ON ϵ-OPTIMALITY CONDITIONS FOR CONVEX SET-VALUED OPTIMIZATION PROBLEMS

Gue Myung Lee and Le Anh Tuan
Dedicated to Professor Boris Mordukhovich in celebration of his 60th birthday

Abstract

In this paper, ϵ-subgradients for convex set-valued maps are defined. We prove an existence theorem for ϵ-subgradients of convex set-valued maps. Also, we give necessary ϵ - optimality conditions for an ϵ-solution of a convex set-valued optimization problem (CSP). Moreover, using the single-valued function induced from the set-valued map, we obtain theorems describing the ϵ-subgradient sum formula for two convex set-valued maps, and then give necessary and sufficient ϵ-optimality conditions for the problem (CSP).

1. Introduction

Recently, there have been intensive researches for set-valued optimization problems ($[1,2,4-7,10,13,17]$), which consist of set-valued maps and sets. To get optimality conditions for solutions of set-valued optimization problems, we need generalized derivatives (epiderivatives) for set-valued maps and so, most of researchers have used contingent derivatives (epiderivatives) which are defined by contigent cones.

From computational view, most of algorithms give us ϵ-solutions (approximate solutions) of optimization problems. Thus many researchers have studied optimality conditions for ϵ-solutions for scalar optimization problems and vector optimization problems ([8, 11, 12, 14, 15, 18, 19]). However, there are very little results for optimality conditions for ϵ-solution (approximate solution) of set-valued optimization problems. Moreover, it seems that contigent derivatives (epiderivatives) are not

[^0]suitable for getting optimality conditions for ϵ-solutions of set-valued optimization problems.

The purpose of this paper is to define ϵ-subgradients for set-valued maps with the closed convex cones generated by their epigraphs and to establish optimality conditions for ϵ-solutions of a convex set-valued optimization.

Now we recall some notations and preliminary results, which will be used throughout the paper.

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{+\infty\}$ be a proper convex function. Then for $\epsilon \geqq 0$, the ϵ-subgradient of f at $\bar{x} \in \operatorname{dom} f$ is defined as the set

$$
\partial_{\epsilon} f(\bar{x}):=\left\{v \in \mathbb{R}^{n} \mid f(x) \geqq f(\bar{x})+v^{T}(x-\bar{x})-\epsilon \text { for any } x \in \operatorname{dom} f\right\}
$$

where the effective domain of $f, \operatorname{dom} f$, is given by

$$
\operatorname{dom} f:=\left\{x \in \mathbb{R}^{n} \mid f(x)<+\infty\right\}
$$

When $\epsilon=0, \partial_{0} f(\bar{x})$ is denoted by $\partial f(\bar{x})$ and is called the subgradient of f at \bar{x} (see $[8,9,16]$). We define the indicator function of a convex subset C of \mathbb{R}^{n} as follows:

$$
\delta_{C}(x)=\left\{\begin{array}{cc}
0 & \text { if } \\
+\infty \in C \\
\text { if } & x \notin C
\end{array}\right.
$$

Hence, if $\bar{x} \in C$ and $\epsilon \geqq 0$, then

$$
\partial_{\epsilon} \delta_{C}(\bar{x})=\left\{v \in \mathbb{R}^{n} \mid v^{T}(x-\bar{x}) \leqq \epsilon \text { for any } x \in C\right\}
$$

We denote $\partial_{\epsilon} \delta_{C}(x)$ by $N_{C}^{\epsilon}(\bar{x})$, which is called the ϵ-normal set of C at \bar{x}. When $\epsilon=0, \partial \delta_{C}(\bar{x})=\partial_{0} \delta_{C}(\bar{x})=\left\{v \in \mathbb{R}^{n} \mid v^{T}(x-\bar{x}) \leqq 0\right.$ for any $\left.x \in C\right\}$. We denote $\partial \delta_{C}(\bar{x})$ by $N_{C}(\bar{x})$, which is called the normal cone of C at \bar{x}. If C is a closed convex cone in \mathbb{R}^{n}, then for any $\epsilon \geqq 0$,

$$
N_{C}^{\epsilon}(0)=N_{C}(0)
$$

Let $F: \mathbb{R}^{n} \rightrightarrows \mathbb{R}$ be a set-valued map. The domain of F, $\operatorname{dom} F$, and the epigraph of F, epi F, are defined as follows:

```
\(\operatorname{dom} F:=\left\{x \in \mathbb{R}^{n} \mid F(x) \neq \emptyset\right\}\),
epi \(F:=\left\{(x, y+\alpha) \in \mathbb{R}^{n} \times \mathbb{R} \mid x \in \operatorname{dom} F, y \in F(x), \alpha \geqq 0\right\}\).
```

Definition 1.1. A set-valued map $F: \mathbb{R}^{n} \rightrightarrows \mathbb{R}$ is said to be convex if for any $x, y \in \mathbb{R}^{n}$ and any $\lambda \in[0,1]$,

$$
\lambda F(x)+(1-\lambda) F(y) \subset F(\lambda x+(1-\lambda) y)+\mathbb{R}_{+}
$$

where $\mathbb{R}_{+}=\{r \in \mathbb{R} \mid r \geqq 0\}$ (\mathbb{R}_{+}is called the nonnegative real half-line).

Obviously, a convex function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is also a convex set-valued map.
If $F: \mathbb{R}^{n} \rightrightarrows \mathbb{R}$ is a convex set-valued map, then epi F is a convex subset of \mathbb{R}^{n+1} (see Lemma 1 in [10]). The cone generated by a nonempty subset M of \mathbb{R}^{n+1} is denoted by

$$
\operatorname{cone}(M):=\{\lambda x \mid \lambda \geqq 0, x \in M\}
$$

and the closure of cone (M) is denoted by $\overline{\text { cone }}(M)$.
Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be a function. Recall that the conjugate function of f, $f^{*}: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{-\infty,+\infty\}$ defined by for any $v \in \mathbb{R}^{n}$

$$
f^{*}(v)=\sup \left\{v^{T} x-f(x) \mid x \in \mathbb{R}^{n}\right\}
$$

Similarly, for a set-valued map $F: \mathbb{R}^{n} \rightrightarrows \mathbb{R}$, we define the conjugate function of $F, F^{*}: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{-\infty,+\infty\}$ by for any $v \in \mathbb{R}^{n}$,

$$
F^{*}(v)=\sup \left\{v^{T} x-y \mid x \in \mathbb{R}^{n}, y \in F(x)\right\}
$$

For the proper lower semicontinuous convex functions $f_{1}, f_{2}: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{+\infty\}$, the infimal convolution of f_{1} with f_{2} is denoted by $f_{1} \square f_{2}: \mathbb{R}^{n} \rightarrow \mathbb{R} \cup\{-\infty,+\infty\}$, and is defined by

$$
\left(f_{1} \square f_{2}\right)(x)=\inf _{x_{1}+x_{2}=x}\left\{f_{1}\left(x_{1}\right)+f_{2}\left(x_{2}\right)\right\}
$$

Definition 1.2. Let $F: \mathbb{R}^{n} \rightrightarrows \mathbb{R}$ be a convex set-valued map, and $\bar{x} \in \operatorname{dom} F$ and $\bar{y} \in F(\bar{x})$. Let $\epsilon \geqq 0$. Define, for any $x \in \mathbb{R}^{n}$,

$$
\begin{aligned}
& D_{\epsilon} F(\bar{x} ; \bar{y})(x):=\inf \{\lambda \mid(x, \lambda) \in \overline{\operatorname{cone}}[\operatorname{epi} F-(\bar{x}, \bar{y}-\epsilon)]\} \\
& \partial_{\epsilon} F(\bar{x} ; \bar{y}):=\left\{v \in \mathbb{R}^{n} \mid D_{\epsilon} F(\bar{x} ; \bar{y})(x) \geqq D_{\epsilon} F(\bar{x} ; \bar{y})(0)+v^{T} x \text { for any } x \in \mathbb{R}^{n}\right\}
\end{aligned}
$$

If $x \notin \operatorname{Pr}_{\mathbb{R}^{n}} \overline{\text { cone }}[\mathrm{epi} F-(\bar{x}, \bar{y}-\epsilon)]$, where Pr is the projection onto \mathbb{R}^{n}, then we let $D_{\epsilon} F(\bar{x} ; \bar{y})(x)=+\infty$. We say that $D_{\epsilon} F(\bar{x} ; \bar{y})$ is the radial ϵ-epiderivative of F at (\bar{x}, \bar{y}) and that $\partial_{\epsilon} F(\bar{x} ; \bar{y})$ is the ϵ-subgradient of F at (\bar{x}, \bar{y}). Moreover, we denote $D_{0} F(\bar{x} ; \bar{y})$ by $D F(\bar{x} ; \bar{y})$, and $\partial_{0} F(\bar{x} ; \bar{y})$ by $\partial F(\bar{x} ; \bar{y})$. We say that $D F(\bar{x} ; \bar{y})$ is the radial epiderivative of F at (\bar{x}, \bar{y}) (see [6] for the definition of the radial epiderivative) and that $\partial F(\bar{x} ; \bar{y})$ is the subgradient of F at (\bar{x}, \bar{y}).

Now we give the set-valued version of the indicator function δ_{C} as follows:

$$
\widetilde{\delta}_{C}(x)=\left\{\begin{array}{cc}
\{0\} & \text { if } x \in C \\
\emptyset & \text { if } x \notin C
\end{array}\right.
$$

Then we can check that if $\bar{x} \in C$ and $\epsilon \geqq 0, \partial_{\epsilon} \widetilde{\delta}_{C}(\bar{x} ; 0)=N_{C}^{\epsilon}(\bar{x})$. Indeed, let $\bar{x} \in C$. Clearly, $D_{\epsilon} \widetilde{\delta}_{C}(\bar{x} ; 0)(0) \leqq 0$. Moreover, we can easily check that $0 \leqq D_{\epsilon} \widetilde{\delta}_{C}(\bar{x} ; 0)(0)$.

So, $D_{\epsilon} \widetilde{\delta}_{C}(\bar{x} ; 0)(0)=0$. Notice that $v \in \partial_{\epsilon} \tilde{\delta}_{C}(\bar{x} ; 0)$ if and only if for any $x \in \mathbb{R}^{n}$, $D_{\epsilon} \widetilde{\delta}_{C}(\bar{x} ; 0)(x) \geqq v^{T} x$. Since epi $D_{\epsilon} \widetilde{\delta}_{C}(\bar{x} ; 0)=\overline{\operatorname{cone}}\left(C \times \mathbb{R}_{+}-(\bar{x},-\epsilon)\right), v \in$ $\partial_{\epsilon} \widetilde{\delta}_{C}(\bar{x} ; 0)$ if and only if for any $(x, \alpha) \in C \times \mathbb{R}_{+}-(\bar{x},-\epsilon)$,

$$
(v,-1)^{T}(x, \alpha) \leqq 0
$$

Thus, $v \in \partial_{\epsilon} \widetilde{\delta}_{C}(\bar{x} ; 0)$ if and only if for any $x \in C$ and any $\alpha \geqq 0$,

$$
v^{T}(x-\bar{x}) \leqq \alpha+\epsilon
$$

Hence, $\partial_{\epsilon} \widetilde{\delta}_{C}(\bar{x} ; 0)=N_{C}^{\epsilon}(\bar{x})$.
Using the above argument used for proving that $\partial_{\epsilon} \widetilde{\delta}_{C}(\bar{x} ; 0)=N_{C}^{\epsilon}(\bar{x})$, we can prove that if F is a single-valued map, then $\partial_{\epsilon} F(\bar{x} ; \bar{y})$ becomes the usual ϵ-subgradient $\partial_{\epsilon} F(\bar{x})$ at \bar{x}.

