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ON ε-OPTIMALITY CONDITIONS FOR CONVEX SET-VALUED
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Abstract. In this paper, ε-subgradients for convex set-valued maps are defined.
We prove an existence theorem for ε-subgradients of convex set-valued maps.
Also, we give necessary ε- optimality conditions for an ε-solution of a con-
vex set-valued optimization problem (CSP). Moreover, using the single-valued
function induced from the set-valued map, we obtain theorems describing the
ε-subgradient sum formula for two convex set-valued maps, and then give
necessary and sufficient ε-optimality conditions for the problem (CSP).

1. INTRODUCTION

Recently, there have been intensive researches for set-valued optimization prob-
lems ([1, 2, 4-7, 10, 13, 17]), which consist of set-valued maps and sets. To get
optimality conditions for solutions of set-valued optimization problems, we need
generalized derivatives (epiderivatives) for set-valued maps and so, most of re-
searchers have used contingent derivatives (epiderivatives) which are defined by
contigent cones.

From computational view, most of algorithms give us ε-solutions (approximate
solutions) of optimization problems. Thus many researchers have studied optimality
conditions for ε-solutions for scalar optimization problems and vector optimization
problems ([8, 11, 12, 14, 15, 18, 19]). However, there are very little results for
optimality conditions for ε-solution (approximate solution) of set-valued optimization
problems. Moreover, it seems that contigent derivatives (epiderivatives) are not
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suitable for getting optimality conditions for ε-solutions of set-valued optimization
problems.

The purpose of this paper is to define ε-subgradients for set-valued maps with
the closed convex cones generated by their epigraphs and to establish optimality
conditions for ε-solutions of a convex set-valued optimization.

Now we recall some notations and preliminary results, which will be used
throughout the paper.

Let f : R
n → R ∪ {+∞} be a proper convex function. Then for ε >= 0, the

ε-subgradient of f at x̄ ∈ domf is defined as the set

∂εf(x̄) := {v ∈ R
n | f(x) >= f(x̄) + vT (x− x̄) − ε for any x ∈ domf},

where the effective domain of f, domf , is given by

domf := {x ∈ R
n | f(x) < +∞}.

When ε = 0, ∂0f(x̄) is denoted by ∂f(x̄) and is called the subgradient of f at x̄
(see [8, 9, 16]). We define the indicator function of a convex subset C of Rn as
follows:

δC(x) =

{
0 if x ∈ C

+ ∞ if x /∈ C.

Hence, if x̄ ∈ C and ε >= 0, then

∂εδC(x̄) = {v ∈ R
n | vT (x − x̄) <= ε for any x ∈ C}.

We denote ∂εδC(x) by Nε
C(x̄), which is called the ε-normal set of C at x̄. When

ε = 0, ∂δC(x̄) = ∂0δC(x̄) = {v ∈ Rn | vT (x− x̄) <= 0 for any x ∈ C}. We denote
∂δC(x̄) by NC(x̄), which is called the normal cone of C at x̄. If C is a closed
convex cone in R

n, then for any ε >= 0,

N ε
C(0) = NC(0).

Let F : Rn ⇒ R be a set-valued map. The domain of F, domF, and the epigraph
of F, epiF, are defined as follows:

domF := {x ∈ R
n | F (x) �= ∅},

epiF := {(x, y + α) ∈ R
n × R | x ∈ domF, y ∈ F (x), α >= 0}.

Definition 1.1. A set-valued map F : Rn ⇒ R is said to be convex if for any
x, y ∈ Rn and any λ ∈ [0, 1],

λF (x) + (1− λ)F (y) ⊂ F (λx + (1− λ)y) + R+,

where R+ = {r ∈ R | r >= 0} (R+ is called the nonnegative real half-line).
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Obviously, a convex function f : R
n → R is also a convex set-valued map.

If F : R
n ⇒ R is a convex set-valued map, then epiF is a convex subset of

R
n+1(see Lemma 1 in [10]). The cone generated by a nonempty subset M of R

n+1

is denoted by
cone(M) := {λx | λ >= 0, x ∈ M},

and the closure of cone(M) is denoted by cone(M).
Let f : R

n → R be a function. Recall that the conjugate function of f,

f∗ : R
n → R ∪ {−∞, +∞} defined by for any v ∈ R

n

f∗(v) = sup{vTx − f(x) | x ∈ R
n}.

Similarly, for a set-valued map F : Rn ⇒ R, we define the conjugate function of
F, F ∗ : R

n → R ∪ {−∞, +∞} by for any v ∈ R
n,

F ∗(v) = sup{vTx − y | x ∈ R
n, y ∈ F (x)}.

For the proper lower semicontinuous convex functions f1, f2 : R
n → R ∪ {+∞},

the infimal convolution of f1 with f2 is denoted by f1 f2 : R
n → R∪{−∞, +∞},

and is defined by

(f1 f2)(x) = inf
x1+x2=x

{f1(x1) + f2(x2)}.

Definition 1.2. Let F : R
n ⇒ R be a convex set-valued map, and x̄ ∈ domF

and ȳ ∈ F (x̄). Let ε >= 0. Define, for any x ∈ R
n,

DεF (x̄; ȳ)(x) := inf{λ | (x, λ) ∈ cone [epiF − (x̄, ȳ − ε)]},
∂εF (x̄; ȳ) := {v ∈ R

n | DεF (x̄; ȳ)(x) >= DεF (x̄; ȳ)(0) + vTx for any x ∈ R
n}.

If x �∈ PrRncone [epiF − (x̄, ȳ − ε)], where Pr is the projection onto R
n, then

we let DεF (x̄; ȳ)(x) = +∞. We say that DεF (x̄; ȳ) is the radial ε-epiderivative
of F at (x̄, ȳ) and that ∂εF (x̄; ȳ) is the ε-subgradient of F at (x̄, ȳ). Moreover, we
denote D0F (x̄; ȳ) by DF (x̄; ȳ), and ∂0F (x̄; ȳ) by ∂F (x̄; ȳ). We say that DF (x̄; ȳ)
is the radial epiderivative of F at (x̄, ȳ) (see [6] for the definition of the radial
epiderivative) and that ∂F (x̄; ȳ) is the subgradient of F at (x̄, ȳ).

Now we give the set-valued version of the indicator function δC as follows:

δ̃C(x) =

{
{0} if x ∈ C

∅ if x /∈ C.

Then we can check that if x̄ ∈ C and ε >= 0, ∂εδ̃C(x̄; 0) = N ε
C(x̄). Indeed, let x̄ ∈ C.

Clearly, Dεδ̃C(x̄; 0)(0) <= 0. Moreover, we can easily check that 0 <= Dεδ̃C(x̄; 0)(0).
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So, Dεδ̃C(x̄; 0)(0) = 0. Notice that v ∈ ∂εδ̃C(x̄; 0) if and only if for any x ∈ R
n,

Dεδ̃C(x̄; 0)(x) >= vTx. Since epi Dεδ̃C(x̄; 0) = cone(C × R+ − (x̄,−ε)), v ∈
∂εδ̃C(x̄; 0) if and only if for any (x, α) ∈ C × R+ − (x̄,−ε),

(v,−1)T (x, α) <= 0.

