TAIWANESE JOURNAL OF MATHEMATICS Vol. 13, No. 6A, pp. 1787-1810, December 2009 This paper is available online at http://www.tjm.nsysu.edu.tw/

ON ϵ -OPTIMALITY CONDITIONS FOR CONVEX SET-VALUED OPTIMIZATION PROBLEMS

Gue Myung Lee and Le Anh Tuan

Dedicated to Professor Boris Mordukhovich in celebration of his 60th birthday

Abstract. In this paper, ϵ -subgradients for convex set-valued maps are defined. We prove an existence theorem for ϵ -subgradients of convex set-valued maps. Also, we give necessary ϵ - optimality conditions for an ϵ -solution of a convex set-valued optimization problem (CSP). Moreover, using the single-valued function induced from the set-valued map, we obtain theorems describing the ϵ -subgradient sum formula for two convex set-valued maps, and then give necessary and sufficient ϵ -optimality conditions for the problem (CSP).

1. INTRODUCTION

Recently, there have been intensive researches for set-valued optimization problems ([1, 2, 4-7, 10, 13, 17]), which consist of set-valued maps and sets. To get optimality conditions for solutions of set-valued optimization problems, we need generalized derivatives (epiderivatives) for set-valued maps and so, most of researchers have used contingent derivatives (epiderivatives) which are defined by contigent cones.

From computational view, most of algorithms give us ϵ -solutions (approximate solutions) of optimization problems. Thus many researchers have studied optimality conditions for ϵ -solutions for scalar optimization problems and vector optimization problems ([8, 11, 12, 14, 15, 18, 19]). However, there are very little results for optimality conditions for ϵ -solution (approximate solution) of set-valued optimization problems. Moreover, it seems that contigent derivatives (epiderivatives) are not

Received June 30, 2009.

²⁰⁰⁰ Mathematics Subject Classification: 90C25, 90C46.

Key words and phrases: Convex set-valued map, ϵ -Subgradient, Convex set-valued optimization problem, ϵ -Solution, ϵ -Optimality condition.

This work was supported by the Korea Science and Engineering Foundation (KOSEF) NRL Program grant funded by the Korea government(MEST) (No. ROA-2008-000-20010-0).

suitable for getting optimality conditions for ϵ -solutions of set-valued optimization problems.

The purpose of this paper is to define ϵ -subgradients for set-valued maps with the closed convex cones generated by their epigraphs and to establish optimality conditions for ϵ -solutions of a convex set-valued optimization.

Now we recall some notations and preliminary results, which will be used throughout the paper.

Let $f : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$ be a proper convex function. Then for $\epsilon \ge 0$, the ϵ -subgradient of f at $\bar{x} \in \text{dom} f$ is defined as the set

$$\partial_{\epsilon} f(\bar{x}) := \{ v \in \mathbb{R}^n \mid f(x) \ge f(\bar{x}) + v^T (x - \bar{x}) - \epsilon \text{ for any } x \in \text{dom} f \},\$$

where the effective domain of f, domf, is given by

$$\operatorname{dom} f := \{ x \in \mathbb{R}^n \mid f(x) < +\infty \}.$$

When $\epsilon = 0$, $\partial_0 f(\bar{x})$ is denoted by $\partial f(\bar{x})$ and is called the subgradient of f at \bar{x} (see [8, 9, 16]). We define the indicator function of a convex subset C of \mathbb{R}^n as follows:

$$\delta_C(x) = \begin{cases} 0 & \text{if } x \in C \\ +\infty & \text{if } x \notin C. \end{cases}$$

Hence, if $\bar{x} \in C$ and $\epsilon \geq 0$, then

$$\partial_{\epsilon} \delta_C(\bar{x}) = \{ v \in \mathbb{R}^n \mid v^T(x - \bar{x}) \leq \epsilon \text{ for any } x \in C \}.$$