In this paper, we consider the following convex set-valued optimization problem:

(CSP)	Minimize	$F(x)$
	subject to	$x \in C$,

where $F: \mathbb{R}^{n} \rightrightarrows \mathbb{R}$ is a convex set-valued map and C is a nonempty closed convex subset of \mathbb{R}^{n}. Let $\epsilon \geqq 0, \bar{x} \in C$ and $\bar{y} \in F(\bar{x})$. Then (\bar{x}, \bar{y}) is said to be an ϵ-solution of (CSP) if for any $x \in C \cap \operatorname{dom} F$ and any $y \in F(x)$,

$$
\bar{y}-\epsilon \leqq y
$$

and (\bar{x}, \bar{y}) is called a solution of (CSP) if for any $x \in C \cap \operatorname{dom} F$ and any $y \in F(x)$,

$$
\bar{y} \leqq y
$$

This paper is organized as follows. In Section 2, we prove existence theorems for ϵ-subgradients of convex set-valued maps. We give a necessary optimality condition for an ϵ-solution of Problem (CSP) in Section 3 and introduce necessary and sufficient ϵ-optimality conditions for an ϵ-solution of (CSP) in Section 4. In particular, the ϵ-solution set of (CSP) is characterized at Theorem 4.5 in Section 4.

2. Existence of ϵ-Subgradients

In this section, we prove propositions which tell about the existence for ϵ subgradients of convex set-valued maps.

Proposition 2.1. Let $F: \mathbb{R}^{n} \rightrightarrows \mathbb{R}$ be a convex set-valued map. Let $\epsilon \geqq 0$, and $\bar{x} \in \operatorname{int} \operatorname{dom} F$ and $\bar{y} \in F(\bar{x})$. Assume that $(\bar{x}, \bar{y}-\epsilon) \notin \operatorname{int} \mathrm{epi} F$. Then we have,
(i) $D_{\epsilon} F(\bar{x} ; \bar{y}): \mathbb{R}^{n} \rightarrow \mathbb{R}$ is finite-valued, and sublinear, that is, for any $x, y \in$ \mathbb{R}^{n},

$$
D_{\epsilon} F(\bar{x} ; \bar{y})(x+y) \leqq D_{\epsilon} F(\bar{x} ; \bar{y})(x)+D_{\epsilon} F(\bar{x} ; \bar{y})(y)
$$

and for any $x \in \mathbb{R}^{n}$ and any $\alpha \geqq 0, D_{\epsilon} F(\bar{x} ; \bar{y})(\alpha x)=\alpha D_{\epsilon} F(\bar{x} ; \bar{y})(x)$.
(ii) $\partial_{\epsilon} F(\bar{x} ; \bar{y})$ is a nonempty convex compact subset of \mathbb{R}^{n}.

Proof. Since $(\bar{x}, \bar{y}-\epsilon) \notin \operatorname{int} \operatorname{epi} F,(0,0) \notin \operatorname{int} \operatorname{epi} F-(\bar{x}, \bar{y}-\epsilon)$. Let $\Omega:=\operatorname{epi} F-(\bar{x}, \bar{y}-\epsilon)$. From the convexity of the set int epi $F-(\bar{x}, \bar{y}-\epsilon)$ and from separation theorem, there exists $(a, b) \in \mathbb{R}^{n} \times \mathbb{R},(a, b) \neq(0,0)$ such that for any $(x, y) \in \Omega, \quad a^{T} x+b y \geqq 0$, and hence for any $(x, y) \in \overline{\operatorname{cone}}(\Omega)$,

$$
\begin{equation*}
a^{T} x+b y \geqq 0 . \tag{2.1}
\end{equation*}
$$

If $b=0$, then $a^{T} x \geqq 0$ for any $x \in \operatorname{Pr}_{\mathbb{R}^{n}} \overline{\operatorname{cone}}(\Omega)$. This shows that $a^{T} x \geqq 0$ for any $x \in \operatorname{dom} F-\bar{x}$, and hence

$$
\begin{equation*}
a^{T}(x-\bar{x}) \geqq 0 \text { for any } x \in \operatorname{dom} F \text {. } \tag{2.2}
\end{equation*}
$$

Since $\bar{x} \in \operatorname{int} \operatorname{dom} F$, we can find $\delta>0$ such that $\bar{x}+B_{\delta}(0) \subset \operatorname{dom} F$, where $B_{\delta}(0)=\left\{x \in \mathbb{R}^{n} \mid\|x\|<\delta\right\}$. Thus, from (2.2), for any $x \in B_{\delta}(0), a^{T} x \geqq 0$ and so, $a=0$. Therefore, $b \neq 0$. Moreover, for any $r \geqq 0,(0, r+\epsilon)=(\bar{x}, \bar{y}+$ $r)-(\bar{x}, \bar{y}-\epsilon) \in \Omega$. From (2.1), $b>0$, and hence for any $(x, y) \in \overline{\text { cone }}(\Omega)$, $y \geqq-\frac{1}{b} a^{T} x$. This means that for any $x \in \operatorname{Pr}_{\mathbb{R}^{n}} \overline{\operatorname{cone}}(\Omega), D_{\epsilon} F(\bar{x}, \bar{y})(x) \geqq-\frac{1}{b} a^{T} x$. Since $\bar{x} \in$ int dom F, we can check that for any $x \in \mathbb{R}^{n}$,

$$
D_{\epsilon} F(\bar{x} ; \bar{y})(x) \geqq-\frac{1}{b} a^{T} x .
$$

Moreover, we can easily check that

$$
\operatorname{epi} D_{\epsilon} F(\bar{x} ; \bar{y})=\overline{\operatorname{cone}}(\Omega) .
$$

This means that $D_{\epsilon} F(\bar{x} ; \bar{y})$ is sublinear. Thus the function $D_{\epsilon} F(\bar{x} ; \bar{y}): \mathbb{R}^{n} \rightarrow \mathbb{R}$ is finite-valued and sublinear. Since $\partial_{\epsilon} F(\bar{x} ; \bar{y})=\partial D_{\epsilon} F(\bar{x} ; \bar{y})(0), \partial_{\epsilon} F(\bar{x}, \bar{y})$ is a nonempty compact convex set (see [16]).

Remark 2.1. Observe that by Proposition 2.1, for any $x \in \mathbb{R}^{n}, D_{\epsilon} F(\bar{x} ; \bar{y})(0)=$ 0 and $D_{\epsilon} F(\bar{x} ; \bar{y})(x)>-\infty$ and so, $D_{\epsilon} F(\bar{x} ; \bar{y})$ is proper and sublinear. Moreover, since $\partial_{\epsilon} F(\bar{x} ; \bar{y})=\partial D_{\epsilon} F(\bar{x} ; \bar{y})(0), v \in \partial_{\epsilon} F(\bar{x} ; \bar{y})$ if and only if for any $x \in \mathbb{R}^{n}$, $D_{\epsilon} F(\bar{x} ; \bar{y})(x) \geqq v^{T} x$. Thus we can easily check that $v \in \partial_{\epsilon} F(\bar{x} ; \bar{y})$ if and only if for any $(x, \lambda) \in \operatorname{epi} F-(\bar{x}, \bar{y}-\epsilon), v^{T} x \leqq \lambda$. This shows that (\bar{x}, \bar{y}) is an ϵ-solution of (CSP) in the case $C=\mathbb{R}^{n}$ if and only if $0 \in \partial_{\epsilon} F(\bar{x} ; \bar{y})$.

Let $F: \mathbb{R}^{n} \rightrightarrows \mathbb{R}$ is a set-valued map. Let us define $F_{\text {inf }}(x):=\inf \{y \mid y \in$ $F(x)\}$ if $x \in \operatorname{dom} F$ and $F_{\text {inf }}(x)=+\infty$ if $x \notin \operatorname{dom} F$, and $F(x):=F(x) \cup$ $\left\{F_{\text {inf }}(x)\right\}$ for all $x \in \mathbb{R}^{n}$.

Proposition 2.2. Let $F: \mathbb{R}^{n} \rightrightarrows \mathbb{R}$ be a convex set-valued map.
(i) If $F_{\text {inf }}(x)>-\infty$ for all $x \in \operatorname{dom} F$, then $F_{\text {inf }}$ is a proper convex function. If we assume furthermore that $\operatorname{dom} F$ and $\mathrm{epi} F_{\mathrm{inf}}$ are closed, then F_{inf} is lower semicontinuous on \mathbb{R}^{n}.
(ii) For any $\epsilon \geqq 0$, and any $\bar{x} \in \operatorname{int} \operatorname{dom} F, \partial_{\epsilon} \widetilde{F}\left(\bar{x} ; F_{\text {inf }}(\bar{x})\right) \neq \emptyset$ and

$$
\partial_{\epsilon} \widetilde{F}\left(\bar{x} ; F_{\text {inf }}(\bar{x})\right)=\partial_{\epsilon} F_{\text {inf }}(\bar{x}) .
$$

If in addition that $F_{\inf }(x) \in F(x)$ for all $x \in \operatorname{dom} F$, then for any $\epsilon \geqq 0$, and any $\bar{x} \in \operatorname{int} \operatorname{dom} F$,

$$
\partial_{\epsilon} F\left(\bar{x} ; F_{\text {inf }}(\bar{x})\right)=\partial_{\epsilon} F_{\inf }(\bar{x}) .
$$

Proof. (i) Obviously, we only need to prove that $F_{\text {inf }}$ is a convex function on $\operatorname{dom} F$. Assume to the contrary that there exist $x_{1}, x_{2} \in \operatorname{dom} F$ and $\lambda \in(0,1)$ such that

$$
\begin{equation*}
F_{\inf }\left(x_{\lambda}\right)>\lambda F_{\inf }\left(x_{1}\right)+(1-\lambda) F_{\inf }\left(x_{2}\right), \tag{2.3}
\end{equation*}
$$

where $x_{\lambda}=\lambda x_{1}+(1-\lambda) x_{2}$. Let us choose δ such that $0<\delta<F_{\text {inf }}\left(x_{\lambda}\right)-$ $\left(\lambda F_{\text {inf }}\left(x_{1}\right)+(1-\lambda) F_{\text {inf }}\left(x_{2}\right)\right)$. By the definitions of $F_{\text {inf }}\left(x_{1}\right)$ and $F_{\text {inf }}\left(x_{2}\right)$, we can find $y_{1} \in F_{\text {inf }}\left(x_{1}\right), y_{2} \in F_{\text {inf }}\left(x_{2}\right)$ such that

$$
\left\{\begin{array}{l}
F_{\text {inf }}\left(x_{1}\right)>y_{1}-\delta \\
F_{\text {inf }}\left(x_{2}\right)>y_{2}-\delta .
\end{array}\right.
$$

From these and from (2.3), it yields

$$
\begin{equation*}
F_{\mathrm{inf}}\left(x_{\lambda}\right)>\lambda\left(y_{1}-\delta\right)+(1-\lambda)\left(y_{2}-\delta\right)+\delta=\lambda y_{1}+(1-\lambda) y_{2}=: y_{\lambda} . \tag{2.4}
\end{equation*}
$$

Observe that epi F is a convex set since F is convex. So,

$$
\left(x_{\lambda}, y_{\lambda}\right)=\lambda\left(x_{1}, y_{1}\right)+(1-\lambda)\left(x_{2}, y_{2}\right) \in \operatorname{epi} F .
$$

This implies that there exist $y \in F\left(x_{\lambda}\right)$ and $r \geqq 0$ such that

$$
y_{\lambda}=y+r \geqq y .
$$

From this and from (2.4), we have

$$
F_{\text {inf }}\left(x_{\lambda}\right)>y .
$$

This is impossible since $F_{\text {inf }}\left(x_{\lambda}\right) \leqq y$, for all $y \in F\left(x_{\lambda}\right)$. Therefore, $F_{\text {inf }}$ is a convex function. Also, it is clear that under given assumptions, $F_{\text {inf }}$ is proper and lower semicontinuous.
(ii) To apply Proposition 2.1 we need to prove that $\left(\bar{x}, F_{\text {inf }}(\bar{x})-\epsilon\right) \notin$ int epi F. Indeed, otherwise that there exists a $\delta>0$ such that

$$
\{\bar{x}\} \times\left(F_{\text {inf }}(\bar{x})-\epsilon-\delta, F_{\text {inf }}(\bar{x})-\epsilon+\delta\right) \subset \operatorname{epi} F .
$$

This means that $\left(F_{\text {inf }}(\bar{x})-\epsilon-\delta, F_{\text {inf }}(\bar{x})-\epsilon+\delta\right) \subset F(\bar{x})+\mathbb{R}_{+}$. Then, for some δ^{\prime} satisfying $0<\delta^{\prime}<\delta$, we can find $y \in F(\bar{x})$ and $r \geqq 0$ such that $F_{\text {inf }}(\bar{x})-\epsilon-\delta^{\prime}=$ $y+r$. So, $F_{\text {inf }}(\bar{x})=y+r+\epsilon+\delta^{\prime}>y$. This contradicts to the definition of $F_{\text {inf }}(\bar{x})$. Therefore, $\left(\bar{x}, F_{\inf }(\bar{x})-\epsilon\right) \notin$ int epi F. Applying Proposition 2.1, we conclude that $\partial_{\epsilon} \widetilde{F}\left(\bar{x} ; F_{\inf }(\bar{x})\right) \neq \emptyset$.

