GAP FUNCTIONS FOR NONSMOOTH EQUILIBRIUM PROBLEMS

Marco Castellani and Massimo Pappalardo

Abstract

We consider equilibrium problems ($E P$) with directionally differentiable (not necessarily \mathcal{C}^{1}) bifunctions which are convex with respect to the second variable and we use a gap function approach to solve them. In the first part of the paper we establish a condition under which any stationary point of the gap function solves ($E P$) and we propose a solution method which uses descent directions of the gap function. In the final section we study the problem when this condition is not satisfied. In this case we use a family of gap functions depending on a parameter α which allows us to overcome the trouble due to the lack of a descent direction.

1. Introduction

Different kinds of competitive situations (see for example [2,5] and references therein) can be formulated via general equilibrium model of this type

$$
\begin{equation*}
\text { find } \bar{x} \in C \text { s.t. } \quad f(\bar{x}, y) \geq 0, \quad \forall y \in C \tag{EP}
\end{equation*}
$$

where $C \subseteq \mathbb{R}^{n}$ is a compact convex set and the equilibrium bifunction $f \in \mathcal{A}$ where
$\mathcal{A}=\left\{f: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}: f(\cdot, y)\right.$ is directionally differentiable for all $y \in C$,

$$
f(x, \cdot) \text { is convex for all } x \in C, f(z, z)=0 \text { for all } z \in C\}
$$

Recently an increasing effort has been made to develop algorithms for computing equilibrium solutions. Some of them are based on the fact that ($E P$) can be reformulated as an optimization problem via gap functions. This has been proposed also in $[1,3,6,7,8]$. In this paper we focus on $(E P)$ in which the bifunction f is only directionally differentiable and not \mathcal{C}^{1}. The scheme proposed follows the same line of [1].

[^0]The following notation will be used in the paper. If $f \in \mathcal{A}$ we denote the directional derivative of $f(\cdot, y)$ at x along the direction u by

$$
D_{x} f(x, y ; u)=\lim _{t \rightarrow 0^{+}} \frac{f(x+t u, y)-f(x, y)}{t}
$$

Analogously $D_{y} f(x, y ; v)$ indicates the directional derivative of $f(x, \cdot)$ at y along the direction v.

The following function

$$
\varphi(x)=-\min _{y \in C} f(x, y)
$$

was introduced in [7]. We prove, for the sake of completeness, that it is a gap function for ($E P$).

Theorem 1.1. Let $f \in \mathcal{A}$ be given; then
(i) $\varphi(x) \geq 0$ for all $x \in C$;
(ii) $\bar{x} \in C$ verifies $\varphi(\bar{x})=0$ if and only if \bar{x} solves ($E P$).

Proof. For all $x \in C$ we have

$$
\varphi(x)=-\min _{y \in C} f(x, y) \geq-f(x, x)=0
$$

proving statement (i). If $0=\varphi(\bar{x})=-\min _{y \in C} f(\bar{x}, y)$ then $\bar{x} \in C$ solves ($E P$); the converse is trivial since $f(z, z)=0$ for all $z \in C$ and this proves (ii).

Next sections are devoted to seek for descent directions of the gap function φ in order to minimize it.

2. Strictly Convex and Strictly D-Monotone Equlibrium Problems

In this section we suppose that $f \in \mathcal{A}$ is strictly convex with respect to y, for all $x \in C$. This assumption, together with the compactness of C, implies the existence of the unique minimizer $y(x) \in C$ such that

$$
\begin{equation*}
\varphi(x)=-f(x, y(x)) . \tag{1}
\end{equation*}
$$

The next result of Danskin [4] permits to compute the directional derivative of φ.

Theorem 2.1. Let $f \in \mathcal{A}$ be strictly convex with respect to y; the function $x \mapsto y(x)$ is continuous and φ is directionally differentiable with

$$
D \varphi(x ; v)=-D_{x} f(x, y(x) ; v)
$$

for all $x \in C$ and $v \in \mathbb{R}^{n}$.
Since $f(z, z)=0$, it is easy to show that the solution set of $(E P)$ coincides with the set of the fixed points of the function $x \mapsto y(x)$, i.e. $\bar{x} \in C$ is a solution of $(E P)$ if and only if $\bar{x}=y(\bar{x})$. When $\bar{x} \neq y(\bar{x})$, in order to establish whether $y(\bar{x})-\bar{x}$ is a descent direction for φ, additional assumptions on f are usually assumed in literature (see for instance $[3,6,8]$). We will use the following.