Thus, v ∈ ∂εδ̃C(x̄; 0) if and only if for any x ∈ C and any α >= 0,

vT (x− x̄) <= α + ε.

Hence, ∂εδ̃C(x̄; 0) = N ε
C(x̄).

Using the above argument used for proving that ∂εδ̃C(x̄; 0) = N ε
C(x̄), we

can prove that if F is a single-valued map, then ∂εF (x̄; ȳ) becomes the usual
ε-subgradient ∂εF (x̄) at x̄.

In this paper, we consider the following convex set-valued optimization problem:

(CSP) Minimize F (x)
subject to x ∈ C,

where F : Rn ⇒ R is a convex set-valued map and C is a nonempty closed convex
subset of R

n. Let ε >= 0, x̄ ∈ C and ȳ ∈ F (x̄). Then (x̄, ȳ) is said to be an
ε-solution of (CSP) if for any x ∈ C ∩ domF and any y ∈ F (x),

ȳ − ε <= y,

and (x̄, ȳ) is called a solution of (CSP) if for any x ∈ C∩domF and any y ∈ F (x),

ȳ <= y.

This paper is organized as follows. In Section 2, we prove existence theorems
for ε-subgradients of convex set-valued maps. We give a necessary optimality con-
dition for an ε-solution of Problem (CSP) in Section 3 and introduce necessary
and sufficient ε-optimality conditions for an ε-solution of (CSP) in Section 4. In
particular, the ε-solution set of (CSP) is characterized at Theorem 4.5 in Section 4.

2. EXISTENCE OF ε-SUBGRADIENTS

In this section, we prove propositions which tell about the existence for ε-
subgradients of convex set-valued maps.

Proposition 2.1. Let F : Rn ⇒ R be a convex set-valued map. Let ε >= 0, and
x̄ ∈ int domF and ȳ ∈ F (x̄). Assume that (x̄, ȳ − ε) �∈ int epiF . Then we have,
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(i) DεF (x̄; ȳ) : R
n → R is finite-valued, and sublinear, that is, for any x, y ∈

R
n,

DεF (x̄; ȳ)(x + y) <= DεF (x̄; ȳ)(x) + DεF (x̄; ȳ)(y)

and for any x ∈ R
n and any α >= 0, DεF (x̄; ȳ)(αx) = αDεF (x̄; ȳ)(x).

(ii) ∂εF (x̄; ȳ) is a nonempty convex compact subset of Rn.

Proof. Since (x̄, ȳ − ε) �∈ int epiF , (0, 0) �∈ int epiF − (x̄, ȳ − ε). Let
Ω := epiF − (x̄, ȳ − ε). From the convexity of the set int epiF − (x̄, ȳ − ε) and
from separation theorem, there exists (a, b) ∈ Rn ×R, (a, b) �= (0, 0) such that for
any (x, y) ∈ Ω, aTx + by >= 0, and hence for any (x, y) ∈ cone(Ω),

aTx + by >= 0.(2.1)

If b = 0, then aTx >= 0 for any x ∈ PrRncone(Ω). This shows that aT x >= 0 for
any x ∈ domF − x̄, and hence

aT (x − x̄) >= 0 for any x ∈ domF.(2.2)

Since x̄ ∈ int domF, we can find δ > 0 such that x̄ + Bδ(0) ⊂ domF, where
Bδ(0) = {x ∈ R

n | ‖x‖ < δ}. Thus, from (2.2), for any x ∈ Bδ(0), aT x >= 0
and so, a = 0. Therefore, b �= 0. Moreover, for any r >= 0, (0, r + ε) = (x̄, ȳ +
r) − (x̄, ȳ − ε) ∈ Ω. From (2.1), b > 0, and hence for any (x, y) ∈ cone(Ω),
y >= −1

b aTx. This means that for any x ∈ PrRncone(Ω), DεF (x̄, ȳ)(x) >= −1
b aTx.

Since x̄ ∈ int domF, we can check that for any x ∈ Rn,

DεF (x̄; ȳ)(x) >= −1
b
aT x.

Moreover, we can easily check that

epiDεF (x̄; ȳ) = cone(Ω).

This means that DεF (x̄; ȳ) is sublinear. Thus the function DεF (x̄; ȳ) : R
n → R

is finite-valued and sublinear. Since ∂εF (x̄; ȳ) = ∂DεF (x̄; ȳ)(0), ∂εF (x̄, ȳ) is a
nonempty compact convex set (see [16]).

Remark 2.1. Observe that by Proposition 2.1, for any x ∈ R
n, DεF (x̄; ȳ)(0) =

0 and DεF (x̄; ȳ)(x) > −∞ and so, DεF (x̄; ȳ) is proper and sublinear. Moreover,
since ∂εF (x̄; ȳ) = ∂DεF (x̄; ȳ)(0), v ∈ ∂εF (x̄; ȳ) if and only if for any x ∈ R

n,
DεF (x̄; ȳ)(x) >= vT x. Thus we can easily check that v ∈ ∂εF (x̄; ȳ) if and only if
for any (x, λ) ∈ epiF − (x̄, ȳ− ε), vTx <= λ. This shows that (x̄, ȳ) is an ε-solution
of (CSP) in the case C = R

n if and only if 0 ∈ ∂εF (x̄; ȳ).
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Let F : R
n ⇒ R is a set-valued map. Let us define Finf(x) := inf{y | y ∈

F (x)} if x ∈ domF and Finf(x) = +∞ if x �∈ domF , and F̃ (x) := F (x) ∪
{Finf(x)} for all x ∈ R

n.

Proposition 2.2. Let F : R
n ⇒ R be a convex set-valued map.

(i) If Finf(x) > −∞ for all x ∈ domF, then Finf is a proper convex function. If
we assume furthermore that domF and epiF inf are closed, then Finf is lower
semicontinuous on R

n.

(ii) For any ε >= 0, and any x̄ ∈ int domF, ∂εF̃ (x̄; Finf(x̄)) �= ∅ and

∂εF̃ (x̄; Finf(x̄)) = ∂εFinf(x̄).

If in addition that F inf(x) ∈ F (x) for all x ∈ domF , then for any ε >= 0, and
any x̄ ∈ int domF,

∂εF (x̄; Finf(x̄)) = ∂εFinf(x̄).

Proof. (i) Obviously, we only need to prove that Finf is a convex function on
domF. Assume to the contrary that there exist x1, x2 ∈ domF and λ ∈ (0, 1) such
that

Finf(xλ) > λFinf(x1) + (1− λ)Finf(x2),(2.3)

where xλ = λx1 + (1 − λ)x2. Let us choose δ such that 0 < δ < Finf(xλ) −
(λFinf(x1)+ (1−λ)Finf(x2)). By the definitions of Finf(x1) and Finf(x2), we can
find y1 ∈ Finf(x1), y2 ∈ Finf(x2) such that{

Finf(x1) > y1 − δ

Finf(x2) > y2 − δ.

