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Abstract. Stability of a general indefinite quadratic program whose constraint
set is the intersection of an affine subspace and a closed convex cone is in-
vestigated. We present a systematical study of several stability properties of
the Karush-Kuhn-Tucker point map, the global solution map, and the optimal
value function, assuming that the problem data undergoes small perturbations.
Some techniques from our preceding work on stability of indefinite quadratic
programs under linear constraints have found further applications and exten-
sions in this paper.

1. INTRODUCTION

It is well known that mathematical programmming problems with indefinite
quadratic objective functions play an important role in optimization theory. For
quadratic programs (QPs for brevity) under linear constraints, various continuity
and differentiability properties of the (global) solution map, the local solution map,
the Karush-Kuhn-Tucker point set map, and the optimal value function have been
established; see for instance [1, 2 ,4, 6-9, 11-17], and the references therein. It would
be interesting to investigate stability properties of QPs under quadratic constraints.
As far as we know, very little has been done in this direction. Recently, a stability
study of linear-quadratic minimization over Euclidean balls - called the trust region
subproblem - has been given in [10]. From the results of [10] it is clear that
stability criteria for QPs under quadratic constraints may be very different from
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the corresponding criteria for QPs under linear constraints. Besides, quite new
arguments may be needed for proving the desired results. We refer to [3] for a
comprehensive theory of stability and sensitivity analysis of general optimization
problems.

The purpose of this paper is to obtain some stability properties of the problem
of minimizing a linear-quadratic function on the intersection of an affine subspace
and a finite dimensional closed convex cone with nonempty interior.

Let (V, 〈·, ·〉) be a finite dimensional real Hilber space and K ⊂ V be a closed
convex cone with the positive dual

K∗ := {y ∈ V : 〈y, x〉 ≥ 0 ∀x ∈ K}.
It is assumed that the interior intK of K is nonempty and K is pointed, i.e.,
K ∩ (−K) = {0}. By LS(V ) we denote the set of symmetric linear operators
Q : V → V . Thus, for any Q ∈ LS(V ) and x, y ∈ V , it holds 〈Qx, y〉 = 〈x, Qy〉.
Consider the following quadratic programming problem with a conic constraint

(P ) inf
{
f(x, Q, c) :=

1
2
〈x, Qx〉+ 〈c, x〉 : x ∈ a + X, x ∈ K

}
,

where Q ∈ LS(V ), c, a ∈ V , and X ⊂ V is a linear subspace. Recently, a potential
reduction algorithm for (P ) has been proposed under an Euclidean Jordan algebra
setting in [5]. It is a simple matter to show that quadratic programs under linear
constraints are special cases of (P ). The above mentioned trust region subproblem
is also a sepecial case of (P ). Indeed, let V = R

n and K be the Lorentz cone in
V , that is

K =
{
x = (x1, . . . , xn) : x2

n ≥
n−1∑
i=1

x2
i

}
.

Taking X = {x = (x1, . . . , xn) : xn = 0} and a = (0, . . . , 0, µ) with µ > 0, one
has

(a + X) ∩ K =
{
x = (x1, . . . , xn−1, µ) :

n−1∑
i=1

x2
i ≤ µ2

}
.

Hence (P ) becomes the problem of minimizing a linear-quadratic function over the
closed ball with center 0 and radius µ > 0 in the space R

n−1. This means that one
has deal with the trust region subproblem.

First-order necessary optimality conditions for (P ) (see [5, p. 70, 71] for a
proof) can be stated as follows.