Observe that

$$
\begin{aligned}
v \in \partial_{\epsilon} \widetilde{F}\left(\bar{x} ; F_{\mathrm{inf}}(\bar{x})\right) \Longleftrightarrow & \forall(x, \lambda) \in \operatorname{epi} \widetilde{F}-\left(\bar{x}, F_{\mathrm{inf}}(\bar{x})-\epsilon\right), v^{T} x \leqq \lambda \\
\Longleftrightarrow & \forall x \in \operatorname{dom} \widetilde{F}, \forall y \in \widetilde{F}(x), \forall r \leqq 0 \\
& v^{T}(x-\bar{x}) \leqq y+r-\left(F_{\mathrm{inf}}(\bar{x})-\epsilon\right) \\
\Longleftrightarrow & \forall x \in \operatorname{dom} F, \forall y \in \widetilde{F}(x) \\
& v^{T}(x-\bar{x}) \leqq y-\left(F_{\mathrm{inf}}(\bar{x})-\epsilon\right) \\
\Longleftrightarrow & \forall x \in \operatorname{dom} F, v^{T}(x-\bar{x}) \leqq F_{\mathrm{inf}}(x)-\left(F_{\mathrm{inf}}(\bar{x})-\epsilon\right) \\
\Longleftrightarrow & v \in \partial_{\epsilon} F_{\mathrm{inf}}(\bar{x})
\end{aligned}
$$

Therefore, $\partial_{\epsilon} \widetilde{F}\left(\bar{x}, F_{\inf }(\bar{x})\right)=\partial_{\epsilon} F_{\text {inf }}(\bar{x})$.
Remark 2.2. Observe that if dom F and epi F are closed and if $F_{\text {inf }}>-\infty$ for any $x \in \operatorname{dom} F$, then $F_{\text {inf }}$ is lower semicontinuous. Indeed, we should prove that epi $F_{\text {inf }}$ is closed. Let $\left(x_{n}, \alpha_{n}\right) \in \operatorname{dom} F \times \mathbb{R}$ with $F_{\text {inf }}\left(x_{n}\right) \leqq \alpha_{n}$ and let $\left(x_{n}, \alpha_{n}\right)$ converge to $(\bar{x}, \bar{\alpha})$. Then there exist $\epsilon_{n}>0$ and $y_{n} \in F\left(x_{n}\right)$ such that ϵ_{n} converges to 0 and $F_{\text {inf }}\left(x_{n}\right) \leqq y_{n}<\alpha_{n}+\epsilon_{n}$. Thus $\left(x_{n}, \alpha_{n}+\epsilon_{n}\right) \in \operatorname{epi} F$ converges to $(\bar{x}, \bar{\alpha})$. Since epi F is closed, $(\bar{x}, \bar{\alpha}) \in \operatorname{epi} F$. Hence, $(\bar{x}, \bar{\alpha}) \in \operatorname{epi} F_{\text {inf }}$.

A set-valued map F, which is satisfied all of the conditions: $\operatorname{dom} F$ is closed, $F_{\text {inf }}>-\infty$ for any $x \in \operatorname{dom} F$, and $F_{\text {inf }}$ is lower semicontinuous, may not be satisfied the condition: epi F is closed. Indeed, it is clear that the set-valued map $F: \mathbb{R} \rightrightarrows \mathbb{R}$ defined by $F(x)=x^{2}+\operatorname{int} \mathbb{R}_{+}$for all $x \in \mathbb{R}$, is satisfied all of the previous conditions except the closedness of epi F.

Using the same proof way as the proof of Proposition 2.2(ii), we obtain the following proposition.

Proposition 2.3. Let $F^{1}, F^{2}: \mathbb{R}^{n} \rightrightarrows \mathbb{R}$ be convex such that $\operatorname{dom} F^{1} \cap \operatorname{dom} F^{2} \neq$ \emptyset. Assume that $F_{\mathrm{inf}}^{i}(x)>-\infty$ for all $x \in \operatorname{dom} F^{i}, i=1,2$. Then for all $\epsilon \geqq 0$ and for all $\bar{x} \in \operatorname{int} \operatorname{dom} F^{1} \cap \operatorname{int} \operatorname{dom} F^{2}$, we have

$$
\partial_{\epsilon}\left(\widetilde{F^{1}}+\widetilde{F^{2}}\right)\left(\bar{x} ; F_{\mathrm{inf}}^{1}(\bar{x})+F_{\mathrm{inf}}^{2}(\bar{x})\right)=\partial_{\epsilon}\left(F_{\mathrm{inf}}^{1}+F_{\mathrm{inf}}^{2}\right)(\bar{x})
$$

If in addition that $F_{\mathrm{inf}}^{i}(x) \in F^{i}(x), i=1,2$, for all $x \in \operatorname{int} \operatorname{dom} F^{1} \cap \operatorname{int} \operatorname{dom} F^{2}$, then

$$
\partial_{\epsilon}\left(F^{1}+F^{2}\right)\left(\bar{x} ; F_{\mathrm{inf}}^{1}(\bar{x})+F_{\mathrm{inf}}^{2}(\bar{x})\right)=\partial_{\epsilon}\left(F_{\mathrm{inf}}^{1}+F_{\mathrm{inf}}^{2}\right)(\bar{x})
$$

3. Necessary ϵ-Optimality Conditions

In this section, we give necessary ϵ-optimality conditions for ϵ-solutions and solutions of the convex optimization problem (CSP) formulated in Section 1. First, following the proof method for Theorem 23.8 in [16], we prove a sum formula for convex set-valued maps which will be used for getting necessary ϵ-optimality conditions for (CSP).

Theorem 3.1. Let $F: \mathbb{R}^{n} \rightrightarrows \mathbb{R}$ be a convex set-valued map and C a closed convex subset of \mathbb{R}^{n}. Let $\bar{x} \in C \cap$ int $\operatorname{dom} F$ and $\bar{y} \in F(\bar{x})$, and $\epsilon \geqq 0$. Suppose that $(\bar{x}, \bar{y}-\epsilon) \notin \operatorname{int} \mathrm{epi} F$. Then we have

$$
\partial_{\epsilon}\left(F+\widetilde{\delta}_{C}\right)(\bar{x} ; \bar{y}) \subset \partial_{\epsilon} F(\bar{x} ; \bar{y})+N_{C}^{\epsilon}(\bar{x})
$$

Proof. Since epi $\left(F+\widetilde{\delta}_{C}\right) \subset \operatorname{epi} F, D_{\epsilon} F(\bar{x} ; \bar{y})(x) \leqq D_{\epsilon}\left(F+\widetilde{\delta}_{C}\right)(\bar{x} ; \bar{y})(x)$ for any $x \in \mathbb{R}^{n}$. Thus, by Proposition 2.1, $D_{\epsilon}\left(F+\widetilde{\delta}_{C}\right)(\bar{x} ; \bar{y})(0)=0$ and $D_{\epsilon}(F+$ $\left.\widetilde{\delta}_{C}\right)(\bar{x} ; \bar{y})(x)>-\infty$ for any $x \in \mathbb{R}^{n}$, and so, $D_{\epsilon}\left(F+\widetilde{\delta}_{C}\right)(\bar{x} ; \bar{y})$ is proper and sublinear. Moreover, since $\partial_{\epsilon}\left(F+\widetilde{\delta}_{C}\right)(\bar{x} ; \bar{y})=\partial D_{\epsilon}\left(F+\widetilde{\delta}_{C}\right)(\bar{x} ; \bar{y})(0), v \in \partial_{\epsilon}(F+$ $\left.\widetilde{\delta}_{C}\right)(\bar{x} ; \bar{y})$ if and only if for any $x \in \underset{\sim}{\mathbb{R}^{n}}, D_{\epsilon}\left(F+\widetilde{\delta}_{C}\right)(\bar{x} ; \bar{y})(x) \geqq v^{T} x$. Thus we can easily check that $v \in \partial_{\epsilon}\left(F+\widetilde{\delta}_{C}\right)(\bar{x} ; \bar{y})$ if and only if for any $(x, \lambda) \in$ $\operatorname{epi}\left(F+\widetilde{\delta}_{C}\right)-(\bar{x}, \bar{y}-\epsilon), v^{T} x \leqq \lambda$. Moreover, we can check that $v \in \partial_{\epsilon}\left(F+\widetilde{\delta}_{C}\right)(\bar{x} ; \bar{y})$ if and only if for any $x \in C \cap \operatorname{domF}$ and any $y \in F(x)$,

$$
\begin{equation*}
0 \leqq y-\bar{y}+\epsilon-v^{T}(x-\bar{x}) \tag{3.1}
\end{equation*}
$$

Let $G(x)=F(x)-\bar{y}+\epsilon-v^{T}(x-\bar{x}), C_{1}=\operatorname{epi} G$ and $C_{2}=\{(x, \lambda) \in C \times$ $\mathbb{R} \mid \lambda \leqq 0\}$. Then $G(\bar{x})=F(\bar{x})-\bar{y}+\epsilon$. Since $\bar{y} \in F(\bar{x}), \epsilon \in G(\bar{x})$, and since $\bar{x} \in \operatorname{int} \operatorname{dom} F, \operatorname{int} C_{1} \neq \emptyset$. It is clear that C_{1} and C_{2} are convex. Moreover
$\operatorname{int} C_{1} \cap C_{2}=\emptyset$. Indeed, suppose to the contrary that int $C_{1} \cap C_{2} \neq \emptyset$. Then there exists $(\bar{z}, \bar{\lambda}) \in \operatorname{int} C_{1} \cap C_{2}$. Thus $\bar{z} \in C \cap \operatorname{dom} F$ and $\bar{\lambda} \leqq 0$, and there exists $\delta>0$ such that $\{\bar{z}\} \times(\bar{\lambda}-\delta, \bar{\lambda}+\delta) \subset C_{1}$. Let λ be such that $\bar{\lambda}-\delta<\lambda<\bar{\lambda}$. Since $(\bar{z}, \lambda) \in C_{1}$, we can find $\overline{\bar{y}} \in F(\bar{z})$ and $\lambda_{1} \geqq 0$ such that $\lambda=\overline{\bar{y}}-\bar{y}+\epsilon-v^{T}(\bar{z}-\bar{x})+\lambda_{1}$, that is, $\overline{\bar{y}}-\bar{y}+\epsilon-v^{T}(\bar{z}-\bar{x})=\lambda-\lambda_{1}<\bar{\lambda} \leqq 0$, which contradicts (3.1) since $\bar{z} \in C \cap \operatorname{dom} F$ and $\bar{y} \in F(\bar{z})$. Hence $\operatorname{int} C_{1} \cap C_{2}=\emptyset$. By separation theorem, there exist $(a, b) \in \mathbb{R}^{n} \times \mathbb{R},(a, b) \neq(0,0)$ and $\beta \in \mathbb{R}$ such that for any $(x, \lambda) \in C_{1}$ and any $(\widetilde{x}, \widetilde{\lambda}) \in C_{2}$,

$$
\begin{equation*}
a^{T} x+b \lambda \leqq \beta \leqq a^{T} \widetilde{x}+b \widetilde{\lambda} \tag{3.2}
\end{equation*}
$$

From (3.2), $a^{T} \bar{x}+b(\lambda+\epsilon) \leqq a^{T} \bar{x}$ for any $\lambda \geqq 0$, and hence, $b \leqq 0$. If $b=0$, it follows from (3.2) that $a^{T}(x-\bar{x}) \leqq 0$ for any $x \in \operatorname{dom} F$. Since $\bar{x} \in \operatorname{int} \operatorname{dom} F$, $a=0$. This is impossible since $(a, b) \neq(0,0)$. Hence, $b<0$. From (3.2), $a^{T}(x-$ $\bar{x})+b \lambda \leqq 0$ for any $(x, \lambda) \in C_{1}$, and hence, for any $x \in \operatorname{dom} F$ and any $y \in F(x)$,

$$
a^{T}(x-\bar{x})+b\left[y-\bar{y}+\epsilon-v^{T}(x-\bar{x})\right] \leqq 0 .
$$