From these and from (2.3), it yields

Finf(xλ) > λ(y1 − δ) + (1 − λ)(y2 − δ) + δ = λy1 + (1 − λ)y2 =: yλ.(2.4)

Observe that epiF is a convex set since F is convex. So,

(xλ, yλ) = λ(x1, y1) + (1 − λ)(x2, y2) ∈ epiF.

This implies that there exist y ∈ F (xλ) and r >= 0 such that

yλ = y + r >= y.
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From this and from (2.4), we have

Finf(xλ) > y.

This is impossible since F inf(xλ) <= y, for all y ∈ F (xλ). Therefore, Finf is a
convex function. Also, it is clear that under given assumptions, Finf is proper and
lower semicontinuous.

(ii) To apply Proposition 2.1 we need to prove that (x̄, Finf(x̄)− ε) �∈ int epiF.
Indeed, otherwise that there exists a δ > 0 such that

{x̄} × (Finf(x̄)− ε − δ, Finf(x̄) − ε + δ) ⊂ epiF.

This means that (Finf(x̄)− ε− δ, Finf(x̄)− ε+ δ) ⊂ F (x̄) + R+. Then, for some δ′

satisfying 0 < δ′ < δ, we can find y ∈ F (x̄) and r >= 0 such that Finf(x̄)− ε−δ′ =
y+r. So, Finf(x̄) = y+r+ε+δ′ > y. This contradicts to the definition of Finf(x̄).
Therefore, (x̄, Finf(x̄)− ε) �∈ int epiF. Applying Proposition 2.1, we conclude that
∂εF̃ (x̄; Finf(x̄)) �= ∅.

Observe that

v ∈ ∂εF̃ (x̄; Finf(x̄)) ⇐⇒ ∀(x, λ) ∈ epiF̃ − (x̄, Finf(x̄) − ε), vTx <= λ

⇐⇒ ∀x ∈ domF̃ , ∀y ∈ F̃ (x), ∀r >= 0,

vT (x − x̄) <= y + r − (Finf(x̄) − ε)

⇐⇒ ∀x ∈ domF, ∀y ∈ F̃ (x),

vT (x − x̄) <= y − (Finf(x̄) − ε)

⇐⇒ ∀x ∈ domF, vT (x − x̄) <= Finf(x)− (Finf(x̄) − ε)
⇐⇒ v ∈ ∂εFinf(x̄).

Therefore, ∂εF̃ (x̄, Finf(x̄)) = ∂εFinf(x̄).

Remark 2.2. Observe that if domF and epiF are closed and if Finf > −∞ for
any x ∈ domF, then Finf is lower semicontinuous. Indeed, we should prove that
epiFinf is closed. Let (xn, αn) ∈ domF × R with Finf(xn) <= αn and let (xn, αn)
converge to (x̄, ᾱ). Then there exist εn > 0 and yn ∈ F (xn) such that εn converges
to 0 and Finf(xn) <= yn < αn + εn. Thus (xn, αn + εn) ∈ epiF converges to (x̄, ᾱ).
Since epiF is closed, (x̄, ᾱ) ∈ epiF. Hence, (x̄, ᾱ) ∈ epiFinf .

A set-valued map F, which is satisfied all of the conditions: domF is closed,
Finf > −∞ for any x ∈ domF, and Finf is lower semicontinuous, may not be
satisfied the condition: epiF is closed. Indeed, it is clear that the set-valued map
F : R ⇒ R defined by F (x) = x2 + int R+ for all x ∈ R, is satisfied all of the
previous conditions except the closedness of epiF.
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Using the same proof way as the proof of Proposition 2.2(ii), we obtain the
following proposition.

Proposition 2.3. Let F 1, F 2 : R
n ⇒ R be convex such that domF 1∩domF 2 �=

∅. Assume that F i
inf(x) > −∞ for all x ∈ domF i, i = 1, 2. Then for all ε >= 0 and

for all x̄ ∈ int domF 1 ∩ int domF 2, we have

∂ε(F̃ 1 + F̃ 2)(x̄; F 1
inf(x̄) + F 2

inf(x̄)) = ∂ε(F 1
inf + F 2

inf)(x̄).

If in addition that F i
inf(x) ∈ F i(x), i = 1, 2, for all x ∈ int domF 1 ∩ int domF 2,

then
∂ε(F 1 + F 2)(x̄; F 1

inf(x̄) + F 2
inf(x̄)) = ∂ε(F 1

inf + F 2
inf)(x̄).

3. NECESSARY ε-OPTIMALITY CONDITIONS

In this section, we give necessary ε-optimality conditions for ε-solutions and
solutions of the convex optimization problem (CSP) formulated in Section 1. First,
following the proof method for Theorem 23.8 in [16], we prove a sum formula
for convex set-valued maps which will be used for getting necessary ε-optimality
conditions for (CSP).

Theorem 3.1. Let F : R
n ⇒ R be a convex set-valued map and C a closed

convex subset of R
n. Let x̄ ∈ C ∩ int domF and ȳ ∈ F (x̄), and ε >= 0. Suppose

that (x̄, ȳ − ε) �∈ int epiF. Then we have

∂ε(F + δ̃C)(x̄; ȳ) ⊂ ∂εF (x̄; ȳ) + N ε
C(x̄).

Proof. Since epi(F + δ̃C) ⊂ epiF , DεF (x̄; ȳ)(x) <= Dε(F + δ̃C)(x̄; ȳ)(x) for
any x ∈ R

n. Thus, by Proposition 2.1, Dε(F + δ̃C)(x̄; ȳ)(0) = 0 and Dε(F +
δ̃C)(x̄; ȳ)(x) > −∞ for any x ∈ Rn, and so, Dε(F + δ̃C)(x̄; ȳ) is proper and
sublinear. Moreover, since ∂ε(F + δ̃C )(x̄; ȳ) = ∂Dε(F + δ̃C)(x̄; ȳ)(0), v ∈ ∂ε(F +
δ̃C)(x̄; ȳ) if and only if for any x ∈ Rn, Dε(F + δ̃C)(x̄; ȳ)(x) >= vTx. Thus
we can easily check that v ∈ ∂ε(F + δ̃C)(x̄; ȳ) if and only if for any (x, λ) ∈
epi(F+δ̃C)−(x̄, ȳ−ε), vTx <= λ. Moreover, we can check that v ∈ ∂ε(F+δ̃C)(x̄; ȳ)
if and only if for any x ∈ C ∩ domF and any y ∈ F (x),

0 <= y − ȳ + ε − vT (x − x̄).(3.1)