Theorem 1.1. If x ∈ K ∩ (a + X) is a local minimum of (P ), then there exist
r ≥ 0 and s ∈ K∗ such that (r, s) 
= (0, 0), r(Qx + c)− s ∈ X⊥, and 〈x, s〉 = 0,
where X⊥ stands for the orthogonal subspace of X . If it is assumed additionally
that (a + X) ∩ (intK) is nonempty, then one can take r = 1.
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The preceding theorem leads to the following

Definition 1.1. We say that x ∈ V is a KKT (Karush-Kuhn-Tucker) point of
(P ) if there exists s ∈ V satisfying

s ∈ K∗, x ∈ K ∩ (a + X), Qx + c− s ∈ X⊥, 〈x, s〉 = 0.(1)

The sets of KKT points, of local solutions, and of (global) solutions of (P )
are denoted respectively by S(Q, c, a), loc(Q, c, a), and Sol(Q, c, a). According to
Theorem 1.1, if intK ∩ (a + X) 
= ∅ then Sol(Q, c, a) ⊂ loc(Q, c, a) ⊂ S(Q, c, a).
Let ϕ(Q, c, a) := inf{f(x, Q, c) : x ∈ (a + X) ∩ K} be the optimal value of (P ).

By definition, a multifunction F : W ⇒ V , where W is a subset of an Euclidean
space, is said to be upper semicontinuous (usc) at ω ∈ W if for each open set Ω ⊂ V

satisfying F (ω) ⊂ Ω, there exists δ > 0 such that F (ω′) ⊂ Ω for every ω′ ∈ W
with the property that ‖ω′ − ω‖ < δ. We say that F is lower semicontinuous (lsc)
at ω ∈ W if for each open set Ω ⊂ W satisfying F (ω) ∩ Ω 
= ∅, there exists δ > 0
such that F (ω ′) ∩ Ω 
= ∅ for every ω′ ∈ W with the property that ‖ω′ − ω‖ < δ.
Upper semicontinuity of F at ω indicates that the value sets of the restriction of
F to a neighborhood of ω have an external stability (they do not ‘explode’), while
the presence of the lower semicontinuity of F at ω assures us that the value sets
possess an internal stability (they do not ‘disappear’). If F is simultaneously usc
and lsc at ω, we say that it is continuous at ω.

By introducing some modifications to the proof schemes in [7-9], [12-17], we
will be able to derive necessary as well as sufficient conditions for the upper or lower
semicontinuity of the KKT point map (Q, c, a) 
→ S(Q, c, a), the global solution
map (Q, c, a) 
→ Sol(Q, c, a), and conditions for the continuity of the optimal value
function (Q, c, a) 
→ ϕ(Q, c, a).

We give necessary and sufficient conditions for the upper semicontinuity of the
KKT point map in the next section. Then, in the subsequent section, we discuss the
continuity of the global solution map. The last section is devoted to the continuity
of the optimal value function.

2. STABILITY OF THE KKT POINT MAP: NECESSARY AND SUFFICIENT CONDITIONS

Let ΣQ := {x ∈ X ∩ K : Qx ∈ X⊥}. Using the idea of proving Theorem 2.1
in [16] we can establish necessary conditions for the usc property of the KKT point
map of problem (P ) as follows.

Theorem 2.1. (Necessary conditions for stability I) Suppose that (a + X)∩ K
is nonempty and the KKT point set S(Q, c, a) is bounded. If the multifunction
S(·, ·, a) is upper semicontinuous at (Q, c), then ΣQ = {0}.
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Proof. On the contrary, suppose that (a + X)∩K 
= ∅, S(Q, c, a) is bounded,
S(·, ·, a) is usc at (Q, c), but ΣQ 
= {0}. Since 0 ∈ ΣQ, the last condition implies
the existence of x̄ 
= 0 satisfying

x̄ ∈ X ∩ K, Qx̄ ∈ X⊥.(2)

Choose ã ∈ (a + X)∩K and observe that (ã+ X)∩K = (a + X)∩K. For every

t > 0, let xt =
1
t
x̄ + ã. Since ã ∈ K, by (2) we have

xt ∈ (ã + X) ∩ K = (a + X) ∩ K.(3)

We claim that there exists an operator Qt ∈ LS(V ) of the form Qt = Q + tQ0 and
a vector ct ∈ V of the form ct = c + tc0 such that

Qtxt + ct ∈ X⊥,(4)

where the operator Q0 ∈ LS(V ) and vector c0 are to be constructed in the sequel.
Note that

Qtxt + ct = (Q + tQ0)
(1

t
x̄ + ã

)
+ (c + tc0)

=
1
t
Qx̄ + (Q0x̄ + Qã + c) + t(Q0ã + c0).