So, for any $x \in \operatorname{dom} F$ and any $y \in F(x)$,

$$
\left(v-\frac{1}{b} a\right)^{T}(x-\bar{x}) \leqq y-\bar{y}+\epsilon
$$

This means that $\left(v-\frac{1}{b} a,-1\right)^{T}((x, y)-(\bar{x}, \bar{y}-\epsilon)) \leqq 0$ for any $(x, y) \in \operatorname{epi} F$. Hence, $v-\frac{1}{b} a \in \partial_{\epsilon} F(\bar{x} ; \bar{y})$. From (3.2), $a^{T} \bar{x}+b \epsilon \leqq a^{T} \widetilde{x}$ for any $\widetilde{x} \in C$. This shows that $\frac{1}{b} a^{T}(\widetilde{x}-\bar{x}) \leqq \epsilon$ for any $\widetilde{x} \in C$. Thus, we have

$$
\frac{1}{b} a \in N_{C}^{\epsilon}(\bar{x})
$$

Therefore, $v=\left(v-\frac{1}{b} a\right)+\frac{1}{b} a \in \partial_{\epsilon} F(\bar{x} ; \bar{y})+N_{C}^{\epsilon}(\bar{x})$. Consequently, we have,

$$
\partial_{\epsilon}\left(F+\widetilde{\delta}_{C}\right)(\bar{x} ; \bar{y}) \subset \partial_{\epsilon} F(\bar{x} ; \bar{y})+N_{C}^{\epsilon}(\bar{x})
$$

Corollary 3.1. Let $F: \mathbb{R}^{n} \rightrightarrows \mathbb{R}$ be a convex set-valued map and $\bar{x} \in C \cap$ int $\operatorname{dom} F$. Let $\bar{y} \in F(\bar{x})$ and suppose that $(\bar{x}, \bar{y}) \notin \operatorname{int} \mathrm{epi} F$. Then we have,

$$
\partial\left(F+\widetilde{\delta}_{C}\right)(\bar{x} ; \bar{y})=\partial F(\bar{x} ; \bar{y})+N_{C}(\bar{x}) .
$$

Proof. By Theorem 3.1, $\partial\left(F+\widetilde{\delta}_{C}\right)(\bar{x} ; \bar{y}) \subset \partial F(\bar{x} ; \bar{y})+N_{C}(\bar{x})$. Now we prove that the converse inclusion holds. Let $v \in \partial F(\bar{x} ; \bar{y})+N_{C}(\bar{x})$. Then there exist
$v_{1} \in \partial F(\bar{x} ; \bar{y})$ and $v_{2} \in N_{C}(\bar{x})$ such that $v=v_{1}+v_{2}$. Thus for any $x \in \operatorname{dom} F$ and any $y \in F(x), v_{1}^{T}(x-\bar{x})+\bar{y} \leqq y$, and for any $x \in C, v_{2}^{T}(x-\bar{x}) \leqq 0$. Hence, for any $x \in C \cap \operatorname{dom} F$ and any $y \in F(x)$,

$$
\left(v_{1}+v_{2}\right)^{T}(x-\bar{x})+\bar{y} \leqq y
$$

Thus $v=\left(v_{1}+v_{2}\right) \in \partial\left(F+\widetilde{\delta}_{C}\right)(\bar{x} ; \bar{y})$. Hence, the converse inclusion holds.

Now we give ϵ-optimality conditions for the convex set-valued optimization problem (CSP) which was formulated in Section 1.

Theorem 3.2. Let $\bar{x} \in C \cap \operatorname{int} \operatorname{dom} F$ and $\bar{y} \in F(\bar{x})$. Suppose that $(\bar{x}, \bar{y}-\epsilon) \notin$ int epiF. If (\bar{x}, \bar{y}) is an ϵ-solution of (CSP), then we have,

$$
0 \in \partial_{\epsilon} F(\bar{x} ; \bar{y})+N_{C}^{\epsilon}(\bar{x})
$$

Proof. Let (\bar{x}, \bar{y}) be an ϵ-solution of (CSP). Then for any $x \in \underset{\sim}{C} C \operatorname{dom} F$ and any $y \in F(x), y \geqq \bar{y}-\epsilon$, and hence, for any $x \in \operatorname{dom}\left(F+\widetilde{\delta}_{C}\right)$ and any $y \in\left(F+\widetilde{\delta}_{C}\right)(x), y \geqq \bar{y}-\epsilon$. Thus for any $(x, \lambda) \in \operatorname{epi}\left(F+\widetilde{\delta}_{C}\right)-(\bar{x}, \bar{y}-\epsilon)$,

$$
0 \leqq \lambda
$$

This shows that for any $(x, \lambda) \in \overline{\text { cone }}\left[\left(F+\widetilde{\delta}_{C}\right)-(\bar{x}, \bar{y}-\epsilon)\right]$,

$$
0 \leqq \lambda
$$

This implies that for any $x \in \operatorname{dom}\left(F+\widetilde{\delta}_{C}\right)$,

$$
0 \leqq D_{\epsilon}\left(F+\widetilde{\delta}_{C}\right)(\bar{x} ; \bar{y})(x)
$$

In the proof of Theorem 3.1, we showed that

$$
D_{\epsilon}\left(F+\tilde{\delta}_{C}\right)(\bar{x} ; \bar{y})(0)=0
$$

So, $0 \in \partial_{\epsilon}\left(F+\widetilde{\delta}_{C}\right)(\bar{x} ; \bar{y})$, and hence by Theorem 3.1, $0 \in \partial_{\epsilon} F(\bar{x} ; \bar{y})+N_{C}^{\epsilon}(\bar{x})$.
When C is a closed convex cone in (CSP), we can get a necessary and sufficient ϵ-optimality condition for (CSP) as follows.

Corollary 3.2. Let C be a closed convex cone in \mathbb{R}^{n} and suppose that $0 \in$ $C \cap \operatorname{int} \operatorname{dom} F$. Let $\bar{y} \in F(0)$. Assume that $(0, \bar{y}-\epsilon) \notin \operatorname{int} \operatorname{epi} F$. Then $(0, \bar{y})$ is an ϵ-solution of (CSP) if and only if $0 \in \partial_{\epsilon} F(0 ; \bar{y})+N_{C}(0)$.

Proof. Suppose that $(0, \bar{y})$ is an ϵ-solution of (CSP). Then, since C is a convex cone, $N_{C}^{\epsilon}(0)=N_{C}(0)$, and hence it follows from Theorem 3.2 that

$$
0 \in \partial_{\epsilon} F(\bar{x} ; \bar{y})+N_{C}(0) .
$$

Assume that $0 \in \partial_{\epsilon} F(\bar{x} ; \bar{y})+N_{C}(0)$. Then there exists $v \in \partial_{\epsilon} F(\bar{x} ; \bar{y})$ such that $-v \in N_{C}(0)$. Thus for any $(x, \lambda) \in \operatorname{epi} F-(0, \bar{y}-\epsilon)$,

$$
\begin{equation*}
v^{T} x \leqq \lambda, \tag{3.3}
\end{equation*}
$$

and for any $x \in C, v^{T} x \geqq 0$. So, from (3.3), for any $x \in \operatorname{dom} F$ and any $y \in F(x)$,

$$
0 \leqq v^{T} x \leqq y-\bar{y}+\epsilon
$$

Hence, for any $x \in C \cap \operatorname{dom} F$ and any $y \in F(x)$,

$$
\bar{y}-\epsilon \leqq y .
$$

So, $(0, \bar{y})$ is an ϵ-solution of (CSP).
From Theorem 3.2, we can obtain the following corollary.
Corollary 3.3. Let $\bar{x} \in C \cap \operatorname{int} \operatorname{dom} F$ and $\bar{y} \in F(\bar{x})$. Suppose that $(\bar{x}, \bar{y}) \notin$ int epiF. Then (\bar{x}, \bar{y}) is a solution of (CSP) if and only if $0 \in \partial F(\bar{x} ; \bar{y})+N_{C}(\bar{x})$.

Proof. If (\bar{x}, \bar{y}) is a solution of (CSP), it follows from Theorem 3.2 that $0 \in$ $\partial F(\bar{x} ; \bar{y})+N_{C}(\bar{x})$. Suppose that $0 \in \partial F(\bar{x} ; \bar{y})+N_{C}(\bar{x})$. Then there exists $v \in$ $\partial F(\bar{x} ; \bar{y})$ such that $-v \in N_{C}(\bar{x})$. Thus for any $x \in \operatorname{dom} F$ and any $y \in F(x)$,

$$
v^{T}(x-\bar{x}) \leqq y-\bar{y},
$$

and for any $x \in C$,

$$
-v^{T}(x-\bar{x}) \leqq 0
$$

Hence, for any $x \in C \cap \operatorname{dom} F$ and any $y \in F(x)$,

$$
\bar{y} \leqq y .
$$

So, (\bar{x}, \bar{y}) is a solution of (CSP).
Let $G: \mathbb{R}^{n} \rightrightarrows \mathbb{R}$ be convex and $C=\left\{x \in \mathbb{R}^{n} \mid G(x) \cap\left(-\mathbb{R}_{+}\right) \neq \emptyset\right\}$ and assume that $\bar{x} \in C$ and $0 \in G(\bar{x})$. Now we calculate the normal cone $N_{C}(\bar{x})$. Of course, if $\bar{x} \in \operatorname{int} C$, then $N_{C}(\bar{x})=\{0\}$.

We need the following Slater condition for calculating the normal cone of C at some $\bar{x} \in C \backslash \operatorname{int} C$, which is a set-valued version of the usual Slater condition:

Slater Condition: there exists $\hat{x} \in \mathbb{R}^{n}$ such that

$$
G(\hat{x}) \cap\left(-\operatorname{int} \mathbb{R}_{+}\right) \neq \emptyset
$$

Then we have the following proposition:

Proposition 3.1. Let $G: \mathbb{R}^{n} \rightrightarrows \mathbb{R}$ be convex and $C=\left\{x \in \mathbb{R}^{n} \mid G(x) \cap\right.$ $\left.\left(-\mathbb{R}_{+}\right) \neq \emptyset\right\}$. Suppose that the Slater condition holds. Then we have,
(i) int $C \subset\left\{x \in \mathbb{R}^{n} \mid G(x) \cap\left(-\right.\right.$ int $\left.\left.\mathbb{R}_{+}\right) \neq \emptyset\right\}$.
(ii) if G is lower semicontinuous, then

$$
\left\{x \in \mathbb{R}^{n} \mid G(x) \cap\left(-\operatorname{int} \mathbb{R}_{+}\right) \neq \emptyset\right\} \subset \operatorname{int} C .
$$

(iii) if G is lower semicontinuous, then

$$
C \backslash \operatorname{int} C=\left\{x \in \mathbb{R}^{n} \mid G(x) \cap\left(-\mathbb{R}_{+}\right)=\{0\}\right\}
$$