Let G(x) = F (x) − ȳ + ε − vT (x − x̄), C1 = epiG and C2 = {(x, λ) ∈ C ×
R | λ <= 0}. Then G(x̄) = F (x̄) − ȳ + ε. Since ȳ ∈ F (x̄), ε ∈ G(x̄), and
since x̄ ∈ int domF, intC1 �= ∅. It is clear that C1 and C2 are convex. Moreover
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intC1∩C2 = ∅. Indeed, suppose to the contrary that intC1∩C2 �= ∅. Then there exists
(z̄, λ̄) ∈ intC1 ∩ C2. Thus z̄ ∈ C ∩ domF and λ̄ <= 0, and there exists δ > 0 such
that {z̄}×(λ̄−δ, λ̄+δ) ⊂ C1. Let λ be such that λ̄−δ < λ < λ̄. Since (z̄, λ) ∈ C1,

we can find ¯̄y ∈ F (z̄) and λ1 >= 0 such that λ = ¯̄y − ȳ + ε − vT (z̄ − x̄) + λ1,
that is, ¯̄y − ȳ + ε − vT (z̄ − x̄) = λ − λ1 < λ̄ <= 0, which contradicts (3.1) since
z̄ ∈ C ∩domF and ȳ ∈ F (z̄). Hence intC1∩C2 = ∅. By separation theorem, there
exist (a, b) ∈ R

n × R, (a, b) �= (0, 0) and β ∈ R such that for any (x, λ) ∈ C1 and
any (x̃, λ̃) ∈ C2,

aT x + bλ <= β <= aT x̃ + bλ̃.(3.2)

From (3.2), aT x̄ + b(λ + ε) <= aT x̄ for any λ >= 0, and hence, b <= 0. If b = 0, it
follows from (3.2) that aT (x − x̄) <= 0 for any x ∈ domF. Since x̄ ∈ int domF,

a = 0. This is impossible since (a, b) �= (0, 0). Hence, b < 0. From (3.2), aT (x −
x̄)+ bλ <= 0 for any (x, λ) ∈ C1, and hence, for any x ∈ domF and any y ∈ F (x),

aT (x − x̄) + b[y − ȳ + ε − vT (x − x̄)] <= 0.

So, for any x ∈ domF and any y ∈ F (x),

(v − 1
b
a)T (x − x̄) <= y − ȳ + ε.

This means that (v − 1
b
a,−1)T ((x, y) − (x̄, ȳ − ε)) <= 0 for any (x, y) ∈ epiF.

Hence, v − 1
b
a ∈ ∂εF (x̄; ȳ). From (3.2), aT x̄ + bε <= aT x̃ for any x̃ ∈ C. This

shows that
1
b
aT (x̃ − x̄) <= ε for any x̃ ∈ C. Thus, we have

1
b
a ∈ N ε

C(x̄).

Therefore, v = (v − 1
b
a) +

1
b
a ∈ ∂εF (x̄; ȳ) + N ε

C(x̄). Consequently, we have,

∂ε(F + δ̃C)(x̄; ȳ) ⊂ ∂εF (x̄; ȳ) + N ε
C(x̄).

Corollary 3.1. Let F : R
n ⇒ R be a convex set-valued map and x̄ ∈ C ∩

int domF. Let ȳ ∈ F (x̄) and suppose that (x̄, ȳ) �∈ int epiF. Then we have,

∂(F + δ̃C)(x̄; ȳ) = ∂F (x̄; ȳ) + NC(x̄).

Proof. By Theorem 3.1, ∂(F + δ̃C)(x̄; ȳ) ⊂ ∂F (x̄; ȳ) + NC(x̄). Now we prove
that the converse inclusion holds. Let v ∈ ∂F (x̄; ȳ) + NC(x̄). Then there exist
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v1 ∈ ∂F (x̄; ȳ) and v2 ∈ NC(x̄) such that v = v1 + v2. Thus for any x ∈ domF

and any y ∈ F (x), vT
1 (x− x̄) + ȳ <= y, and for any x ∈ C, vT

2 (x− x̄) <= 0. Hence,
for any x ∈ C ∩ domF and any y ∈ F (x),

(v1 + v2)T (x − x̄) + ȳ <= y.

Thus v = (v1 + v2) ∈ ∂(F + δ̃C)(x̄; ȳ). Hence, the converse inclusion holds.

Now we give ε-optimality conditions for the convex set-valued optimization
problem (CSP) which was formulated in Section 1.

Theorem 3.2. Let x̄ ∈ C ∩ int domF and ȳ ∈ F (x̄). Suppose that (x̄, ȳ− ε) /∈
int epiF. If (x̄, ȳ) is an ε-solution of (CSP), then we have,

0 ∈ ∂εF (x̄; ȳ) + N ε
C(x̄).

Proof. Let (x̄, ȳ) be an ε-solution of (CSP). Then for any x ∈ C ∩ domF
and any y ∈ F (x), y >= ȳ − ε, and hence, for any x ∈ dom(F + δ̃C) and any
y ∈ (F + δ̃C)(x), y >= ȳ − ε. Thus for any (x, λ) ∈ epi(F + δ̃C) − (x̄, ȳ − ε),

0 <= λ.

This shows that for any (x, λ) ∈ cone [(F + δ̃C) − (x̄, ȳ − ε)],

0 <= λ.

This implies that for any x ∈ dom(F + δ̃C),

0 <= Dε(F + δ̃C)(x̄; ȳ)(x).

In the proof of Theorem 3.1, we showed that

Dε(F + δ̃C)(x̄; ȳ)(0) = 0.

So, 0 ∈ ∂ε(F + δ̃C)(x̄; ȳ), and hence by Theorem 3.1, 0 ∈ ∂εF (x̄; ȳ) + N ε
C(x̄).

When C is a closed convex cone in (CSP), we can get a necessary and sufficient
ε-optimality condition for (CSP) as follows.

Corollary 3.2. Let C be a closed convex cone in Rn and suppose that 0 ∈
C ∩ int domF. Let ȳ ∈ F (0). Assume that (0, ȳ − ε) /∈ int epiF. Then (0, ȳ) is an
ε-solution of (CSP) if and only if 0 ∈ ∂ εF (0; ȳ) + NC(0).
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Proof. Suppose that (0, ȳ) is an ε-solution of (CSP). Then, since C is a convex
cone, N ε

C(0) = NC(0), and hence it follows from Theorem 3.2 that

0 ∈ ∂εF (x̄; ȳ) + NC(0).

Assume that 0 ∈ ∂εF (x̄; ȳ) + NC(0). Then there exists v ∈ ∂εF (x̄; ȳ) such that
−v ∈ NC(0). Thus for any (x, λ) ∈ epiF − (0, ȳ − ε),

vTx <= λ,(3.3)

and for any x ∈ C, vTx >= 0. So, from (3.3), for any x ∈ domF and any y ∈ F (x),

0 <= vTx <= y − ȳ + ε.

Hence, for any x ∈ C ∩ domF and any y ∈ F (x),

ȳ − ε <= y.

So, (0, ȳ) is an ε-solution of (CSP).

From Theorem 3.2, we can obtain the following corollary.

Corollary 3.3. Let x̄ ∈ C ∩ int domF and ȳ ∈ F (x̄). Suppose that (x̄, ȳ) /∈
int epiF. Then (x̄, ȳ) is a solution of (CSP) if and only if 0 ∈ ∂F (x̄; ȳ) + N C(x̄).

Proof. If (x̄, ȳ) is a solution of (CSP), it follows from Theorem 3.2 that 0 ∈
∂F (x̄; ȳ) + NC(x̄). Suppose that 0 ∈ ∂F (x̄; ȳ) + NC(x̄). Then there exists v ∈
∂F (x̄; ȳ) such that −v ∈ NC(x̄). Thus for any x ∈ domF and any y ∈ F (x),

vT (x − x̄) <= y − ȳ,

and for any x ∈ C,

−vT (x − x̄) <= 0.