Definition 2.1. A bifunction $g \in \mathcal{A}$ is called strictly D-monotone on C if

$$
\begin{equation*}
D_{x} g(x, y ; y-x)>D_{y} g(x, y ; x-y), \quad \forall x, y \in C \text { with } x \neq y . \tag{2}
\end{equation*}
$$

If $g \in \mathcal{A}$ is continuously differentiable, the concept of strict D-monotonicity collapses with the concept of strict ∇-monotonicity introduced in [1]. It is easy to prove that the concept of strict D-monotonicity is not related to the classical concept of strict monotonicity. Several nice properties hold.

Theorem 2.2. Suppose that $f \in \mathcal{A}$ is strictly convex with respect to y and strictly D-monotone on C, then

$$
\begin{equation*}
D \varphi(x ; y(x)-x)<0, \quad \forall x \in C \text { with } x \neq y(x) . \tag{3}
\end{equation*}
$$

Proof. From Theorem 2.1 and the strict D-monotonicity of f we deduce

$$
D \varphi(x ; y(x)-x)=-D_{x} f(x, y(x) ; y(x)-x)<-D_{y} f(x, y(x) ; x-y(x)) ;
$$

since $y(x)$ is a global minimum of $f(x, \cdot)$ over C, the first order necessary optimality condition implies

$$
D_{y} f(x, y(x) ; x-y(x)) \geq 0
$$

that concludes the proof.
Strict D-monotonicity guarantees also the following "stationarity property" for the reformulation of $(E P)$ as optimization problem through φ.

Theorem 2.3. Suppose that $f \in \mathcal{A}$ is strictly convex with respect to y and strictly D-monotone on C; if \bar{x} is a stationary point of φ over C, i.e.

$$
\begin{equation*}
D \varphi(\bar{x} ; y-\bar{x}) \geq 0, \quad \forall y \in C, \tag{4}
\end{equation*}
$$

then \bar{x} solves $(E P)$.

Proof. By contradiction, suppose that \bar{x} does not solve ($E P$) and hence $y(\bar{x}) \neq$ \bar{x}. Since $y(\bar{x})$ is a global minimum for the function $f(\bar{x}, \cdot)$ we deduce

$$
\begin{equation*}
D_{y} f(\bar{x}, y(\bar{x}) ; \bar{x}-y(\bar{x})) \geq 0 . \tag{5}
\end{equation*}
$$

Moreover, from (4) valued at $y(\bar{x})$ and Theorem 2.1 we obtain

$$
\begin{equation*}
\left.D_{x} f(\bar{x}, y(\bar{x})) ; y(\bar{x})-\bar{x}\right) \leq 0 \tag{6}
\end{equation*}
$$

But (5) and (6) contradict the assumption of strict D-monotonicity of f.
The results proved in Theorem 2.2 and Theorem 2.3 give us a solution method for solving $(E P)$. In fact, we have a descent direction (Theorem 2.2), a stopping rule (Theorem 2.3), and we can propose an exact linesearch rule to find the stepsize. The iterative sequence of the solution method is given

$$
x^{k+1}=x^{k}+t_{k} d^{k}
$$

where $d^{k}=y\left(x^{k}\right)-x^{k}$ and $t_{k} \in[0,1]$ minimizes $\theta(t)=\varphi\left(x^{k}+t d^{k}\right)$ over $[0,1]$. Since d^{k} depends with continuity upon x^{k}, convergence to a stationary point of φ is achieved via Zangwill's Theorem.

3. Convex and Strictly D-Monotone Equilibrium Problems

When $f(x, \cdot)$ is not strictly convex, we have not the uniqueness of the minimum point $y(x)$. For this reason we consider a continuously differentiable bifunction $h: \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that
(a) $h(x, y) \geq 0$ for all $x, y \in C$ and $h(z, z)=0$ for all $z \in C$,
(b) $h(x, \cdot)$ is strictly convex for all $x \in C$.