(iv) if $0 \in G(\bar{x}), \bar{x} \in \operatorname{int} \operatorname{dom} G$ and $(\bar{x}, 0) \notin \operatorname{int}$ epi G, then

$$
\bar{x} \in C \backslash \operatorname{int} C .
$$

Proof. (i) Let $S=\left\{x \in \mathbb{R}^{n} \mid G(x) \cap\left(-\operatorname{int} \mathbb{R}_{+}\right) \neq \emptyset\right\}$. Let x be any point in $\operatorname{int} C$. If $x=\hat{x}$, then $x \in S$. Assume that $x \neq \hat{x}$. Then we can find $\delta>0$ such that $x+B_{\delta}(0) \subset C$, where $B_{\delta}=\left\{z \in \mathbb{R}^{n} \mid\|z\|<\delta\right\}$, and $\hat{x} \notin x+B_{\delta}(0)$. Moreover, since $x \neq \hat{x}$, we can find $v \in B_{\delta}(0) \backslash\{0\}$ such that $x-v, x+v \in \operatorname{aff}\{x, \hat{x}\}:=$ $\{\alpha x+(1-\alpha) \hat{x} \mid \alpha \in \mathbb{R}\}, \hat{x} \notin[x-v, x+v]:=\{\lambda(x-v)+(1-\lambda)(x+v) \mid \lambda \in[0,1]\}$, $x \in(x-v, x+v):=\{\lambda(x-v)+(1-\lambda)(x+v) \mid \lambda \in(0,1)\}$ and $x+v \in(x, \hat{x})$. Then there exists $\hat{\lambda} \in(0,1)$ such that $x+v=\hat{\lambda} \hat{x}+(1-\hat{\lambda})(x-v)$. So, since G is convex, we have,

$$
\begin{equation*}
\hat{\lambda} G(\hat{x})+(1-\hat{\lambda}) G(x-v) \subset G(x+v)+\mathbb{R}_{+} \tag{3.4}
\end{equation*}
$$

From Slater Condition, we can take $\hat{y} \in G(\hat{x})$ such that $\hat{y}<0$. Moreover, since $x-v \in x+B_{\delta}(0) \subset C$, we can find $y_{1} \in G(x-v)$ such that $y_{1} \leqq 0$. Assume to the contrary that $G(x+v) \cap\left(-\operatorname{int} \mathbb{R}_{+}\right)=\emptyset$. Then, from (3.4),

$$
\begin{equation*}
\hat{\lambda} G(\hat{x})+(1-\hat{\lambda}) G(x-v) \subset \mathbb{R}_{+} . \tag{3.5}
\end{equation*}
$$

Thus, from (3.5), $0 \leqq \hat{\lambda} \hat{y}+(1-\hat{\lambda}) y_{1}<0$. This is a contradiction. Hence, $G(x+v) \cap\left(-\operatorname{int} \mathbb{R}_{+}\right) \neq \emptyset$. So, there exists $y_{2} \in G(x+v)$ such that $y_{2}<0$. Since G is convex, we have

$$
\begin{aligned}
\frac{1}{2} y_{1}+\frac{1}{2} y_{2} & \in \frac{1}{2} G(x-v)+\frac{1}{2} G(x+v) \\
& \subset G(x)+\mathbb{R}_{+} .
\end{aligned}
$$

Hence there exist $y \in G(x)$ and $r \geqq 0$ such that $y+r=\frac{1}{2}\left(y_{1}+y_{2}\right)<0$. Thus $y<0$ and so $G(x) \cap\left(-\operatorname{int} \mathbb{R}_{+}\right) \neq \emptyset$. Hence $x \in S$. Therefore, we have

$$
\operatorname{int} C \subset S
$$

(ii) If G is lower semicontinuous, then $\left\{x \in \mathbb{R}^{n} \mid G(x) \cap\left(-\operatorname{int}_{+}\right) \neq \emptyset\right\}$ is open and hence $\left\{x \in \mathbb{R}^{n} \mid G(x) \cap\left(-\operatorname{int} \mathbb{R}_{+}\right) \neq \emptyset\right\} \subset \operatorname{int} C$.
(iii) Since G is lower semicontinuous, it follows from (i) and (ii) that

$$
C \backslash \operatorname{int} C=C \backslash\left\{x \in \mathbb{R}^{n} \mid G(x) \cap\left(-\operatorname{int} \mathbb{R}_{+}\right) \neq \emptyset\right\} .
$$

Let $x \in C \backslash \operatorname{int} C$. Then $G(x) \cap\left(-\mathbb{R}_{+}\right) \neq \emptyset$ and $G(x) \cap\left(-\operatorname{int} \mathbb{R}_{+}\right)=\emptyset$. Thus $G(x) \cap\left(-\mathbb{R}_{+}\right)=\{0\}$. Hence we have

$$
C \backslash \operatorname{int} C \subset\left\{x \in \mathbb{R}^{n} \mid G(x) \cap\left(-\operatorname{int} \mathbb{R}_{+}\right) \neq \emptyset\right\} .
$$

Conversely, we assume that $G(x) \cap\left(-\mathbb{R}_{+}\right)=\{0\}$. Then $x \in C$ and $x \neq \hat{x}$, where \hat{x} is the point in the definition of Slater condition. For any fixed $\lambda \in(0,1)$, we let $x_{\lambda}=x+\lambda(\hat{x}-x)$ and $x_{\lambda}^{\prime}=x-\lambda(\hat{x}-x)$. Since G is convex, $\lambda G(\hat{x})+(1-\lambda) G(x) \subset$ $G\left(x_{\lambda}\right)+\mathbb{R}_{+}$, and hence, taking $\hat{y} \in G(\hat{x})$ with $\hat{y}<0$ and $0 \in G(x)$, we can find $y_{\lambda} \in G\left(x_{\lambda}\right)$ such that $y_{\lambda}<0$. Since $\frac{1}{2} x_{\lambda}+\frac{1}{2} x^{\prime}{ }_{\lambda}=x$ and $G(x) \subset \mathbb{R}_{+}$,

$$
\frac{1}{2} G\left(x_{\lambda}\right)+\frac{1}{2} G\left(x_{\lambda}^{\prime}\right) \subset G(x)+\mathbb{R}_{+} \subset \mathbb{R}_{+}
$$

So, for any $y_{\lambda} \in G\left(x_{\lambda}^{\prime}\right), \frac{1}{2} y_{\lambda}+\frac{1}{2} y_{\lambda}^{\prime} \geqq 0$ and hence, $y_{\lambda}^{\prime}>0$. Hence $G\left(x_{\lambda}^{\prime}\right) \cap$ $\left(-\mathbb{R}_{+}\right)=\emptyset$ for any $\lambda \in(0,1)$, and so, $(x, 2 x-\hat{x}) \cap C=\emptyset$. This means that $x \notin \operatorname{int} C$. Thus, we have

$$
\left\{x \in \mathbb{R}^{n} \mid G(x) \cap \mathbb{R}_{+}=\{0\}\right\} \subset C \backslash \operatorname{int} C .
$$

(iv) Suppose that $\bar{x} \in C \cap \operatorname{int} \operatorname{dom} G, 0 \in G(\bar{x})$ and $(\bar{x}, 0) \notin \operatorname{int}$ epi G. Then from the proof of Proposition 2.1, we can check that there exist $\tilde{a} \in \mathbb{R}^{n}$ and $\tilde{b}>0$ such that for any $(x, y) \in \overline{\operatorname{cone}}(\operatorname{epi} G-(\bar{x}, 0))$,

$$
\begin{equation*}
\tilde{a}^{T} x+\tilde{b} y \geqq 0 \text {. } \tag{3.6}
\end{equation*}
$$

Let $\bar{y} \in G(\bar{x})$ be any point in \mathbb{R}. Then for any $\alpha \geqq 0,(\bar{x}, \bar{y}+\alpha) \in \operatorname{epi} G$, that is, $(0, \bar{y}+\alpha) \in \operatorname{epi} G-(\bar{x}, 0)$. Thus from (3.6), $\tilde{b}(\bar{y}+\alpha) \geqq 0$ for any $\alpha \geqq 0$. Since $\tilde{b}>0, \bar{y} \geqq 0$. This means that $G(\bar{x}) \cap\left(-\operatorname{int} \mathbb{R}_{+}\right)=\emptyset$. So, by (i), $\bar{x} \notin \operatorname{int} C$. Since $0 \in G(\bar{x}), \bar{x} \in C$. Thus $\bar{x} \in C \backslash \operatorname{int} C$.

Proposition 3.2. Let $G: \mathbb{R}^{n} \rightrightarrows \mathbb{R}$ be a upper semicontinuous and convex setvalued map. Let $\bar{x} \in \operatorname{int} \operatorname{dom} G$ and $0 \in G(\bar{x})$, and assume that $(\bar{x}, 0) \notin \operatorname{int} \mathrm{epi} G$. Let $C=\left\{x \in \mathbb{R}^{n} \mid G(x) \cap\left(-\mathbb{R}_{+}\right) \neq \emptyset\right\}$ and suppose that Slater condition holds. Then $N_{C}(\bar{x})=$ cone $\partial G(\bar{x} ; 0)$.

Proof. Since G is upper semicontinuous and convex, then C is a closed and convex subset of \mathbb{R}^{n}. If $v \in \partial G(\bar{x} ; 0)$, then for any $x \in \operatorname{dom} G$ and any $y \in G(x)$, $v^{T}(x-\bar{x}) \leqq y$. So, for any $x \in C, v^{T}(x-\bar{x}) \leqq 0$. Hence, $\partial G(\bar{x} ; 0) \subset N_{C}(\bar{x})$. Since $N_{C}(\bar{x})$ is a convex cone,

$$
\begin{equation*}
\text { cone } \partial G(\bar{x} ; 0) \subset N_{C}(\bar{x}) \tag{3.7}
\end{equation*}
$$

By Slater condition, $0 \notin \partial G(\bar{x} ; 0)$ and hence it follows from definition of $\partial G(\bar{x} ; 0)$ and the fact that $D G(\bar{x} ; 0)(0)=0$ that $\left\{v \in \mathbb{R}^{n} \mid D G(\bar{x} ; 0)(v)<0\right\} \neq \emptyset$. Let $K=\overline{\operatorname{cone}}(C-\bar{x})$. Then $N_{C}(\bar{x})=K^{0}$, where K^{0} is the nonpositive dual cone of K. If $D G(\bar{x} ; 0)(v)<0$, then $v \neq 0$, and so, it follows from definition of $D G(\bar{x} ; 0)$ that there exist $\lambda_{n}>0$ and $x_{n} \in C, n \in \mathbb{N}$, such that $v=\lim _{n \rightarrow \infty} \lambda_{n}\left(x_{n}-\bar{x}\right)$ and so, $v \in K$. Thus $\left\{v \in \mathbb{R}^{n} \mid D G(\bar{x} ; 0)(v)<0\right\} \subset K$. Moreover, from Proposition 2.1, $D G(\bar{x} ; 0)(\cdot)$ is sublinear and continuous, and so,

$$
\begin{equation*}
\left\{v \in \mathbb{R}^{n} \mid D G(\bar{x} ; 0)(v) \leqq 0\right\} \subset K \tag{3.8}
\end{equation*}
$$

Noticing that $D G(\bar{x} ; 0)(v)=\sup _{y \in \partial G(\bar{x} ; 0)} y^{T} v$, we get

$$
\begin{equation*}
\left\{v \in \mathbb{R}^{n} \mid D G(\bar{x} ; 0)(v) \leqq 0\right\}=(\partial G(\bar{x} ; 0))^{0} \tag{3.9}
\end{equation*}
$$

Moreover, since $\partial G(\bar{x} ; 0)$ is compact and $0 \notin \partial G(\bar{x} ; 0)$,

$$
\begin{equation*}
\overline{\text { cone }} \partial G(\bar{x} ; 0)=\text { cone } \partial G(\bar{x} ; 0) \tag{3.10}
\end{equation*}
$$

So, from (3.8)-(3.10), $K^{0} \subset \operatorname{cone} \partial G(\bar{x} ; 0)$, i.e., $N_{C}(\bar{x}) \subset$ cone $\partial G(\bar{x} ; 0)$. Hence, from (3.7), we have

$$
N_{C}(\bar{x})=\text { cone } \partial G(\bar{x} ; 0)
$$

as required.
From Corollary 3.3 and Proposition 3.2, we can get the following optimality theorem for (CSP).

Theorem 3.3. Let $F: \mathbb{R}^{n} \rightrightarrows \mathbb{R}$ be a convex set-valued map and $G: \mathbb{R}^{n} \rightrightarrows \mathbb{R}$ a upper semicontinuous and convex set-valued map and $C=\left\{x \in \mathbb{R}^{n} \mid G(x) \cap\right.$ $\left.\left(-\mathbb{R}_{+}\right) \neq \emptyset\right\}$. Let $\bar{x} \in C \cap \operatorname{int}(\operatorname{dom} F \cap \operatorname{dom} G), \bar{y} \in F(\bar{x})$ and $0 \in G(\bar{x})$. Assume that $(\bar{x}, \bar{y}) \notin$ int epi F and $(\bar{x}, 0) \notin \operatorname{int} \mathrm{epi} G$, and suppose that Slater condition holds. Then (\bar{x}, \bar{y}) is a solution of (CSP) if and only if there exists $\lambda \geqq 0$ such that

$$
0 \in \partial F(\bar{x} ; \bar{y})+\lambda \partial G(\bar{x} ; 0)
$$

4. Necessary and Sufficient ϵ-Optimality Conditions

In this section, using the single-valued function $F_{\text {inf }}$ induced from the set-valued map F and defined in Section 2, we obtain theorems describing the ϵ-subgradient sum formula for two convex set-valued maps (see Theorems 4.1 and 4.2 below), and then give necessary and sufficient ϵ-optimality conditions for Problem (CSP). First, we establish the following proposition.