Hence, for any x ∈ C ∩ domF and any y ∈ F (x),

ȳ <= y.

So, (x̄, ȳ) is a solution of (CSP).

Let G : Rn ⇒ R be convex and C = {x ∈ Rn | G(x) ∩ (−R+) �= ∅} and
assume that x̄ ∈ C and 0 ∈ G(x̄). Now we calculate the normal cone NC(x̄). Of
course, if x̄ ∈ intC, then NC(x̄) = {0}.



1798 Gue Myung Lee and Le Anh Tuan

We need the following Slater condition for calculating the normal cone of C at some
x̄ ∈ C \ intC, which is a set-valued version of the usual Slater condition:

Slater Condition: there exists x̂ ∈ R
n such that

G(x̂) ∩ (−int R+) �= ∅.

Then we have the following proposition:

Proposition 3.1. Let G : R
n ⇒ R be convex and C = {x ∈ R

n | G(x) ∩
(−R+) �= ∅}. Suppose that the Slater condition holds. Then we have,

(i) int C ⊂ {x ∈ R
n | G(x) ∩ (−int R+) �= ∅}.

(ii) if G is lower semicontinuous, then

{x ∈ R
n | G(x) ∩ (−int R+) �= ∅} ⊂ intC.

(iii) if G is lower semicontinuous, then

C \ intC = {x ∈ R
n | G(x) ∩ (−R+) = {0}}.

(iv) if 0 ∈ G(x̄), x̄ ∈ int dom G and (x̄, 0) /∈ int epiG, then

x̄ ∈ C \ intC.

Proof. (i) Let S = {x ∈ R
n | G(x) ∩ (−intR+) �= ∅}. Let x be any point in

intC. If x = x̂, then x ∈ S. Assume that x �= x̂. Then we can find δ > 0 such that
x + Bδ(0) ⊂ C, where Bδ = {z ∈ R

n | ||z|| < δ}, and x̂ /∈ x + Bδ(0). Moreover,
since x �= x̂, we can find v ∈ Bδ(0) \ {0} such that x − v, x + v ∈ aff{x, x̂} :=
{αx+(1−α)x̂ | α ∈ R}, x̂ /∈ [x−v, x+v] := {λ(x−v)+(1−λ)(x+v) | λ ∈ [0, 1]},
x ∈ (x− v, x+ v) := {λ(x− v) + (1−λ)(x+ v) | λ ∈ (0, 1)} and x + v ∈ (x, x̂).
Then there exists λ̂ ∈ (0, 1) such that x + v = λ̂x̂ + (1− λ̂)(x− v). So, since G is
convex, we have,

λ̂G(x̂) + (1 − λ̂)G(x− v) ⊂ G(x + v) + R+.(3.4)

From Slater Condition, we can take ŷ ∈ G(x̂) such that ŷ < 0. Moreover, since
x − v ∈ x + Bδ(0) ⊂ C, we can find y1 ∈ G(x− v) such that y1 <= 0. Assume to
the contrary that G(x + v) ∩ (−intR+) = ∅. Then, from (3.4),

λ̂G(x̂) + (1 − λ̂)G(x− v) ⊂ R+.(3.5)



On ε-Optimality Conditions for Convex Set-valued Optimization Problems 1799

Thus, from (3.5), 0 <= λ̂ŷ + (1 − λ̂)y1 < 0. This is a contradiction. Hence,
G(x + v) ∩ (−intR+) �= ∅. So, there exists y2 ∈ G(x + v) such that y2 < 0. Since
G is convex, we have

1
2
y1 +

1
2
y2 ∈ 1

2
G(x − v) +

1
2
G(x + v)

⊂ G(x) + R+.

Hence there exist y ∈ G(x) and r >= 0 such that y + r =
1
2
(y1 + y2) < 0. Thus

y < 0 and so G(x) ∩ (−intR+) �= ∅. Hence x ∈ S. Therefore, we have

intC ⊂ S.

(ii) If G is lower semicontinuous, then {x ∈ R
n | G(x) ∩ (−intR+) �= ∅} is

open and hence {x ∈ Rn | G(x) ∩ (−intR+) �= ∅} ⊂ intC.

(iii) Since G is lower semicontinuous, it follows from (i) and (ii) that

C \ intC = C \ {x ∈ R
n | G(x) ∩ (−intR+) �= ∅}.

Let x ∈ C \ intC. Then G(x) ∩ (−R+) �= ∅ and G(x) ∩ (−intR+) = ∅. Thus
G(x) ∩ (−R+) = {0}. Hence we have

C \ intC ⊂ {x ∈ R
n | G(x) ∩ (−intR+) �= ∅}.

Conversely, we assume that G(x) ∩ (−R+) = {0}. Then x ∈ C and x �= x̂, where
x̂ is the point in the definition of Slater condition. For any fixed λ ∈ (0, 1), we let
xλ = x+λ(x̂−x) and x′

λ = x−λ(x̂−x). Since G is convex, λG(x̂)+(1−λ)G(x) ⊂
G(xλ) + R+, and hence, taking ŷ ∈ G(x̂) with ŷ < 0 and 0 ∈ G(x), we can find

yλ ∈ G(xλ) such that yλ < 0. Since
1
2
xλ +

1
2
x′

λ = x and G(x) ⊂ R+,

1
2
G(xλ) +

1
2
G(x′

λ) ⊂ G(x) + R+ ⊂ R+.

So, for any y′λ ∈ G(x′
λ),

1
2
yλ +

1
2
y′λ >= 0 and hence, y′λ > 0. Hence G(x′

λ) ∩
(−R+) = ∅ for any λ ∈ (0, 1), and so, (x, 2x − x̂) ∩ C = ∅. This means that
x /∈ intC. Thus, we have

{x ∈ R
n | G(x) ∩ R+ = {0}} ⊂ C \ intC.

(iv) Suppose that x̄ ∈ C ∩ int domG, 0 ∈ G(x̄) and (x̄, 0) /∈ int epiG. Then
from the proof of Proposition 2.1, we can check that there exist ã ∈ Rn and b̃ > 0
such that for any (x, y) ∈ cone(epiG − (x̄, 0)),

ãTx + b̃y >= 0.(3.6)
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Let ȳ ∈ G(x̄) be any point in R. Then for any α >= 0, (x̄, ȳ + α) ∈ epiG, that is,
(0, ȳ + α) ∈ epiG − (x̄, 0). Thus from (3.6), b̃(ȳ + α) >= 0 for any α >= 0. Since
b̃ > 0, ȳ >= 0. This means that G(x̄) ∩ (−intR+) = ∅. So, by (i), x̄ /∈ intC. Since
0 ∈ G(x̄), x̄ ∈ C. Thus x̄ ∈ C \ intC.

Proposition 3.2. Let G : Rn ⇒ R be a upper semicontinuous and convex set-
valued map. Let x̄ ∈ int domG and 0 ∈ G(x̄), and assume that (x̄, 0) /∈ int epiG.
Let C = {x ∈ Rn | G(x) ∩ (−R+) �= ∅} and suppose that Slater condition holds.
Then NC(x̄) = cone ∂G(x̄; 0).

