(β2(θ)≥β0) 0.652 (0.896) 0.769 (0.982) 0.835 (1.000) 0.878 (1.000)
n∗= n̂U , PXp|θ(β2(θ)≥β0) 0.797 (1.000) 0.853 (1.000) 0.891 (1.000) 0.918 (1.000)
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5. CONCLUSION AND DISCUSSION

Under a robust Bayesian framework, we show that the observed powers are too
large when the data is significant and priors belonging to Γ(1/2). This con-

clusion holds both for one-sided and two-sided hypothesis testing problems. Fur-
thermore, because the observed powers are too large to estimate power in many
situations, this undesirable property leads to unreliable sample size calculation. An
empirical study about the problem of sample size calculation is carried out. The
usual sample size determination method based on the observed power always fails to
meet the given desired level of power for all cases we calculated. More reasonable
sample sizes can be calculated when the power is better estimated. For example, the
Bayes estimates with respect to uniform or reference priors are better alternatives to
the observed power on this regard.

Hoenig and Heisey (2001) reviews the practical implementation and interpreta-
tion of the observed power. It also points out the observed power is a decreasing
function of the p-value of the test. Therefore, the observed power essentially renders
no extra information. We subscribe to their points of view. However, as mentioned
in Tsao and Tseng (2006b), the observed power, good or bad, is an estimate of the
performance of a given α level test. In perspective, our results suggest the observed
power might overestimate the power when the data is significant.

Note that the deriving the ordering of Bayes estimates in c for fixed p0, say
0.5, is not straightforward. Technically, our approach requires detailed analysis of
functional form of βi(θ) (after suitable transformation) and intelligent utilization of
the monotone likelihood property. Besides, in the proof of Proposition 2, the relation
between binomial and beta distribution is vital and the condition c 1 + c2 = n is
needed. An alternative approach has been recently developed in Tsao and Tseng
(2006a). The problem of power estimation of binomial hypothesis testing problems
using normal approximate test is investigated in Tsai (2004).

Our results show the extremity of observed power for both one-sided and two-
sided hypothesis testing problems. They are similar to Tsao (2006) using a smooth
null estimation approach, Tsao and Tseng (2006b) and Gillett (1996) in the con-
text of retrospective power surveys. These results differ from the parallel results
for p-values using an accuracy estimation approach in which different conclusions
are reached respectively for one-sided and two-sided hypothesis testing problems.
Roughly speaking, the p-value and the infimum of Bayes estimate coincide for one-
sided hypothesis testing problems but differ for two-sided hypothesis testing prob-
lems. See, for example, Berger and Delampady (1987), Berger and Sellke (1987)
and Casella and Berger (1987).
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