Hence, if we have

Q0x̄ + Qã + c = 0(5)

and

Q0ã + c0 = 0,(6)

then the inclusion (4) is valid.
Since V is of finite dimension and x̄ 
= 0, there exists Q0 ∈ LS(V ) satisfying

the condition Q0x̄ = −(Qã+c). Indeed, choose an orthonormal basis (B) of V . Let
(x̄1, . . . , x̄n) be the coordinates of x̄, (b1, . . . , bn) be the coordinates of −(Qã + c)
in (B). Let

I = {i : x̄i 
= 0} ⊂ {1, . . . , n}.
Since x̄ 
= 0, I 
= ∅. Fix any index i0 ∈ I . Put Q̄0 = (qij), where qij (1 ≤ i, j ≤ n)
are defined as follows:

qii = (x̄i)−1bi ∀i ∈ I,

qi0j = qji0 = (x̄i0)
−1bj ∀j ∈ {1, . . . , n} \ I,
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and qij = 0 for other pairs (i, j) with 1 ≤ i, j ≤ n. Clearly, Q̄0 is a symmetric
matrix. Now, let Q0 denote the operator from V to itself such that the matrix
associated with Q0 with respect to the basis (B) is the chosen Q̄0. It is easy to
check that this Q0 is the desired operator.

Putting c0 = −Q0ã, we see at once that (5) and (6) are fulfilled. Hence (4)
holds true.

Now, set st = 0. By (3) and (4) we have

st ∈ K∗, xt ∈ (a + X) ∩ K, Qtxt + ct − st ∈ X⊥, 〈xt, st〉 = 0.

This shows that xt ∈ S(Qt, ct, a). Let Ω ⊂ V be a bounded open set satisfying
S(Q, c, a) ⊂ Ω. Since lim

t→0
Qt = Q and lim

t→0
ct = c, from the usc property of

S(·, ·, a) it follows that xt ∈ Ω for all t > 0 sufficiently small. This is an absurd,

because lim
t→0

‖xt‖ = lim
t→0

‖1
t
x̄ + a‖ = +∞. The proof is complete.

Theorem 2.2. (Necessary conditions for stability II) Suppose that Q ∈ LS(V ),
c ∈ V , (a + X) ∩ K is nonempty, and S(Q, c, a) is bounded. If S(·, ·, a) is upper
semicontinuous at (Q, c), then S(Q, 0, 0)∩ intK = ∅.

Proof. On the contrary, suppose that our assumptions are fulfilled, S(·, ·, a) is
usc at (Q, c), but S(Q, 0, 0)∩ intK 
= ∅. Choose a nonzero vector x̄ ∈ S(Q, 0, 0)∩
intK. By the definition of KKT point, there exists s̄ ∈ V such that

s̄ ∈ K∗, x̄ ∈ K ∩ X, Qx̄ − s̄ ∈ X⊥, 〈x̄, s̄〉 = 0.(7)

Since x̄ ∈ intK, from the equality in (7) it follows that s̄ = 0. Then, the third in-
clusion in (7) implies Qx̄ ∈ X⊥. Thus (2) is satisfied. Using the latter and arguing
similarly as in the proof of Theorem 2.1, we will arrive at a contradiction.

If a = 0 then (P ) is an optimization problem under the conic constraint x ∈
X ∩ K. We now state a result on stability of the KKT point set map of such a
problem.

Theorem 2.3. (Necessary conditions for stability III). Let Q ∈ LS(V ), c ∈
V , and S(Q, c, 0) be bounded. If S(·, c, 0) is upper semicontinuous at Q, then
S(Q, 0, 0) = {0}.