As immediate consequence of (a) and (b) we have that $\nabla_{y} h(z, z)=0$, for all $z \in C$.
We define the bifunction $F=f+h$ and we introduce the following auxiliary equilibrium problem
(AEP)

$$
\text { find } \bar{x} \in C \text { s.t. } \quad F(\bar{x}, y) \geq 0, \quad \forall y \in C .
$$

The next result shows the equivalence between $(E P)$ and ($A E P$).
Theorem 3.1. The point \bar{x} solves $(E P)$ if and only if \bar{x} solves (AEP).

Proof. Trivially, every solution of $(E P)$ solves (AEP). Vice versa let \bar{x} be a solution of (AEP) and suppose, by contradiction, there exists $\bar{y} \in C$ such that $f(\bar{x}, \bar{y})<0$. Since h is continuously differentiable, $h(\bar{x}, \bar{x})=0$ and $\nabla_{y} h(\bar{x}, \bar{x})=0$, we have

$$
h(\bar{x}, \bar{x}+t(\bar{y}-\bar{x}))=\|\bar{x}-\bar{y}\| t \omega(t), \quad \forall t \in(0,1]
$$

where $\omega(t)$ tends to 0 for $t \rightarrow 0^{+}$. Therefore, from the convexity of $f(\bar{x}, \cdot)$ and since $f(\bar{x}, \bar{x})=0$, we deduce

$$
\begin{aligned}
0 & \leq F(\bar{x}, \bar{x}+t(\bar{y}-\bar{x})) \\
& =f(\bar{x}, \bar{x}+t(\bar{y}-\bar{x}))+h(\bar{x}, \bar{x}+t(\bar{y}-\bar{x})) \\
& \leq(1-t) f(\bar{x}, \bar{x})+t f(\bar{x}, \bar{y})+\|\bar{x}-\bar{y}\| t \omega(t) \\
& =t[f(\bar{x}, \bar{y})+\|\bar{x}-\bar{y}\| \omega(t)] .
\end{aligned}
$$

Since $f(\bar{x}, \bar{y})+\|\bar{x}-\bar{y}\| \omega(t)<0$ for t sufficiently small, we achieve the contradiction.

Theorem 3.1 allows us to apply the results of the previous section to the gap function associated to the bifunction F and for this we need the strict D-monotonicity of F.

Definition 3.1. A bifunction $g \in \mathcal{A}$ is called D-monotone on C if

$$
\begin{equation*}
D_{x} g(x, y ; y-x) \geq D_{y} g(x, y ; x-y), \quad \forall x, y \in C \tag{7}
\end{equation*}
$$

If g is continuously differentiable the concept of D-monotonicity collapses with the concept of ∇-monotonicity defined in [1], i.e.

$$
\left\langle\nabla_{x} g(x, y)+\nabla_{y} g(x, y), y-x\right\rangle \geq 0, \quad \forall x, y \in C
$$

All the usually used bifunctions h as, for instance, the square of the euclidean norm $h(x, y)=\|x-y\|^{2}$ are D-monotone but not strictly D-monotone.

It is easy to show that if f is strictly D-monotone and h is D-monotone then F is strictly D-monotone. So we can adapt to this case the solution method presented at the end of Section 2.

4. A Larger Class of Equilibrium Problems

Since strict D-monotonicity is not always verified by the bifunction f, we now analyse the case when f doesn't satisfy this condition but it is only D-monotone. In this case (even if $f(x, \cdot)$ is strictly convex) Theorem 2.2 can not be applied. In fact,
if we substitute the assumption of strict D-monotonicity with D-monotonicity, it is possible to show that $y(x)-x$ is not always a descent direction (see [1, Example 2.5]). For this reason we substitute the auxiliary bifunction F with a family of bifunctions $F_{\alpha}=f+\alpha h$, with $\alpha>0$ and we denote by φ_{α} the associated gap function. We will show that the parameter α allows us to overcome the troubles due to the lack of the "stationarity property". Anyway, we will require the following additional assumption on f

$$
\begin{equation*}
f(x, y)+D_{x} f(x, y ; y-x) \geq 0, \quad \forall x, y \in C \tag{8}
\end{equation*}
$$