Proof. Since G is upper semicontinuous and convex, then C is a closed and
convex subset of R

n. If v ∈ ∂G(x̄; 0), then for any x ∈ domG and any y ∈ G(x),
vT (x − x̄) <= y. So, for any x ∈ C, vT (x − x̄) <= 0. Hence, ∂G(x̄; 0) ⊂ NC(x̄).
Since NC(x̄) is a convex cone,

cone ∂G(x̄; 0) ⊂ NC(x̄).(3.7)

By Slater condition, 0 �∈ ∂G(x̄; 0) and hence it follows from definition of ∂G(x̄; 0)
and the fact that DG(x̄; 0)(0) = 0 that {v ∈ R

n | DG(x̄; 0)(v) < 0} �= ∅. Let
K = cone(C − x̄). Then NC(x̄) = K0, where K0 is the nonpositive dual cone of
K. If DG(x̄; 0)(v) < 0, then v �= 0, and so, it follows from definition of DG(x̄; 0)
that there exist λn > 0 and xn ∈ C, n ∈ N, such that v = lim

n→∞λn(xn − x̄) and
so, v ∈ K. Thus {v ∈ R

n | DG(x̄; 0)(v) < 0} ⊂ K. Moreover, from Proposition
2.1, DG(x̄; 0)(·) is sublinear and continuous, and so,

{v ∈ R
n | DG(x̄; 0)(v) <= 0} ⊂ K.(3.8)

Noticing that DG(x̄; 0)(v) = sup
y∈∂G(x̄;0)

yT v, we get

{v ∈ R
n | DG(x̄; 0)(v) <= 0} = (∂G(x̄; 0))0.(3.9)

Moreover, since ∂G(x̄; 0) is compact and 0 �∈ ∂G(x̄; 0),

cone ∂G(x̄; 0) = cone ∂G(x̄; 0).(3.10)

So, from (3.8)-(3.10), K0 ⊂ cone∂G(x̄; 0), i.e., NC(x̄) ⊂ cone ∂G(x̄; 0). Hence,
from (3.7), we have

NC(x̄) = cone ∂G(x̄; 0),

as required.

From Corollary 3.3 and Proposition 3.2, we can get the following optimality
theorem for (CSP).
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Theorem 3.3. Let F : R
n ⇒ R be a convex set-valued map and G : R

n ⇒ R

a upper semicontinuous and convex set-valued map and C = {x ∈ R
n | G(x) ∩

(−R+) �= ∅}. Let x̄ ∈ C ∩ int(domF ∩ domG), ȳ ∈ F (x̄) and 0 ∈ G(x̄). Assume
that (x̄, ȳ) �∈ int epiF and (x̄, 0) �∈ int epiG, and suppose that Slater condition
holds. Then (x̄, ȳ) is a solution of (CSP) if and only if there exists λ >= 0 such that

0 ∈ ∂F (x̄; ȳ) + λ∂G(x̄; 0).

4. NECESSARY AND SUFFICIENT ε-OPTIMALITY CONDITIONS

In this section, using the single-valued function Finf induced from the set-valued
map F and defined in Section 2, we obtain theorems describing the ε-subgradient
sum formula for two convex set-valued maps (see Theorems 4.1 and 4.2 below),
and then give necessary and sufficient ε-optimality conditions for Problem (CSP).
First, we establish the following proposition.

Proposition 4.1. Let F 1, F 2 : R
n ⇒ R be set-valued maps, domF 1∩domF 2 �=

∅. Suppose that for any x ∈ domF 1∩domF 2, F 1
inf(x) > −∞ and F 2

inf(x) > −∞.
Then

(F 1 + F 2)∗ = (F 1
inf + F 2

inf)
∗.

Proof. Let us take an arbitrary v ∈ R
n. For x ∈ domF1 ∩ domF 2,

vT x−(F 1
inf(x)+F 2

inf(x))>=vTx−(y1+y2), for any y1∈F 1(x) and any y2∈F 2(x).

Hence,

sup
x∈domF 1∩domF 2

{vTx−(F 1
inf(x)+F 2

inf(x))} >= sup
x∈domF 1∩domF 2

{vTx−(F 1+F 2)(x)}.

So,
(F 1

inf + F 2
inf)

∗(v) >= (F 1 + F 2)∗(v).

For each ε > 0 and each x ∈ domF1 ∩ domF 2, by the definition of F1
inf and F 2

inf ,
we can find y1 ∈ F 1(x) and y2 ∈ F 2(x) such thatF 1

inf(x) +
ε

2
> y1

F 2
inf(x) +

ε

2
> y2.

This shows that

vTx − (F 1
inf + F 2

inf)(x)− ε < vTx − (y1 + y2)

<= sup
x∈domF 1∩domF 2

{vTx − (y1 + y2) | y1∈F 1(x), y2∈F 2(x)}.
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Hence,

sup
x∈domF 1∩domF 2

{vTx−(F 1
inf+F 2

inf)(x)}−ε <= sup
x∈domF 1∩domF 2

{vTx−(F 1+F 2)(x)}.

Since ε is arbitrary, we have

(F 1
inf + F 2

inf)
∗(v) <= (F 1 + F 2)∗(v).

Therefore, (F1 + F 2)∗ = (F 1
inf + F 2

inf)
∗.

Remark 4.1. Observe that
(i) For any set-valued maps F1, F 2 : Rn ⇒ R,

(F 1 + F 2)∗ = (F̃ 1 + F̃ 2)∗ = (F 1
inf + F 2

inf)
∗.

(ii) For any set-valued maps F : R
n ⇒ R, F ∗ = F̃ ∗ = F ∗

inf .

(Recall that Finf(x) := inf{y | y ∈ F (x)} and F̃ (x) := F (x) ∪ {Finf(x)}).

Theorem 4.1. Let F1, F 2 : Rn ⇒ R be convex set-valued maps such that for
all i = 1, 2, domF i and epiF i

inf are closed, and F i
inf(x) > −∞, for all x ∈ domF i.

Let ε >= 0. If ri domF 1 ∩ ri domF 2 �= ∅, then for all x ∈ domF 1 ∩ domF 2,

∂ε(F̃ 1 + F̃ 2)(x; F 1
inf(x) + F 2

inf(x))

=
⋃

ε1+ε2=ε
ε1,ε2>=0

∂ε1F̃
1(x; F 1

inf(x)) + ∂ε2 F̃
2(x; F 2

inf(x)).(4.1)

Proof. Applying Proposition 2.2, we have that F 1
inf and F 2

inf are proper lower
semicontinuous convex functions. Obviously,

ri domF 1
inf ∩ ri domF 2

inf = ri domF 1 ∩ ri domF 2 �= ∅.

Thus, from Theorem 3.1.1 in [8], it yields that for all x ∈ domF 1
inf ∩ domF 2

inf ,

∂ε(F 1
inf + F 2

inf)(x) =
⋃

ε1+ε2=ε
ε1,ε2>=0

∂ε1F
1
inf(x) + ∂ε2F

2
inf(x).