Proof. On the contrary, suppose that S(Q, c, 0) is bounded, S(·, c, 0) is usc at
Q, but S(Q, 0, 0) 
= {0}. Fix a nonzero vector x̄ ∈ S(Q, 0, 0). By the definition of
KKT point, there exists s̄ ∈ V such that (7) is fulfilled. Similarly as in the proof
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of Theorem 2.1, we can construct a symmetric linear oprerator Q0 : V → V such
that Q0x̄ + c = 0. For each t > 0, let

xt =
1
t
x̄, st =

1
t
s̄,(8)

and Qt = Q + tQ0. Using (7) we get

Qtxt + c − st ∈ X⊥,(9)

From (7)-(9) it follows that xt ∈ S(Qt, c, 0) for all t > 0. Using the last inclusion
we can obtain a contradiction.

Theorem 2.4. Let Q ∈ LS(V ), c ∈ V , and a ∈ V . Suppose that K ∗ ∩ X⊥ =
{0} and one of the following conditions is satisfied:

(a) {x ∈ X ∩ K : 〈x, Qx〉 = 0} = {0},
(b) S(Q, 0, 0) = {0}.

Then S(·) is upper semicontinuous at (Q, c, a).

Proof. Arguing by contraposition, we suppose that one of the conditions (a),
(b) is satisfied but S(·) is not usc at (Q, c, a). Then there exist an open set Ω ⊂ V

containing S(Q, c, a), a sequence {(Qk, ck, ak)} in LS(V )× V × V converging to
(Q, c, a), and a sequence {xk} in V such that xk ∈ S(Qk, ck, ak) and xk 
∈ Ω for
every k. For each k there is sk ∈ V satisfying

(10) sk ∈ K∗, xk ∈ (ak + X) ∩ K, Qkxk + ck − sk ∈ X⊥, 〈xk, sk〉 = 0.

We first consider the situation where {‖(xk, sk)‖} is bounded. Then {xk} and {sk}
are bounded sequences. Without loss of generality, we may assume that xk → x̄

and sk → s̄. From (10) it follows that

s̄ ∈ K∗, x̄ ∈ (a + X) ∩ K, Qx̄ + c− s̄ ∈ X⊥, 〈x̄, s̄〉 = 0.

We then get x̄ ∈ S(Q, c, a)⊂ Ω, a contradiction, because xk 
∈ Ω for all k. Thus the
sequence {(xk, sk)} must be unbounded. There is no loss of generality in assuming
that ‖(xk, sk)‖ → ∞ and ‖(xk, sk)‖ 
= 0 for all k. Therefore, we can admit that
‖(xk, sk)‖−1(xk, sk) → (x̂, ŝ) with ‖(x̂, ŝ)‖ = 1. Using (10) we obtain

ŝ ∈ K∗, x̂ ∈ X ∩ K, Qx̂ − ŝ ∈ X⊥, 〈x̂, ŝ〉 = 0.(11)

Consider the case where the condition (a) is satisfied. From (11) and the assumption
{x ∈ K ∩X : 〈x, Qx〉 = 0} = {0} it is easy to deduce that x̂ = 0. Hence, by (11),
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ŝ ∈ K∗ ∩ X⊥. By the condition K∗ ∩ X⊥ = {0}, the latter implies that ŝ = 0. In
result, we get (x̂, ŝ) = (0, 0), a contradiction.

We now consider the case where (b) is satisfied. From (11) it follows that
x̂ ∈ S(Q, 0, 0). By our assumption, x̂ = 0. Using (11) once again, we have
ŝ ∈ K∗ ∩ X⊥. From the condition K∗ ∩ X⊥ = {0} it follows that (x̂, ŝ) = (0, 0).
This is impossible.

It would be of interest to find necessary and sufficient conditions for the lsc
property of the map S(·) at a given point (Q, c, a) ∈ LS(V ) × V × V . If the
constraint set of (P ) is a polyhedral convex set or a closed ball in an Euclidean
space, then such conditions can be found in [7, 9, 10, 16]. For instance, it has been
proved [10] that, for the problem

min
{1

2
〈x, Qx〉+ 〈c, x〉 : x ∈ V, ‖x‖2 ≤ α2

}

with α being a positive real number, if S(Q, ·, a) is lsc at c then S(Q, c, a) is a
finite set. The complexity of the proof given in [10] indicates that if a similar fact
is valid for (P ), then the corresponding proof would be nontrivial.