It is possible to prove that condition (8) is stronger than D-monotonicity.
Theorem 4.1. If the bifunction $f \in \mathcal{A}$ satisfies (8) then it is D-monotone.
Proof. From the convexity of $f(x, \cdot)$ we have

$$
0=f(x, x) \geq f(x, y)+D_{y} f(x, y ; x-y), \quad \forall x, y \in C
$$

therefore, the above inequality and (8) guarantee

$$
\begin{aligned}
& D_{x} f(x, y ; y-x)-D_{y} f(x, y ; x-y) \\
= & {\left[f(x, y)+D_{x} f(x, y ; y-x)\right]-\left[f(x, y)+D_{y} f(x, y ; x-y)\right] \geq 0 }
\end{aligned}
$$

for all $x, y \in C$ and thus f is D-monotone.
Some examples presented in [1] show that no relationship exists between condition (8) and the strict D-monotonicity and, moreover, that the stationarity property is not guaranteed for a fixed gap function φ_{α}. When condition (8) holds, we can overcome the trouble of finding a descent direction by eventually modifying the parameter α and therefore by changing the considered gap function.

Theorem 4.2. Suppose $f \in \mathcal{A}$ satisfies (8) and assume that

$$
\begin{align*}
& \lim _{y^{\prime} \rightarrow y} \lim _{t \rightarrow 0^{+}} \frac{f\left(x+t\left(y^{\prime}-x\right), y^{\prime}\right)-f\left(x, y^{\prime}\right)}{t} \\
= & \lim _{t \rightarrow 0^{+}} \lim _{y^{\prime} \rightarrow y} \frac{f\left(x+t\left(y^{\prime}-x\right), y^{\prime}\right)-f\left(x, y^{\prime}\right)}{t}, \tag{9}
\end{align*}
$$

for all $x, y \in C$. If $x \in C$ is not a solution of (EP), then there exists $\bar{\alpha}$ such that $y_{\alpha}(x)-x$ is a descent direction at x for all positive $\alpha \leq \bar{\alpha}$.

Proof. Suppose, by contradiction, there exists a sequence $\left\{\alpha_{k}\right\} \downarrow 0$ such that

$$
\begin{equation*}
D \varphi_{\alpha_{k}}\left(x ; y_{\alpha_{k}}(x)-x\right) \geq 0 \tag{10}
\end{equation*}
$$

Since C is compact, we can suppose that the sequence $\left\{y_{\alpha_{k}}(x)\right\}$ converges to $y \in C$. By assumption

$$
f_{\alpha_{k}}\left(x, y_{\alpha_{k}}(x)\right)=-\varphi_{\alpha_{k}}(x)<0
$$

and therefore, since $f(x, \cdot)$ is continuous, taking the limit for $k \rightarrow \infty$, we deduce that

$$
f(x, y)=\lim _{k \rightarrow \infty} f_{\alpha_{k}}\left(x, y_{\alpha_{k}}(x)\right) \leq 0
$$

On the other hand $y_{\alpha_{k}}$ minimizes $f_{\alpha_{k}}(x, \cdot)$ over C, then

$$
D_{y} f_{\alpha_{k}}\left(x, y_{\alpha_{k}}(x) ; x-y_{\alpha_{k}}(x)\right) \geq 0
$$

Let $a>D_{y} f(x, y ; x-y)$ then there exists $t_{0} \in(0,1)$ such that $y+t(x-y) \in C$ and

$$
\frac{f(x, y+t(x-y))-f(x, y)}{t}<a
$$

for all $t \in\left(0, t_{0}\right)$. Moreover $f\left(x, y_{\alpha_{k}}(x)+t\left(x-y_{\alpha_{k}}(x)\right)\right)$ tends to $f(x, y+t(x-y))$ and $f\left(x, y_{\alpha_{k}}(x)\right)$ tends to $f(x, y)$ for $k \rightarrow \infty$. Hence, for k sufficiently large, we have

$$
\frac{f\left(x, y_{\alpha_{k}}(x)+t\left(x-y_{\alpha_{k}}(x)\right)\right)-f\left(x, y_{\alpha_{k}}(x)\right)}{t}<a .
$$