Proposition 4.1. Let $F^{1}, F^{2}: \mathbb{R}^{n} \rightrightarrows \mathbb{R}$ be set-valued maps, $\operatorname{dom} F^{1} \cap \operatorname{dom} F^{2} \neq$ \emptyset. Suppose that for any $x \in \operatorname{dom} F^{1} \cap \operatorname{dom} F^{2}, F_{\mathrm{inf}}^{1}(x)>-\infty$ and $F_{\mathrm{inf}}^{2}(x)>-\infty$. Then

$$
\left(F^{1}+F^{2}\right)^{*}=\left(F_{\mathrm{inf}}^{1}+F_{\mathrm{inf}}^{2}\right)^{*}
$$

Proof. Let us take an arbitrary $v \in \mathbb{R}^{n}$. For $x \in \operatorname{dom} F^{1} \cap \operatorname{dom} F^{2}$, $v^{T} x-\left(F_{\mathrm{inf}}^{1}(x)+F_{\mathrm{inf}}^{2}(x)\right) \geqq v^{T} x-\left(y_{1}+y_{2}\right)$, for any $y_{1} \in F^{1}(x)$ and any $y_{2} \in F^{2}(x)$.

Hence,
$\sup _{x \in \operatorname{dom} F^{1} \cap \operatorname{dom} F^{2}}\left\{v^{T} x-\left(F_{\mathrm{inf}}^{1}(x)+F_{\mathrm{inf}}^{2}(x)\right)\right\} \geqq \sup _{x \in \operatorname{dom} F^{1} \cap \operatorname{dom} F^{2}}\left\{v^{T} x-\left(F^{1}+F^{2}\right)(x)\right\}$.
So,

$$
\left(F_{\mathrm{inf}}^{1}+F_{\mathrm{inf}}^{2}\right)^{*}(v) \geqq\left(F^{1}+F^{2}\right)^{*}(v)
$$

For each $\epsilon>0$ and each $x \in \operatorname{dom} F^{1} \cap \operatorname{dom} F^{2}$, by the definition of F_{inf}^{1} and F_{inf}^{2}, we can find $y_{1} \in F^{1}(x)$ and $y_{2} \in F^{2}(x)$ such that

$$
\left\{\begin{array}{l}
F_{\mathrm{inf}}^{1}(x)+\frac{\epsilon}{2}>y_{1} \\
F_{\mathrm{inf}}^{2}(x)+\frac{\epsilon}{2}>y_{2}
\end{array}\right.
$$

This shows that

$$
\begin{aligned}
v^{T} x-\left(F_{\mathrm{inf}}^{1}\right. & \left.+F_{\mathrm{inf}}^{2}\right)(x)-\epsilon<v^{T} x-\left(y_{1}+y_{2}\right) \\
& \leqq \sup _{x \in \operatorname{dom} F^{1} \cap \operatorname{dom} F^{2}}\left\{v^{T} x-\left(y_{1}+y_{2}\right) \mid y_{1} \in F^{1}(x), y_{2} \in F^{2}(x)\right\}
\end{aligned}
$$

Hence,
$\sup _{x \in \operatorname{dom} F^{1} \cap \operatorname{dom} F^{2}}\left\{v^{T} x-\left(F_{\mathrm{inf}}^{1}+F_{\mathrm{inf}}^{2}\right)(x)\right\}-\epsilon \leqq \sup _{x \in \operatorname{dom} F^{1} \cap \operatorname{dom} F^{2}}\left\{v^{T} x-\left(F^{1}+F^{2}\right)(x)\right\}$.
Since ϵ is arbitrary, we have

$$
\left(F_{\mathrm{inf}}^{1}+F_{\mathrm{inf}}^{2}\right)^{*}(v) \leqq\left(F^{1}+F^{2}\right)^{*}(v)
$$

Therefore, $\left(F^{1}+F^{2}\right)^{*}=\left(F_{\mathrm{inf}}^{1}+F_{\mathrm{inf}}^{2}\right)^{*}$.

Remark 4.1. Observe that
(i) For any set-valued maps $F^{1}, F^{2}: \mathbb{R}^{n} \rightrightarrows \mathbb{R}$,

$$
\left(F^{1}+F^{2}\right)^{*}=\left(\widetilde{F^{1}}+\widetilde{F^{2}}\right)^{*}=\left(F_{\mathrm{inf}}^{1}+F_{\mathrm{inf}}^{2}\right)^{*}
$$

(ii) For any set-valued maps $F: \mathbb{R}^{n} \rightrightarrows \mathbb{R}, F^{*}=\widetilde{F}^{*}=F_{\mathrm{inf}}^{*}$.
(Recall that $F_{\mathrm{inf}}(x):=\inf \{y \mid y \in F(x)\}$ and $\widetilde{F}(x):=F(x) \cup\left\{F_{\mathrm{inf}}(x)\right\}$).

Theorem 4.1. Let $F^{1}, F^{2}: \mathbb{R}^{n} \rightrightarrows \mathbb{R}$ be convex set-valued maps such that for all $i=1,2$, dom F^{i} and epi F_{inf}^{i} are closed, and $F_{\mathrm{inf}}^{i}(x)>-\infty$, for all $x \in \operatorname{dom} F^{i}$. Let $\epsilon \geqq 0$. If ri $\operatorname{dom} F^{1} \cap \mathrm{ri} \operatorname{dom} F^{2} \neq \emptyset$, then for all $x \in \operatorname{dom} F^{1} \cap \operatorname{dom} F^{2}$,

$$
\begin{align*}
& \partial_{\epsilon}\left(\widetilde{F}^{1}+\widetilde{F}^{2}\right)\left(x ; F_{\mathrm{inf}}^{1}(x)+F_{\mathrm{inf}}^{2}(x)\right) \\
= & \bigcup_{\substack{\epsilon_{1}+\epsilon_{2}=\epsilon \\
\epsilon_{1}, \epsilon_{2} \geqq 0}} \partial_{\epsilon_{1}} \widetilde{F}^{1}\left(x ; F_{\mathrm{inf}}^{1}(x)\right)+\partial_{\epsilon_{2}} \widetilde{F}^{2}\left(x ; F_{\mathrm{inf}}^{2}(x)\right) . \tag{4.1}
\end{align*}
$$

Proof. Applying Proposition 2.2, we have that F_{inf}^{1} and F_{inf}^{2} are proper lower semicontinuous convex functions. Obviously,

$$
\text { ri } \operatorname{dom} F_{\mathrm{inf}}^{1} \cap \text { ri dom } F_{\mathrm{inf}}^{2}=\text { ri } \operatorname{dom} F^{1} \cap \text { ri } \operatorname{dom} F^{2} \neq \emptyset
$$

Thus, from Theorem 3.1.1 in [8], it yields that for all $x \in \operatorname{dom} F_{\mathrm{inf}}^{1} \cap \operatorname{dom} F_{\mathrm{inf}}^{2}$,

$$
\partial_{\epsilon}\left(F_{\mathrm{inf}}^{1}+F_{\mathrm{inf}}^{2}\right)(x)=\bigcup_{\substack{\epsilon_{1}+\epsilon_{2}=\epsilon \\ \epsilon_{1}, \epsilon_{2} \geq 0}} \partial_{\epsilon_{1}} F_{\mathrm{inf}}^{1}(x)+\partial_{\epsilon_{2}} F_{\mathrm{inf}}^{2}(x)
$$

Using Propositions 2.2 and 2.3, we have the conclusion, as required.
Remark 4.2. Theorem 3.1.1 in [8] is a special case of our Theorem 4.1.

Theorem 4.2. Let $F^{1}, F^{2}: \mathbb{R}^{n} \rightrightarrows \mathbb{R}$ be convex set-valued maps such that $\operatorname{dom} F^{1} \cap \operatorname{dom} F^{2} \neq \emptyset$, for all $i=1,2, \operatorname{dom} F^{i}$ and epi F_{inf}^{i} are closed, and $F_{\mathrm{inf}}^{i}(x)>-\infty$, for all $x \in \operatorname{dom} F^{i}$. Then the following statements are equivalent:
(i) $\left(F^{1}+F^{2}\right)^{*}=\left(F^{1}\right)^{*} \square\left(F^{2}\right)^{*}$.
(ii) $\operatorname{epi}\left(F^{1}\right)^{*}+\operatorname{epi}\left(F^{2}\right)^{*}$ is closed.
(iii) For any $\epsilon \geq 0$ and any $x \in \operatorname{dom} F^{1} \cap \operatorname{dom} F^{2}$,

$$
\begin{aligned}
& \partial_{\epsilon}\left(\widetilde{F^{1}}+\widetilde{F^{2}}\right)\left(x ; F_{\mathrm{inf}}^{1}(x)+F_{\mathrm{inf}}^{2}(x)\right) \\
= & \bigcup_{\substack{\epsilon_{1}+\epsilon_{2}=\epsilon \\
\epsilon_{1}, \epsilon_{2} \geq 0}} \partial_{\epsilon_{1}} \widetilde{F^{1}}\left(x ; F_{\mathrm{inf}}^{1}(x)\right)+\partial_{\epsilon_{2}} \widetilde{F^{2}}\left(x ; F_{\mathrm{inf}}^{2}(x)\right) .
\end{aligned}
$$

Proof. Applying Proposition 2.2, we have that $F_{\mathrm{inf}}^{1}, F_{\mathrm{inf}}^{2}$ are proper lower semicontinuous convex functions. It is easy to verify that

$$
\operatorname{dom} F_{\mathrm{inf}}^{1} \cap \operatorname{dom} F_{\mathrm{inf}}^{2}=\operatorname{dom} F^{1} \cap \operatorname{dom} F^{2} \neq \emptyset
$$

Thus, from Theorem 1 in [3], it yields that the following statements are equivalent:
(i) $\left(F_{\text {inf }}^{1}+F_{\text {inf }}^{2}\right)^{*}=\left(F_{\text {inf }}^{1}\right)^{*} \square\left(F_{\text {inf }}^{2}\right)^{*}$.
(ii) $\operatorname{epi}\left(F_{\text {inf }}^{1}\right)^{*}+\operatorname{epi}\left(F_{\text {inf }}^{2}\right)^{*}$ is closed.
(iii) For any $\epsilon \geqq 0$ and any $x \in \operatorname{dom} F_{\text {inf }}^{1} \cap \operatorname{dom} F_{\text {inf }}^{2}$,

$$
\partial_{\epsilon}\left(F_{\mathrm{inf}}^{1}+F_{\mathrm{inf}}^{2}\right)(x)=\bigcup_{\substack{\epsilon_{1}+\epsilon_{2}=\epsilon \\ \epsilon_{1}, \epsilon_{2} \geq 0}} \partial_{\epsilon_{1}} F_{\mathrm{inf}}^{1}(x)+\partial_{\epsilon_{2}} F_{\mathrm{inf}}^{2}(x) .
$$

To complete the proof, let us apply Remark 4.1 and Propositions 2.2, 2.3 and 4.1 to (i)-(iii) by replacing F_{inf}^{1} (resp. $F_{\text {inf }}^{2}$) of statements (i)-(ii) with F^{1} (resp. F^{2}), and $F_{\text {inf }}^{1}\left(\right.$ resp. $F_{\text {inf }}^{2}$) of statements (iii) with $\widetilde{F^{1}}$ (resp. $\widetilde{F^{2}}$).

Remark 4.3. Observe that by our approach the main results of this paper are still correct if we replace \mathbb{R}^{n} by a Banach space X. So, our Theorem 4.2 can be seen as a generalized version of Theorem 1 of [3].