3. STABILITY OF THE GLOBAL SOLUTION MAP

This section presents several conditions for stability of the global solution map
of (P ). We begin with a sufficient condition for the usc property of Sol(·).

Theorem 3.1. (Sufficient conditions for the usc property I). Let Q ∈ LS(V ),
c ∈ V , and a ∈ V . If (a + X) ∩ (intK) 
= ∅ and Sol(Q, 0, 0) = {0}, then Sol(·)
is upper semicontinuous at (Q, c, a).

Proof. If the assertion of the theorem was false, then we would find an open
set Ω with Sol(Q, c, a) ⊂ Ω, a sequence {(Qk, ck, ak)} converging to (Q, c, a), and
a sequence {xk} such that xk ∈ Sol(Qk, ck, ak) \ Ω for all k.

If {xk} is bounded, then we may assume that xk → x̄ for some x̄ ∈ V .
Since xk ∈ (ak + X) ∩ K, x̄ ∈ (a + X) ∩ K. Let x ∈ (a + X) ∩ K be given
arbitrarily. Then there exist a subsequence {kj} of {k} and a sequence {ykj},
ykj ∈ (akj +X)∩ (intK), such that ykj → x. In fact, let x = a+x0 with x0 ∈ X .
Choose an y ∈ (a + X) ∩ (intK). Let y = a + y0 with y0 ∈ X . We have

1
j
y + (1 − 1

j
)x ∈ intK ∀j ≥ 2.

It follows that

a +
1
j
y0 + (1− 1

j
)x0 ∈ (a + X) ∩ (intK) ∀j ≥ 2.
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Since akj → a, for every j ≥ 2 there exists kj > j such that

ykj := akj +
1
j
y0 + (1− 1

j
)x0 ∈ intK.

As 1
j y

0 + (1 − 1
j )x

0 ∈ X , we have ykj ∈ (akj + X) ∩ (intK) and ykj → x as
j → ∞. Since xk ∈ Sol(Qk, ck, ak), we have f(xkj , Qkj , ckj) ≤ f(ykj , Qkj , ckj).
Passing to the limit, we obtain f(x̄, Q, c) ≤ f(x, Q, c) for all x ∈ (a + X) ∩ K.
This yields x̄ ∈ Sol(Q, c, a) ⊂ Ω, which contradicts the fact that xk /∈ Ω for all k

and xk → x̄.
Now suppose that {xk} is unbounded. We may assume that

xk

‖xk‖ → x̂, x̂ ∈ Ω ∩ X, ‖x̂‖ = 1.

Fix any x ∈ (a + X) ∩ K. Since (a + X) ∩ (intK) 
= ∅, as shown above, there
exist a subsequence {kj} of {k} and a sequence {ykj}, ykj ∈ (akj + X)∩K, such
that ykj → x. We have

f(xkj , Qkj , ckj) ≤ f(ykj , Qkj , ckj).

Dividing this inequality by ‖xkj‖2 and letting j → ∞, we obtain 〈x̂, Qx̂〉 ≤ 0.
From this it follows that either Sol(Q, 0, 0) = ∅, or x̂ ∈ Sol(Q, 0, 0). In both cases,
we have Sol(Q, 0, 0) 
= {0}, a contradiction.

Corollary 3.1. Let Q ∈ LS(V ), c ∈ V , and a ∈ V . If (a + X) ∩ (intK) 
= ∅
and X ∩ K = {0}, then Sol(·) is upper semicontinuous at (Q, c, a).

Proof. The assumption X ∩ K = {0} forces Sol(Q, 0, 0) = {0}. Thus Sol(·)
is usc at (Q, c, a) by the above theorem.