Since

$$
D_{y} f\left(x, y_{\alpha_{k}}(x) ; x-y_{\alpha_{k}}(x)\right) \leq \frac{f\left(x, y_{\alpha_{k}}(x)+t\left(x-y_{\alpha_{k}}(x)\right)\right)-f\left(x, y_{\alpha_{k}}(x)\right)}{t}
$$

it follows that

$$
\limsup _{k \rightarrow \infty} D_{y} f\left(x, y_{\alpha_{k}}(x) ; x-y_{\alpha_{k}}(x)\right) \leq a
$$

This is true for any $a>D_{y} f(x, y ; x-y)$ and then

$$
\begin{aligned}
D_{y} f(x, y ; x-y) & \geq \limsup _{k \rightarrow \infty} D_{y} f\left(x, y_{\alpha_{k}}(x) ; x-y_{\alpha_{k}}(x)\right) \\
& =\limsup _{k \rightarrow \infty} D_{y} f_{\alpha_{k}}\left(x, y_{\alpha_{k}}(x) ; x-y_{\alpha_{k}}(x)\right) \geq 0 .
\end{aligned}
$$

Therefore, from Theorem 4.1, we deduce that

$$
D_{x} f(x, y ; y-x) \geq 0
$$

Condition (10) can be written

$$
D_{x} f_{\alpha_{k}}\left(x, y_{\alpha_{k}}(x) ; y_{\alpha_{k}}(x)-x\right) \leq 0
$$

and taking the limit for $k \rightarrow \infty$ and using condition (9) we have the converse inequality

$$
D_{x} f(x, y ; y-x) \leq 0
$$

and therefore

$$
D_{x} f(x, y ; y-x)=0
$$

Since condition (8) holds, we have $f(x, y) \geq 0$ and therefore we deduce $f(x, y)=0$. Moreover $f_{\alpha_{k}}\left(x, y_{\alpha_{k}}(x)\right) \leq f_{\alpha_{k}}\left(x, y^{\prime}\right)$ for all $y^{\prime} \in C$, hence, taking the limit again,

$$
0=f(x, y) \leq f\left(x, y^{\prime}\right), \quad \forall y^{\prime} \in C
$$

This implies that x solves $(E P)$ in contradiction with the assumption.
When f is continuously differentiable, condition (9) is trivially satisfied. The above result provides the key idea for the solution method for D-monotone bifunctions: decrease the value of α whenever $y_{\alpha}(x)-x$ isn't any longer a descent direction for φ_{α} and apply the scheme presented in Section 2.

Nevertheless, in order to device a new kind of solution method more efficient from the computational point of view, we have to implement an Armijo-type rule for the stepsize. If we adopt this kind of rule, we need the following theorem.

Theorem 4.3. Suppose that $f \in \mathcal{A}$ satisfies condition (8) and h is ∇-monotone then

$$
\begin{align*}
& D \varphi_{\alpha}\left(x ; y_{\alpha}(x)-x\right) \\
\leq & f\left(x, y_{\alpha}(x)\right)-\alpha\left\langle\nabla_{x} h\left(x, y_{\alpha}(x)\right), y_{\alpha}(x)-x\right\rangle \leq 0, \quad \forall x \in C \tag{11}
\end{align*}
$$

Proof. The first inequality in (11) descends immediately from condition (8) since

$$
\begin{aligned}
D \varphi_{\alpha}\left(x ; y_{\alpha}(x)-x\right) & =-D_{x} f_{\alpha}\left(x, y_{\alpha}(x) ; y_{\alpha}(x)-x\right) \\
& =-D_{x} f\left(x, y_{\alpha}(x) ; y_{\alpha}(x)-x\right)-\alpha\left\langle\nabla_{x} h\left(x, y_{\alpha}(x)\right), y_{\alpha}(x)-x\right\rangle \\
& \leq f\left(x, y_{\alpha}(x)\right)-\alpha\left\langle\nabla_{x} h\left(x, y_{\alpha}(x)\right), y_{\alpha}(x)-x\right\rangle
\end{aligned}
$$