Using Propositions 2.2 and 2.3, we have the conclusion, as required.

Remark 4.2. Theorem 3.1.1 in [8] is a special case of our Theorem 4.1.
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Theorem 4.2. Let F1, F 2 : R
n ⇒ R be convex set-valued maps such that

domF 1 ∩ domF 2 �= ∅, for all i = 1, 2, domF i and epiF i
inf are closed, and

F i
inf(x) > −∞, for all x ∈ domF i. Then the following statements are equivalent:

(i) (F 1 + F 2)∗ = (F 1)∗ (F 2)∗.
(ii) epi(F 1)∗ + epi(F 2)∗ is closed.

(iii) For any ε ≥ 0 and any x ∈ domF 1 ∩ domF 2,

∂ε(F̃ 1 + F̃ 2)(x; F 1
inf(x) + F 2

inf(x))

=
⋃

ε1+ε2=ε
ε1,ε2>=0

∂ε1F̃
1(x; F 1

inf(x)) + ∂ε2 F̃
2(x; F 2

inf(x)).

Proof. Applying Proposition 2.2, we have that F 1
inf , F

2
inf are proper lower semi-

continuous convex functions. It is easy to verify that

domF 1
inf ∩ domF 2

inf = domF 1 ∩ domF 2 �= ∅.
Thus, from Theorem 1 in [3], it yields that the following statements are equivalent:

(i) (F 1
inf + F 2

inf)
∗ = (F 1

inf)
∗ (F 2

inf)
∗.

(ii) epi(F 1
inf)

∗ + epi(F 2
inf)

∗ is closed.
(iii) For any ε >= 0 and any x ∈ domF1

inf ∩ domF 2
inf ,

∂ε(F 1
inf + F 2

inf)(x) =
⋃

ε1+ε2=ε
ε1,ε2>=0

∂ε1F
1
inf(x) + ∂ε2F

2
inf(x).

To complete the proof, let us apply Remark 4.1 and Propositions 2.2, 2.3 and 4.1
to (i)-(iii) by replacing F1

inf (resp. F 2
inf) of statements (i)-(ii) with F 1 (resp. F 2),

and F 1
inf (resp. F 2

inf) of statements (iii) with F̃ 1 (resp. F̃ 2).

Remark 4.3. Observe that by our approach the main results of this paper are
still correct if we replace R

n by a Banach space X. So, our Theorem 4.2 can be
seen as a generalized version of Theorem 1 of [3].

Remark 4.4. In Theorems 4.1 and 4.2, if in addition that for any x ∈ domF1∩
domF 2, F i

inf(x) ∈ F i(x), i = 1, 2, then the equality (4.1) can be replaced by the
following equality:

∂ε(F 1+F 2)(x; F 1
inf(x)+F 2

inf(x))=
⋃

ε1+ε2=ε
ε1,ε2>=0

∂ε1F
1(x; F 1

inf(x))+∂ε2F
2(x; F 2

inf(x)).
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Applying Theorem 4.1, we can obtain the following necessary and sufficient
ε-optimality condition for Problem (CSP).

Theorem 4.3. Let F : R
n ⇒ R be a convex set-valued maps such that domF

and epiFinf are closed, and Finf(x) > −∞, for any x ∈ domF and such that
domF i and epiF i

inf are closed, i = 1, 2. Let C be a closed convex subset of X

such that ri C ∩ ri domF �= ∅. Let x̄ ∈ C ∩ int domF, and Finf(x̄) ∈ F (x̄).
Let ε >= 0. Then (x̄, Finf(x̄)) is an ε-solution of (CSP) if and only if there exist
ε1, ε2 >= 0 such that ε1 + ε2 = ε, and

0 ∈ ∂ε1F (x̄; Finf(x̄)) + N ε2
C (x̄).

Proof. Observe that (x̄; Finf(x̄)) is an ε-solution of (CSP) if and only if

0 ∈ ∂ε(F + δ̃C)(x̄; Finf(x̄)).

Hence, apply Theorem 4.1 setting F1 = F, F 2 = δ̃C and applying Theorem 4.1,
we obtain that (x̄, Finf(x̄)) is an ε-solution of (CSP) if and only if

0 ∈
⋃

ε1+ε2=ε
ε1,ε2>=0

∂ε1F (x̄; Finf(x̄)) + ∂ε2 δ̃C(x̄, 0),

i.e., there exist ε1, ε2 >= 0 such that ε1 + ε2 = ε, and

0 ∈ ∂ε1F (x̄; Finf(x̄)) + N ε2
C (x̄).

Applying Theorem 4.2 to F1 = δ̃C1 , F 2 = δ̃C2 , where C1, C2 are closed convex
sets, we have the following result about the ε-normal cone N ε

C1∩C2
(x).

Corollary 4.1. Let C1 and C2 be closed convex subsets of X such that C1 ∩
C2 �= ∅. Then, the set epiδ∗C1

+ epiδ∗C2
is closed if and only if for each ε >= 0 and

each x ∈ C1 ∩ C2,

N ε
C1∩C2

(x) =
⋃

ε1+ε2=ε
ε1,ε2>=0

N ε1
C1

(x) + N ε2
C2

(x).

Now let us consider the following problem (C̃SP)

(C̃SP) Minimize F (x)
subject to x ∈ C := C1 ∩ C2
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where F : R
n ⇒ R is a convex set-valued maps, Gi : R

n ⇒ R are upper semicon-
tinuous and convex set-valued maps, Ci = {x ∈ R

n | Gi(x)∩(−R+) �= ∅}, i = 1, 2
are closed convex subsets of R

n and C �= ∅.
Now we give a necessary and sufficient condition for (C̃SP).

Theorem 4.4. Let x̄ ∈ int domF ∩ int domG1 ∩ int domG2 and ȳ ∈ F (x̄)
such that (x̄, ȳ) �∈ int epiF , 0 ∈ Gi(x̄), (x̄, 0) �∈ int epiGi, i = 1, 2. Assume that
the set epiδ∗C1

+epiδ∗C2
is closed, and for each i ∈ I, there exists x̂ ∈ R

n such that

Gi(x̂) ∩ (−intR+) �= ∅.

Then, (x̄, ȳ) is a solution of (C̃SP) if and only if there exist λ1, λ2 >= 0 such that

0 ∈ ∂F (x̄; ȳ) + λ1∂G1(x̄; 0) + λ2∂G2(x̄; 0).

Proof. Using Theorem 3.3, we have that (x̄, ȳ) is a solution of Problem (C̃SP)
if and only if

0 ∈ ∂F (x̄; ȳ) + NC(x̄).(4.2)

By Corollary 4.1, (4.2) is equivalent to

0 ∈ ∂F (x̄; ȳ) + NC1(x̄) + NC2(x̄).

From Proposition 3.2, this means that

0 ∈ ∂F (x̄; ȳ) + cone ∂G1(x̄; 0) + cone ∂G2(x̄; 0),

i.e., there exist λ1, λ2 >= 0 such that

0 ∈ ∂F (x̄; ȳ) + λ1∂G1(x̄; 0) + λ2∂G2(x̄; 0).