In the next statement, the condition Sol(Q, 0, 0) = {0} in Theorem 3.1 is re-
placed by the requirement that S(Q, 0, 0) = {0}. But we have to impose the
additional assumption K ∗ ∩ X⊥ = {0}.

Theorem 3.2. (Sufficient conditions for the usc property II). Let Q ∈ LS(V ),
c ∈ V , and a ∈ V . If (a+X)∩(intK) 
= ∅, S(Q, 0, 0) = {0} and K∗∩X⊥ = {0},
then Sol(·) is upper semicontinuous at (Q, c, a).

Proof. If Sol(·) is not usc at (Q, c, a), then there exist an open set Ω ⊂ V
containing Sol(Q, c, a), a sequence {(Qk, ck, ak)} converging to (Q, c, a), and a
sequence {xk} in V such that xk ∈ Sol(Qk, ck, ak) \ Ω for every k. If {xk} is
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bounded, then we may assume that xk → x̄ ∈ (a + X) ∩ K. Given any x ∈ (a +
X)∩K , by the condition (a+X)∩(intK) 
= ∅ we can find a sequence {ykj}, ykj ∈
(akj +X)∩(intK), where {kj} is a subsequence of {k}, such that ykj → x (see the
proof of Theorem 3.1). Passing the inequality f(xkj , Qkj , ckj) ≤ f(ykj , Qkj , ckj)
to the limit, we get f(x̄, Q, c) ≤ f(x, Q, c). Therefore, x̄ ∈ Sol(Q, c, a) ⊂ Ω.
This contradicts the fact that xk /∈ Ω for all k and xk → x̄. Thus {xk} must
be unbounded. We may assume that ‖xk‖ 
= 0 for all k, and ‖xk‖ → ∞ as
k → ∞. As mentioned above, by the assumption (a + X) ∩ (intK) 
= ∅ we can
find a sequence {ykj}, ykj ∈ (akj + X) ∩ (intK), where {kj} is a subsequence
of {k}. Hence (akj + X) ∩ (intK) 
= ∅ for each j. By Theorem 1.1 we have
Sol(Qkj , ckj , akj) ⊂ S(Qkj , ckj , akj). So there exists skj ∈ V such that


skj ∈ K∗, xkj ∈ (akj + X) ∩ K,

Qxkj + ckj − skj ∈ X⊥, 〈xkj , skj〉 = 0.
(12)

Since ‖(xkj , skj)‖ ≥ ‖xkj‖ → ∞, we may assume that

(xkj , skj)
‖(xkj , skj)‖ → (x̂, ŝ), ‖(x̂, ŝ)‖ = 1.

Dividing the inclusions in (12) by ‖(xkj , skj )‖ and the equality there by ‖(xkj , skj)‖2,
then taking the limits as j → ∞, we arrive at

ŝ ∈ K∗, x̂ ∈ X ∩ K, Qx̂ − ŝ ∈ X⊥, 〈x̂, ŝ〉 = 0.(13)

This shows that x̂ ∈ S(Q, 0, 0). Hence x̂ = 0 by our assumption. Then, by (13) we
have −ŝ ∈ K∗ ∩ X⊥. From the condition K∗ ∩ X⊥ = {0} it follows that ŝ = 0.
This is impossible because ‖(x̂, ŝ)‖ = 1.

We now establish a criterion for the lsc property of the solution map of (P ).

Theorem 3.3. (Necessary and sufficient conditions for the lsc property). Assume
that Q ∈ LS(V ), c ∈ V , a ∈ V , (a + X) ∩ (intK) 
= ∅, and X ∩ K = {0}. Then
the map Sol(·) is lower semicontinuous at (Q, c, a) if and only if Sol(Q, c, a) is a
singleton.