Remark 4.4. In Theorems 4.1 and 4.2, if in addition that for any $x \in \operatorname{dom} F^{1} \cap$ $\operatorname{dom} F^{2}, F_{\mathrm{inf}}^{i}(x) \in F^{i}(x), i=1,2$, then the equality (4.1) can be replaced by the following equality:

$$
\partial_{\epsilon}\left(F^{1}+F^{2}\right)\left(x ; F_{\text {inf }}^{1}(x)+F_{\text {inf }}^{2}(x)\right)=\bigcup_{\substack{\epsilon_{1}+\epsilon_{2}=\epsilon \\ \epsilon_{1}, \epsilon_{2} \geq 0}} \partial_{\epsilon_{1}} F^{1}\left(x ; F_{\text {inf }}^{1}(x)\right)+\partial_{\epsilon_{2}} F^{2}\left(x ; F_{\text {inf }}^{2}(x)\right) .
$$

Applying Theorem 4.1, we can obtain the following necessary and sufficient ϵ-optimality condition for Problem (CSP).

Theorem 4.3. Let $F: \mathbb{R}^{n} \rightrightarrows \mathbb{R}$ be a convex set-valued maps such that $\operatorname{dom} F$ and epi F_{inf} are closed, and $F_{\mathrm{inf}}(x)>-\infty$, for any $x \in \operatorname{dom} F$ and such that $\operatorname{dom} F^{i}$ and $\mathrm{epi} F_{\mathrm{inf}}^{i}$ are closed, $i=1,2$. Let C be a closed convex subset of X such that ri $C \cap \operatorname{ri} \operatorname{dom} F \neq \emptyset$. Let $\bar{x} \in C \cap \operatorname{int} \operatorname{dom} F$, and $F_{\inf }(\bar{x}) \in F(\bar{x})$. Let $\epsilon \geqq 0$. Then $\left(\bar{x}, F_{\inf }(\bar{x})\right)$ is an ϵ-solution of (CSP) if and only if there exist $\epsilon_{1}, \epsilon_{2} \geqq 0$ such that $\epsilon_{1}+\epsilon_{2}=\epsilon$, and

$$
0 \in \partial_{\epsilon_{1}} F\left(\bar{x} ; F_{\mathrm{inf}}(\bar{x})\right)+N_{C}^{\epsilon_{2}}(\bar{x})
$$

Proof. Observe that $\left(\bar{x} ; F_{\mathrm{inf}}(\bar{x})\right)$ is an ϵ-solution of (CSP) if and only if

$$
0 \in \partial_{\epsilon}\left(F+\widetilde{\delta}_{C}\right)\left(\bar{x} ; F_{\mathrm{inf}}(\bar{x})\right)
$$

Hence, apply Theorem 4.1 setting $F^{1}=F, F^{2}=\widetilde{\delta}_{C}$ and applying Theorem 4.1, we obtain that $\left(\bar{x}, F_{\mathrm{inf}}(\bar{x})\right)$ is an ϵ-solution of (CSP) if and only if

$$
0 \in \bigcup_{\substack{\epsilon_{1}+\epsilon_{2}=\epsilon \\ \epsilon_{1}, \epsilon_{2} \geq 0}} \partial_{\epsilon_{1}} F\left(\bar{x} ; F_{\mathrm{inf}}(\bar{x})\right)+\partial_{\epsilon_{2}} \widetilde{\delta}_{C}(\bar{x}, 0)
$$

i.e., there exist $\epsilon_{1}, \epsilon_{2} \geqq 0$ such that $\epsilon_{1}+\epsilon_{2}=\epsilon$, and

$$
0 \in \partial_{\epsilon_{1}} F\left(\bar{x} ; F_{\mathrm{inf}}(\bar{x})\right)+N_{C}^{\epsilon_{2}}(\bar{x})
$$

Applying Theorem 4.2 to $F^{1}=\widetilde{\delta}_{C_{1}}, F^{2}=\widetilde{\delta}_{C_{2}}$, where C_{1}, C_{2} are closed convex sets, we have the following result about the ϵ-normal cone $N_{C_{1} \cap C_{2}}^{\epsilon}(x)$.

Corollary 4.1. Let C_{1} and C_{2} be closed convex subsets of X such that $C_{1} \cap$ $C_{2} \neq \emptyset$. Then, the set $\mathrm{epi} \delta_{C_{1}}^{*}+\mathrm{epi} \delta_{C_{2}}^{*}$ is closed if and only if for each $\epsilon \geqq 0$ and each $x \in C_{1} \cap C_{2}$,

$$
N_{C_{1} \cap C_{2}}^{\epsilon}(x)=\bigcup_{\substack{\epsilon_{1}+\epsilon_{2}=\epsilon \\ \epsilon_{1}, \epsilon_{2} \geqq 0}} N_{C_{1}}^{\epsilon_{1}}(x)+N_{C_{2}}^{\epsilon_{2}}(x)
$$

Now let us consider the following problem $(\widetilde{\mathrm{CSP}})$
$(\widetilde{\mathrm{CSP}}) \quad$ Minimize $\quad F(x)$
subject to $\quad x \in C:=C_{1} \cap C_{2}$
where $F: \mathbb{R}^{n} \rightrightarrows \mathbb{R}$ is a convex set-valued maps, $G_{i}: \mathbb{R}^{n} \rightrightarrows \mathbb{R}$ are upper semicontinuous and convex set-valued maps, $C_{i}=\left\{x \in \mathbb{R}^{n} \mid G_{i}(x) \cap\left(-\mathbb{R}_{+}\right) \neq \emptyset\right\}, i=1,2$ are closed convex subsets of \mathbb{R}^{n} and $C \neq \emptyset$.
Now we give a necessary and sufficient condition for $(\widetilde{\mathrm{CSP}})$.

Theorem 4.4. Let $\bar{x} \in \operatorname{int} \operatorname{dom} F \cap \operatorname{int} \operatorname{dom} G_{1} \cap \operatorname{int} \operatorname{dom} G_{2}$ and $\bar{y} \in F(\bar{x})$ such that $(\bar{x}, \bar{y}) \notin \operatorname{int} \mathrm{epi} F, 0 \in G_{i}(\bar{x}),(\bar{x}, 0) \notin \operatorname{int} \mathrm{epi} G_{i}, i=1,2$. Assume that the set $\operatorname{epi} \delta_{C_{1}}^{*}+\operatorname{epi} \delta_{C_{2}}^{*}$ is closed, and for each $i \in I$, there exists $\widehat{x} \in \mathbb{R}^{n}$ such that

$$
G_{i}(\widehat{x}) \cap\left(-\operatorname{int} \mathbb{R}_{+}\right) \neq \emptyset
$$

Then, (\bar{x}, \bar{y}) is a solution of $(\widetilde{\mathrm{CSP}})$ if and only if there exist $\lambda_{1}, \lambda_{2} \geqq 0$ such that

$$
0 \in \partial F(\bar{x} ; \bar{y})+\lambda_{1} \partial G_{1}(\bar{x} ; 0)+\lambda_{2} \partial G_{2}(\bar{x} ; 0)
$$

Proof. Using Theorem 3.3, we have that (\bar{x}, \bar{y}) is a solution of Problem $(\widetilde{\mathrm{CSP}})$ if and only if

$$
\begin{equation*}
0 \in \partial F(\bar{x} ; \bar{y})+N_{C}(\bar{x}) \tag{4.2}
\end{equation*}
$$

By Corollary 4.1, (4.2) is equivalent to

$$
0 \in \partial F(\bar{x} ; \bar{y})+N_{C_{1}}(\bar{x})+N_{C_{2}}(\bar{x})
$$

From Proposition 3.2, this means that

$$
0 \in \partial F(\bar{x} ; \bar{y})+\text { cone } \partial G_{1}(\bar{x} ; 0)+\text { cone } \partial G_{2}(\bar{x} ; 0)
$$

i.e., there exist $\lambda_{1}, \lambda_{2} \geqq 0$ such that

$$
0 \in \partial F(\bar{x} ; \bar{y})+\lambda_{1} \partial G_{1}(\bar{x} ; 0)+\lambda_{2} \partial G_{2}(\bar{x} ; 0)
$$

Thus the proof is completed.

Let us now consider the following theorem which will provide a relation between the ϵ-solution set of Problem (CSP) and the ϵ-solution set of the following auxiliary Problem (CSP) ${ }^{\prime}$

$$
\begin{array}{lll}
(\mathrm{CSP})^{\prime} & \text { Minimize } & F_{\mathrm{inf}}(x) \\
& \text { subject to } & x \in C
\end{array}
$$

Theorem 4.5. If $\inf _{x^{\prime} \in C \cap \operatorname{dom} F} F\left(x^{\prime}\right)$ is finite, then

$$
\begin{aligned}
\epsilon-\operatorname{sol}(\mathrm{CSP}) & =\left\{(x, y) \mid x \in \epsilon-\operatorname{sol}(\mathrm{CSP})^{\prime}, y \in F(x)\right\} \cap\{(x, y) \mid y-\epsilon \\
& \left.\leqq \inf _{x^{\prime} \in C \cap \operatorname{dom} F} F\left(x^{\prime}\right)\right\},
\end{aligned}
$$

where $\epsilon-\operatorname{sol}(\mathrm{CSP})$ and $\epsilon-\operatorname{sol}(\mathrm{CSP})^{\prime}$ are the set of all ϵ-solutions of (CSP) and $(\mathrm{CSP})^{\prime}$, respectively.

Proof. Let us set $E:=\left\{(x, y) \mid y-\epsilon \leqq \inf _{x^{\prime} \in C \cap \operatorname{dom} F} F\left(x^{\prime}\right)\right\}$. For $(\bar{x}, \bar{y}) \in$ $\epsilon-\operatorname{sol}(\mathrm{CSP})$,

$$
\bar{x} \in C, \bar{y} \in F(\bar{x}) \text { and for any } x \in C \cap \operatorname{dom} F \text { and any } y \in F(x), \bar{y}-\epsilon \leqq y .
$$

Then

$$
\begin{aligned}
& \bar{x} \in C, \bar{y} \in F(\bar{x}) \text { and for any } x \in C \cap \operatorname{dom} F, \\
& \left\{\begin{array}{l}
F_{\text {inf }}(\bar{x})-\epsilon \leqq \bar{y}-\epsilon \leqq F_{\text {inf }}(x) \\
\bar{y}-\epsilon \leqq \inf _{x \in C \cap \operatorname{dom} F} F(x) .
\end{array}\right.
\end{aligned}
$$

Since $\bar{x} \in \epsilon-\operatorname{sol}(\mathrm{CSP})^{\prime}, \bar{y} \in F(\bar{x})$ and $(\bar{x}, \bar{y}) \in E$. Therefore, we have

$$
(\bar{x}, \bar{y}) \in\left\{(x, y) \mid x \in \epsilon-\operatorname{sol}(\mathrm{CSP})^{\prime}, y \in F(x)\right\} \cap E .
$$

For $(\bar{x}, \bar{y}) \in\left\{(x, y) \mid x \in \epsilon-\operatorname{sol}(\operatorname{CSP})^{\prime}, y \in F(x)\right\} \cap E$, we have that $\bar{x} \in C$, $\bar{y} \in F(\bar{x})$ such that for all $x \in C \cap \operatorname{dom} F$,

$$
\left\{\begin{array}{l}
F_{\text {inf }}(\bar{x})-\epsilon \leqq F_{\text {inf }}(x) \\
\bar{y}-\epsilon \leqq F(x) .
\end{array}\right.
$$

This implies that $\bar{x} \in C, \bar{y} \in F(\bar{x})$ such that for any $x \in C \cap \operatorname{dom} F$, and any $y \in F(x)$, we have $\bar{y}-\epsilon \leqq y$. Therefore, $(\bar{x}, \bar{y}) \in \epsilon-\operatorname{sol}(\operatorname{CSP})$, and hence,

$$
\begin{aligned}
\epsilon-\operatorname{sol}(\mathrm{CSP}) & =\left\{(x, y) \mid x \in \epsilon-\operatorname{sol}(\mathrm{CSP})^{\prime}, y \in F(x)\right\} \cap\{(x, y) \mid y-\epsilon \\
& \left.\leqq \inf _{x \in C \cap \operatorname{dom} F} F(x)\right\} .
\end{aligned}
$$

Now we give an example to illustrate Theorems 4.3 and 4.5.
Example 4.1. Let $F: \mathbb{R} \rightrightarrows \mathbb{R}, F(x)=x^{2}+\mathbb{R}_{+}, C=(-\infty, 0]$. Consider the following problem:

(CSP) \quad Minimize	$F(x)$	
	subject to	$x \in C$.