Thus the proof is completed.

Let us now consider the following theorem which will provide a relation between
the ε-solution set of Problem (CSP) and the ε-solution set of the following auxiliary
Problem (CSP)′

(CSP)′ Minimize Finf(x)
subject to x ∈ C.
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Theorem 4.5. If inf
x′∈C∩domF

F (x′) is finite, then

ε−sol(CSP) = {(x, y) | x ∈ ε−sol(CSP)′, y ∈ F (x)} ∩ {(x, y) | y − ε

<= inf
x′∈C∩domF

F (x′)},

where ε−sol(CSP) and ε−sol(CSP)′ are the set of all ε-solutions of (CSP) and
(CSP)′, respectively.

Proof. Let us set E := {(x, y) | y − ε <= inf
x′∈C∩domF

F (x′)}. For (x̄, ȳ) ∈
ε−sol(CSP),

x̄ ∈ C, ȳ ∈ F (x̄) and for any x ∈ C ∩ domF and any y ∈ F (x), ȳ − ε <= y.

Then

x̄ ∈ C, ȳ ∈ F (x̄) and for any x ∈ C ∩ domF, Finf(x̄) − ε <= ȳ − ε <= Finf(x)

ȳ − ε <= inf
x∈C∩domF

F (x).

Since x̄ ∈ ε−sol(CSP)′, ȳ ∈ F (x̄) and (x̄, ȳ) ∈ E . Therefore, we have

(x̄, ȳ) ∈ {(x, y) | x ∈ ε−sol(CSP)′, y ∈ F (x)} ∩ E.

For (x̄, ȳ) ∈ {(x, y) | x ∈ ε−sol(CSP)′, y ∈ F (x)} ∩ E, we have that x̄ ∈ C,
ȳ ∈ F (x̄) such that for all x ∈ C ∩ domF,{

Finf(x̄) − ε <= Finf(x)
ȳ − ε <= F (x).

This implies that x̄ ∈ C, ȳ ∈ F (x̄) such that for any x ∈ C ∩ domF, and any
y ∈ F (x), we have ȳ − ε <= y. Therefore, (x̄, ȳ) ∈ ε−sol(CSP), and hence,

ε−sol(CSP) = {(x, y) | x ∈ ε−sol(CSP)′, y ∈ F (x)} ∩ {(x, y) | y − ε

<= inf
x∈C∩domF

F (x)}.

Now we give an example to illustrate Theorems 4.3 and 4.5.

Example 4.1. Let F : R ⇒ R, F (x) = x2 + R+, C = (−∞, 0]. Consider the
following problem:
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(CSP) Minimize F (x)
subject to x ∈ C.

Let us establish the auxiliary problem (CSP)′ :

(CSP)′ Minimize Finf(x)
subject to x ∈ C,

where Finf(x) = x2, for any x ∈ R. For each ε >= 0, we have that

∂εFinf(x̄) =

{[−2
√

ε, 2
√

ε
]

if x̄ = 0[
2(x̄ −√

ε), 2(x̄ +
√

ε)
]

if x̄ < 0,

N ε
C(x̄) =

{
[0, +∞) if x̄ = 0[
0,− ε

x̄

]
if x̄ < 0.

Observe that from Theorem 4.3, x̄ ∈ C is an ε-solution of (CSP)′ if and only if

0 ∈
⋃

ε1+ε2=ε
ε1,ε2>=0

∂ε1Finf(x̄) + N ε2
C (x̄).

This means that there exists ε1, ε2 >= 0, ε1 + ε2 = ε such that

0 ∈ ∂ε1Finf(x̄) + N ε2
C (x̄),

or equivalently,

∂ε1Finf(x̄) ∩−N ε2
C (x̄) �= ∅.(4.3)

Let ε >= 0. Now we will find the ε-sol(CSP)′.

Case I. x̄ = 0 ∈ C. Taking ε1 = ε, ε2 = 0, we have that (4.3) holds. So,
0 ∈ ε-sol(CSP)′.

Case II. x̄ ∈ [−√
ε, 0) ⊂ C. Taking ε1 = ε, ε2 = 0, by x̄ +

√
ε >= 0, we have

0 ∈ [2(x̄−√
ε), 2(x̄ +

√
ε)] = ∂εFinf(x̄) + NC(x̄).

This shows that [−√
ε, 0) ⊂ ε − sol(CSP)′.

Case III. x̄ ∈ (−∞,−√
ε) ⊂ C. We will prove that x̄ �∈ ε-sol(CSP)′, i.e., for

any ε1, ε2 >= 0, ε1 + ε2 = ε, we have

[2(x̄−√
ε1), 2(x̄ +

√
ε1)] ∩

[ε2
x̄

, 0
]

= ∅.(4.4)



1808 Gue Myung Lee and Le Anh Tuan

In the other words,

2(x̄ +
√

ε1) <
ε2
x̄

⇐⇒ 2x̄2 + 2x̄
√

ε1 − ε2 > 0

⇐⇒
[
x̄ <

−√
ε1−

√
ε1+2ε2

2 = −√
ε−ε2−

√
ε+ε2

2

x̄ >
−√

ε1+
√

ε1+2ε2
2

>=
−√

ε1+
√

ε2
2 = 0

⇐⇒ x̄ <
−√

ε − ε2 −
√

ε + ε2
2

(by x̄ ∈ C = (−∞, 0]).

By the Schwartz inequality,

(
√

ε − ε2 +
√

ε + ε2)2 <= (12 + 12)(ε − ε2 + ε + ε2) = 4ε,

or, equivalently,
√

ε − ε2 +
√

ε + ε2
2

<=
√

ε.(4.5)

In inequality (4.5) the symbol “=” is appeared if and only if
√

ε − ε2 =
√

ε + ε2 ⇐⇒ ε2 = 0.

Hence,
(i) If ε2 = 0, then it is clear that (4.4) holds.
(ii) If ε2 > 0, then we have that

−√
ε − ε2 −

√
ε + ε2

2
> −√

ε > x̄.

This shows that (4.4) also holds. Therefore, ε−sol(CSP)′ = [−√
ε, 0] and sol(CSP)′

= {0}. So, inf
x∈C

⋃
F (x) = inf

x∈C
Finf(x) = Finf(0) = 0. Then, by Theorem 4.5, the

ε-solution set of (CSP) is established as follows:

ε-sol (CSP) = {(x, y) | x ∈ ε-sol(CSP)′, y ∈ F (x)} ∩ R × {y| y − ε <= 0}
= {(x, y) | x ∈ [−√

ε, 0], y ∈ F (x)} ∩ R × {y| y <= ε}
= {(x, y) | x ∈ [−√

ε, 0], y ∈ [x2, ε]}.

Remark 4.5. In Example 4.1 if F is replaced by the set-valued map defined
by F (x) = x2 + int R+, then it is worth noticing that although the solution set
of Problem (CSP) is empty, for each ε > 0 the ε-solution set of Problem (CSP) is
nonempty. Using our approach, we can see that

ε-sol (CSP) = {(x, y) | x ∈ [−√ε, 0], y ∈ (x2, ε]}.
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