Proof. Necessity: On the contrary, suppose that Sol(·) is lsc at (Q, c, a), but
Sol(Q, c, a) is not a singleton. Since X ∩ K = {0} and (a + X) ∩ (intK) 
=
∅, (a + X) ∩ K is nonempty and compact, hence Sol(Q, c, a) is nonempty. As
Sol(Q, c, a) is not a singleton, there exist x̄, ȳ ∈ Sol(Q, c, a) such that x̄ 
= ȳ. Let
c0 ∈ V be such that ‖c0‖ = 1 and 〈c0, x̄ − ȳ〉 > 0. Then we can choose an open
neighborhood U of x̄ such that
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〈c0, x〉 > 〈c0, ȳ〉 ∀x ∈ U.(14)

Let δ > 0 be given arbitrarily. Fix an ε ∈ (0, δ) and c′ = c + εc0. It holds
‖c′ − c‖ = ε < δ. We are going to show that Sol(Q, c′, a) ∩ U = ∅. Given any
x ∈ [(a + X) ∩ K] ∩ U , since x̄, ȳ ∈ Sol(Q, c, a), by (14) we have

1
2
〈x, Qx〉+ 〈c′, x〉 =

[1
2
〈x, Qx〉+ 〈c, x〉

]
+ ε〈c0, x〉

≥
[1
2
〈x̄, Qx̄〉 + 〈c, x̄〉

]
+ ε〈c0, x〉

>
[1
2
〈ȳ, Qȳ〉+ 〈c, ȳ〉

]
+ ε〈c0, ȳ〉

=
1
2
〈ȳ, Qȳ〉 + 〈c′, ȳ〉.

From this it follows that x 
∈ Sol(Q, c′, a). Therefore, for every δ > 0 there exists
c′ ∈ V satisfying ‖c′ − c‖ < δ, such that Sol(Q, c′, a) ∩ U = ∅. This contradicts
the lsc property of Sol(Q, ·, a) at c. We have thus proved that Sol(Q, c, a) is a
singleton.

Sufficiency: Suppose that Sol(Q, c, a) = {x̄} and U ⊂ V is any open set with
x̄ ∈ U . Since (a + X)∩ (intK) 
= ∅, there exists an open set W ⊂ V containing a

such that (a′ +X)∩K 
= ∅ for every a′ ∈ W . Combining this with the assumption
X ∩ K = {0}, we see that (a′ + X) ∩ K is nonempty and compact for every
a′ ∈ W . Hence Sol(Q′, c′, a′) 
= ∅ for all (Q′, c′, a′) ∈ LS(V ) × V × W . Since
(a + X) ∩ (intK) 
= ∅ and X ∩ K = {0}, Sol(·) is usc at (Q, c, a) by Corollary
3.1. Thus there is a neighborhood WQ ×Wc ×Wa of (Q, c, a) in LS(V )× V × V

such that
Sol(Q′, c′, a′) ⊂ U ∀(Q′, c′, a′) ∈ WQ × Wc × Wa.

Consequently, we have Sol(Q′, c′, a′) ∩ U 
= ∅ for every (Q′, c′, a′) ∈ WQ × Wc ×
(Wa ∩ W ). This shows that Sol(·) is lsc at (Q, c, a).

4. CONTINUITY OF THE OPTIMAL VALUE FUNCTION

In this final section, we study the continuity of the real-valued function ϕ(·).

Theorem 4.1. (Sufficient conditions for the upper semicontinuity) Let Q ∈
LS(V ), c ∈ V , a ∈ V . If (a+X)∩ (intK) 
= ∅, then ϕ(·) is upper semicontinuous
at (Q, c, a).

Proof. Let {(Qk, ck, ak)} be any sequence converging to (Q, c, a). Choose a
subsequence {k′} of {k} such that
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lim sup
k→∞

ϕ(Qk, ck, ak) = lim
k′→∞

ϕ(Qk′
, ck′

, ak′
).(15)

Since (a + X) ∩ K 
= ∅, ϕ(Q, c, a) < +∞. Then there exists a sequence {xm} in
(a + X) ∩ K such that lim

m→∞ f(xm, Q, c) = ϕ(Q, c, a). Let xm = a + vm, where
vm ∈ X . Fix some y ∈ (a + X)∩ (intK) and put y = a + v0, where v0 ∈ X . For
any m ≥ 1 and � ≥ 2, it holds

1
�
y +

(
1 − 1

�

)
xm ∈ intK.