Let us establish the auxiliary problem (CSP) ${ }^{\prime}$:

$$
\begin{array}{lll}
(\mathrm{CSP})^{\prime} & \text { Minimize } & F_{\text {inf }}(x) \\
& \text { subject to } & x \in C,
\end{array}
$$

where $F_{\text {inf }}(x)=x^{2}$, for any $x \in \mathbb{R}$. For each $\epsilon \geqq 0$, we have that

$$
\begin{aligned}
\partial_{\epsilon} F_{\text {inf }}(\bar{x}) & =\left\{\begin{array}{lll}
{[-2 \sqrt{\epsilon}, 2 \sqrt{\epsilon}]} & \text { if } & \bar{x}=0 \\
{[2(\bar{x}-\sqrt{\epsilon}), 2(\bar{x}+\sqrt{\epsilon})]} & \text { if } & \bar{x}<0,
\end{array}\right. \\
N_{C}^{\epsilon}(\bar{x}) & =\left\{\begin{array}{lll}
{[0,+\infty)} & \text { if } & \bar{x}=0 \\
{\left[0,-\frac{\epsilon}{\bar{x}}\right]} & \text { if } & \bar{x}<0 .
\end{array}\right.
\end{aligned}
$$

Observe that from Theorem 4.3, $\bar{x} \in C$ is an ϵ-solution of (CSP) ${ }^{\prime}$ if and only if

$$
0 \in \bigcup_{\substack{\epsilon_{1}+\epsilon_{2}=\epsilon \\ \epsilon_{1}, \epsilon_{2} \geq 0}} \partial_{\epsilon_{1}} F_{\inf }(\bar{x})+N_{C}^{\epsilon_{2}}(\bar{x}) .
$$

This means that there exists $\epsilon_{1}, \epsilon_{2} \geqq 0, \epsilon_{1}+\epsilon_{2}=\epsilon$ such that

$$
0 \in \partial_{\epsilon_{1}} F_{\text {inf }}(\bar{x})+N_{C}^{\epsilon_{2}}(\bar{x}),
$$

or equivalently,

$$
\begin{equation*}
\partial_{\epsilon_{1}} F_{\mathrm{inf}}(\bar{x}) \cap-N_{C}^{\epsilon_{2}}(\bar{x}) \neq \emptyset \tag{4.3}
\end{equation*}
$$

Let $\epsilon \geqq 0$. Now we will find the ϵ-sol(CSP)'.
Case I. $\bar{x}=0 \in C$. Taking $\epsilon_{1}=\epsilon, \epsilon_{2}=0$, we have that (4.3) holds. So, $0 \in \epsilon-\mathrm{sol}(\mathrm{CSP})^{\prime}$.

Case II. $\bar{x} \in[-\sqrt{\epsilon}, 0) \subset C$. Taking $\epsilon_{1}=\epsilon, \epsilon_{2}=0$, by $\bar{x}+\sqrt{\epsilon} \geqq 0$, we have

$$
0 \in[2(\bar{x}-\sqrt{\epsilon}), 2(\bar{x}+\sqrt{\epsilon})]=\partial_{\epsilon} F_{\inf }(\bar{x})+N_{C}(\bar{x}) .
$$

This shows that $[-\sqrt{\epsilon}, 0) \subset \epsilon-\operatorname{sol}(\mathrm{CSP})^{\prime}$.
Case III. $\bar{x} \in(-\infty,-\sqrt{\epsilon}) \subset C$. We will prove that $\bar{x} \notin \epsilon$-sol(CSP)', i.e., for any $\epsilon_{1}, \epsilon_{2} \geqq 0, \epsilon_{1}+\epsilon_{2}=\epsilon$, we have

$$
\begin{equation*}
\left[2\left(\bar{x}-\sqrt{\epsilon_{1}}\right), 2\left(\bar{x}+\sqrt{\epsilon_{1}}\right)\right] \cap\left[\frac{\epsilon_{2}}{\bar{x}}, 0\right]=\emptyset . \tag{4.4}
\end{equation*}
$$

In the other words,

$$
\begin{aligned}
2\left(\bar{x}+\sqrt{\epsilon_{1}}\right)<\frac{\epsilon_{2}}{\bar{x}} & \Longleftrightarrow 2 \bar{x}^{2}+2 \bar{x} \sqrt{\epsilon_{1}}-\epsilon_{2}>0 \\
& \Longleftrightarrow\left[\begin{array}{l}
\bar{x}<\frac{-\sqrt{\epsilon_{1}}-\sqrt{\epsilon_{1}+2 \epsilon_{2}}}{2}=\frac{-\sqrt{\epsilon-\epsilon_{2}}-\sqrt{\epsilon+\epsilon_{2}}}{2} \\
\bar{x}>\frac{-\sqrt{\epsilon_{1}}+\sqrt{\epsilon_{1}+2 \epsilon_{2}}}{2} \geqq \frac{-\sqrt{\epsilon_{1}}+\sqrt{\epsilon_{2}}}{2}=0
\end{array}\right. \\
& \left.\Longleftrightarrow \bar{x}<\frac{-\sqrt{\epsilon-\epsilon_{2}}-\sqrt{\epsilon+\epsilon_{2}}}{2} \quad \quad \text { by } \bar{x} \in C=(-\infty, 0]\right) .
\end{aligned}
$$

By the Schwartz inequality,

$$
\left(\sqrt{\epsilon-\epsilon_{2}}+\sqrt{\epsilon+\epsilon_{2}}\right)^{2} \leqq\left(1^{2}+1^{2}\right)\left(\epsilon-\epsilon_{2}+\epsilon+\epsilon_{2}\right)=4 \epsilon
$$

or, equivalently,

$$
\begin{equation*}
\frac{\sqrt{\epsilon-\epsilon_{2}}+\sqrt{\epsilon+\epsilon_{2}}}{2} \leqq \sqrt{\epsilon} \tag{4.5}
\end{equation*}
$$

In inequality (4.5) the symbol "=" is appeared if and only if

$$
\sqrt{\epsilon-\epsilon_{2}}=\sqrt{\epsilon+\epsilon_{2}} \Longleftrightarrow \epsilon_{2}=0
$$

Hence,
(i) If $\epsilon_{2}=0$, then it is clear that (4.4) holds.
(ii) If $\epsilon_{2}>0$, then we have that

$$
\frac{-\sqrt{\epsilon-\epsilon_{2}}-\sqrt{\epsilon+\epsilon_{2}}}{2}>-\sqrt{\epsilon}>\bar{x}
$$

This shows that (4.4) also holds. Therefore, $\epsilon-\operatorname{sol}(\mathrm{CSP})^{\prime}=[-\sqrt{\epsilon}, 0]$ and $\operatorname{sol}(\mathrm{CSP})^{\prime}$ $=\{0\}$. So, $\inf _{x \in C} \bigcup F(x)=\inf _{x \in C} F_{\mathrm{inf}}(x)=F_{\mathrm{inf}}(0)=0$. Then, by Theorem 4.5, the ϵ-solution set of (CSP) is established as follows:

$$
\begin{aligned}
\epsilon \text {-sol }(\mathrm{CSP}) & =\left\{(x, y) \mid x \in \epsilon-\operatorname{sol}(\mathrm{CSP})^{\prime}, y \in F(x)\right\} \cap \mathbb{R} \times\{y \mid y-\epsilon \leqq 0\} \\
& =\{(x, y) \mid x \in[-\sqrt{\epsilon}, 0], y \in F(x)\} \cap \mathbb{R} \times\{y \mid y \leqq \epsilon\} \\
& =\left\{(x, y) \mid x \in[-\sqrt{\epsilon}, 0], y \in\left[x^{2}, \epsilon\right]\right\}
\end{aligned}
$$

Remark 4.5. In Example 4.1 if F is replaced by the set-valued map defined by $F(x)=x^{2}+$ int \mathbb{R}_{+}, then it is worth noticing that although the solution set of Problem (CSP) is empty, for each $\epsilon>0$ the ϵ-solution set of Problem (CSP) is nonempty. Using our approach, we can see that

$$
\epsilon-\text { sol }(\mathrm{CSP})=\left\{(x, y) \mid x \in[-\sqrt{\epsilon}, 0], y \in\left(x^{2}, \epsilon\right]\right\}
$$

References

1. J. Baier and J. Jahn, On subdifferentials of set-valued maps, J. Optim. Th. Appl., 100 (1999), 233-240.
2. G. Bigi and M. Castellani, K-epidrivatives for set-valued functions and optimization, Math. Meth. Oper. Res., 55 (2002), 401-412.
3. R. S. Burachik and V. Jeyakumar, A new geometric condition for Fenchel's duality in infinite dementional spaces, Math. Program. Ser. B, 104 (2005), 229-233.
4. G. Y. Chen and J. Jahn, Optimality conditions for set-valued optimization problems, Math. Meth. Oper. Res., 48 (1998), 187-200.
5. H. W. Corley, Optimality conditions for maximizations of set-valued functions, J. Optim. Th. Appl., 58 (1998), 1-10.
6. Fabián Flores-Bazán, Optimality conditions in non-convex set-valued optimization, Math. Meth. Oper. Res., 53 (2001), 403-417.
7. A. Götz and J. Jahn, The Lagrange multiplier rule in set-valued optimization, SIAM J. Optim., 10 (1999), 331-344.
8. J. B. Hiriart-Urruty and C. Lemarechal, Convex Analysis and Minimization Algorithms, Vol. I and II, Springer-Verlag, Berlin, Heidelberg, 1993.
9. J. B. Hiriart-Urruty, M. Moussaoui, A. Seeger and M. Volle, Subdifferential calculus without qualification conditions, using approximate subdifferentials: a survey, Nonlinear Analysis, 24 (1995), 1727-1754.
10. J. Jahn and R. Rauh, Contingent epiderivatives and set-valued optimization, Math. Meth. Oper. Res., 46 (1997), 193-211.
11. V. Jeyakumar and B. M. Glover, Characterizing global optimality for DC optimization problems under convex inequality constraints, J. Global Optim., 8 (1996), 171-187.
12. G. S. Kim and G. M. Lee, On ϵ-approximate solutions for convex semidefinite optimization problems, Taiwanese J. Math., 11 (2007), 765-784.
13. D. Kuroiwa, On set-valued optimization, Nonlinear Analysis, 47 (2001), 1395-1400.
14. P. Loridan, Necessary conditions for ϵ-optimality, Math. Programming, 19 (1982), 140-152.
15. P. Loridan, ϵ-Solutions in vector minimization problems, J. Optim. Th. Appl., 43 (1984), 265-276.
16. R. T. Rockafellar, Convex Analysis, Princeton Univ. Press, 1997.
17. W. Song, Weak subdifferential of set-valued mappings, Optimization, 52 (2003), 263-276.
18. J. J. Strodiot, V. H. Nguyen and N. Heukemes, ϵ-Optimal solutions in nondifferentiable convex programming and some related questions, Math. Programming, 25 (1983), 307-328.
19. K. Yokoyama, ϵ-Optimality criteria for convex programming problems via exact penalty functions, Math. Programming, 56 (1992), 233-243.

Gue Myung Lee
Pukyong National University,
Pusan, Korea
E-mail: gmlee@pknu.ac.kr
Le Anh Tuan
Ninh Thuan College of Pedagogy,
Ninh Thuan,
Vietnam
E-mail: latuan02@yahoo.com

[^0]: Received June 30, 2009.
 2000 Mathematics Subject Classification: 90C25, 90C46.
 Key words and phrases: Convex set-valued map, ϵ-Subgradient, Convex set-valued optimization problem, ϵ-Solution, ϵ-Optimality condition.
 This work was supported by the Korea Science and Engineering Foundation (KOSEF) NRL Program grant funded by the Korea government(MEST) (No. ROA-2008-000-20010-0).