For the second inequality in (11), since $y_{\alpha}(x)$ is a global minimum for $f_{\alpha}(x, \cdot)$, the first order necessary optimality condition implies

$$
\begin{aligned}
& 0 \leq D_{y} f_{\alpha}\left(x, y_{\alpha}(x) ; x-y_{\alpha}(x)\right) \\
= & D_{y} f\left(x, y_{\alpha}(x) ; x-y_{\alpha}(x)\right)+\alpha\left\langle\nabla_{y} h\left(x, y_{\alpha}(x)\right), x-y_{\alpha}(x)\right\rangle
\end{aligned}
$$

Moreover h is ∇-monotone then

$$
\begin{align*}
& D_{y} f\left(x, y_{\alpha}(x) ; x-y_{\alpha}(x)\right) \\
\geq & \alpha\left\langle\nabla_{y} h\left(x, y_{\alpha}(x)\right), y_{\alpha}(x)-x\right\rangle \geq-\alpha\left\langle\nabla_{x} h\left(x, y_{\alpha}(x)\right), y_{\alpha}(x)-x\right\rangle \tag{12}
\end{align*}
$$

From the convexity of $f(x, \cdot)$ we obtain

$$
0=f(x, x) \geq f\left(x, y_{\alpha}(x)\right)+D_{y} f\left(x, y_{\alpha}(x) ; x-y_{\alpha}(x)\right),
$$

and hence

$$
\begin{equation*}
D_{y} f\left(x, y_{\alpha}(x) ; x-y_{\alpha}(x)\right) \leq-f\left(x, y_{\alpha}(x)\right) . \tag{13}
\end{equation*}
$$

Comparing (12) and (13) we deduce the required second inequality.
Theorem 4.3 gives us an upper estimate of the directional derivative of the gap function. This is a fundamental result in order to obtain a globally convergent algorithm as we have seen in the continuously differentiable case [1]. In fact exploiting (11) we can force the gap function to have a decrease which is large enough. In particular the direction will be accepted when the inequality

$$
\begin{equation*}
-\varphi_{\alpha}(x)-\alpha\left(\left\langle\nabla_{x} h\left(x, y_{\alpha}(x)-x\right\rangle+h\left(x, y_{\alpha}(x)\right)\right)<-\frac{1}{2} \varphi_{\alpha}(x)\right. \tag{14}
\end{equation*}
$$

holds. Naturally we can work decreasing the parameter α. In fact, if x is not a solution of $(E P)$ condition (14) ensures that the direction is a descent direction (see Theorem 4.3).

References

1. G. Bigi, M. Castellani and M. Pappalardo, A new solution method for equilibrium problems, Optimization Methods and Software, to appear.
DOI: 10.1080/10556780902855620.
2. E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, The Mathematics Student, 63 (1993), 1-23.
3. O. Chadli, I. V. Konnov and J. C. Yao, Descent methods for equilibrium problems in a Banach space, Computers and Mathematics with Applications, 48 (2004), 609-616.
4. J. M. Danskin, The theory of min-max with applications, SIAM Journal on Applied Mathematics, 14 (1966), 641-664.
5. A. Iusem and W. Sosa, New existence results for equilibrium problems, Nonlinear Analisys, 52 (2003), 621-635.
6. I. V. Konnov and M. S. S. Ali, Descent methods for monotone equilibrium problems in Banach spaces, Journal of Computational and Applied Mathematics, 188 (2006), 165-179.
7. G. Mastroeni, On auxiliary principle for equilibrium problems, in: Equilibrium problems and variational models, P. Daniele, F. Giannessi and A. Maugeri (eds.), Kluwer Academic Publishers, Dordrecht, 2003, pp. 289-298.
8. G. Mastroeni, Gap functions for equilibrium problems, Journal of Global Optimization, 27 (2003), 411-426.

Marco Castellani
Department of "Sistemi ed Istituzioni per l'Economia", University of L'Aquila,
Italy
Massimo Pappalardo
Department of "Matematica Applicata", University of Pisa,
Italy

[^0]: Received August 7, 2009.
 2000 Mathematics Subject Classification: 90C30, 49M37.
 Key words and phrases: Equilibrium problems, Gap functions.