Substituting y = a + v0 and xm = a + vm into this inclusion, we get

a +
1
�
v0 +

(
1 − 1

�

)
vm ∈ intK.

As lim
k′→∞

ak′
= a, for each � ≥ 2 there exists an index k′(�) > � such that

yk′(�),m := ak′(�) +
1
�
v0 +

(
1 − 1

�

)
vm ∈ intK.

Then we have yk′(�),m ∈ (
ak′(�) + X

) ∩ (intK) and

lim
�→∞

yk′(�),m = a + vm = xm.

Since yk′(�),m ∈ (ak′(�) + X) ∩ K, we have

ϕ
(
Qk′(�), ck′(�), ak′(�)) ≤ f

(
yk′(�),m, Qk′(�), ck′(�)).

It follows that
lim
�→∞

ϕ
(
Qk′(�), ck′(�), ak′(�)) ≤ f(xm, Q, c).

Taking account of (15), from this we deduce that

lim sup
k→∞

ϕ(Qk, ck, ak) ≤ f(xm, Q, c).

Passing to the limit as m → ∞, we get

lim sup
k→∞

ϕ(Qk, ck, ak) ≤ ϕ(Q, c, a).

This establishes the usc property of ϕ(·) at (Q, c, a).

Theorem 4.2. (Sufficient conditions for the continuity) Let Q ∈ LS(V ), c ∈ V ,
a ∈ V . If (a + X) ∩ (intK) 
= ∅ and X ∩ K = {0}, then ϕ(·) is continuous at
(Q, c, a).
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Proof. Suppose that (a + X) ∩ (intK) 
= ∅ and X ∩ K = {0}. By Theorem
4.1, ϕ(·) is usc at (Q, c, a). In order to obtain the desired lsc property ϕ(·), given
a sequence (Qk, ck, ak) → (Q, c, a), we will show that

lim inf
k→∞

ϕ(Qk, ck, ak) ≥ ϕ(Q, c, a).

Arguing by contraposition, suppose that

lim inf
k→∞

ϕ(Qk, ck, ak) < ϕ(Q, c, a).(16)

Choose a subsequence {k′} of {k} such that

lim inf
k→∞

ϕ(Qk, ck, ak) = lim
k′→∞

ϕ(Qk′
, ck′

, ak′
).(17)

By (16) and (17), there exist k′0 and a real constant α < ϕ(Q, c, a) such that

ϕ(Qk′
, ck′

, ak′
) ≤ α ∀k′ ≥ k′

0.

Then, for each k′ ≥ k′
0, we have (ak′

+X)∩K 
= ∅. By the condition X∩K = {0},
(ak′

+ X) ∩ K is a compact set. Therefore

Sol(Qk′
, ck′

, ak′
) 
= ∅ ∀k′ ≥ k′

0.

Thus for every k′ ≥ k′
0 there exists xk′ ∈ (ak′

+ X) ∩ K such that

f(xk′
, Qk′

, ck′
) = ϕ(Qk′

, ck′
, ak′

) ≤ α.

Let xk′
= ak′

+ vk′ , where vk′ ∈ X . If {xk′} is unbounded then {vk′} is also
unbounded and, by considering a subsequence (if necessary), we have

vk′

‖vk′‖ → v̄ ∈ X ∩ K, ‖v̄‖ = 1.

But this contradicts the condition X ∩ K = {0}. Thus {xk′} is bounded. Without
loss of generality, we may assume that xk′ → x̄ ∈ (a + X) ∩ K. Hence

lim
k′→∞

f(xk′
, Qk′

, ck′
) = f(x̄, Q, c) ≤ α.

Since α < ϕ(Q, c, a), we obtain f(x̄, Q, c) < ϕ(Q, c, a), a contradiction. The proof
is complete.
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