We denote $\partial_{\epsilon}\delta_{C}(x)$ by $N_{C}^{\epsilon}(\bar{x})$, which is called the ϵ -normal set of C at \bar{x} . When $\epsilon = 0$, $\partial \delta_{C}(\bar{x}) = \partial_{0}\delta_{C}(\bar{x}) = \{v \in \mathbb{R}^{n} \mid v^{T}(x-\bar{x}) \leq 0 \text{ for any } x \in C\}$. We denote $\partial \delta_{C}(\bar{x})$ by $N_{C}(\bar{x})$, which is called the normal cone of C at \bar{x} . If C is a closed convex cone in \mathbb{R}^{n} , then for any $\epsilon \geq 0$,

$$N_C^{\epsilon}(0) = N_C(0).$$

Let $F : \mathbb{R}^n \rightrightarrows \mathbb{R}$ be a set-valued map. The domain of F, domF, and the epigraph of F, epiF, are defined as follows:

$$\operatorname{dom} F := \{ x \in \mathbb{R}^n \mid F(x) \neq \emptyset \},\$$
$$\operatorname{epi} F := \{ (x, y + \alpha) \in \mathbb{R}^n \times \mathbb{R} \mid x \in \operatorname{dom} F, \ y \in F(x), \ \alpha \ge 0 \}.$$

Definition 1.1. A set-valued map $F : \mathbb{R}^n \rightrightarrows \mathbb{R}$ is said to be convex if for any $x, y \in \mathbb{R}^n$ and any $\lambda \in [0, 1]$,

$$\lambda F(x) + (1 - \lambda)F(y) \subset F(\lambda x + (1 - \lambda)y) + \mathbb{R}_+,$$

where $\mathbb{R}_+ = \{r \in \mathbb{R} \mid r \ge 0\}$ (\mathbb{R}_+ is called the nonnegative real half-line).

Obviously, a convex function $f: \mathbb{R}^n \to \mathbb{R}$ is also a convex set-valued map.

If $F : \mathbb{R}^n \rightrightarrows \mathbb{R}$ is a convex set-valued map, then epiF is a convex subset of \mathbb{R}^{n+1} (see Lemma 1 in [10]). The cone generated by a nonempty subset M of \mathbb{R}^{n+1} is denoted by

$$\operatorname{cone}(M) := \{\lambda x \mid \lambda \ge 0, \ x \in M\},\$$

and the closure of cone(M) is denoted by $\overline{cone}(M)$.

Let $f : \mathbb{R}^n \to \mathbb{R}$ be a function. Recall that the conjugate function of f, $f^* : \mathbb{R}^n \to \mathbb{R} \cup \{-\infty, +\infty\}$ defined by for any $v \in \mathbb{R}^n$

$$f^*(v) = \sup\{v^T x - f(x) \mid x \in \mathbb{R}^n\}.$$

Similarly, for a set-valued map $F : \mathbb{R}^n \rightrightarrows \mathbb{R}$, we define the conjugate function of $F, F^* : \mathbb{R}^n \to \mathbb{R} \cup \{-\infty, +\infty\}$ by for any $v \in \mathbb{R}^n$,

$$F^*(v) = \sup\{v^T x - y \mid x \in \mathbb{R}^n, \ y \in F(x)\}.$$

For the proper lower semicontinuous convex functions $f_1, f_2 : \mathbb{R}^n \to \mathbb{R} \cup \{+\infty\}$, the infimal convolution of f_1 with f_2 is denoted by $f_1 \square f_2 : \mathbb{R}^n \to \mathbb{R} \cup \{-\infty, +\infty\}$, and is defined by

$$(f_1 \Box f_2)(x) = \inf_{x_1 + x_2 = x} \{ f_1(x_1) + f_2(x_2) \}.$$

Definition 1.2. Let $F : \mathbb{R}^n \rightrightarrows \mathbb{R}$ be a convex set-valued map, and $\bar{x} \in \text{dom}F$ and $\bar{y} \in F(\bar{x})$. Let $\epsilon \ge 0$. Define, for any $x \in \mathbb{R}^n$,

$$D_{\epsilon}F(\bar{x};\bar{y})(x) := \inf\{\lambda \mid (x,\lambda) \in \overline{\operatorname{cone}} \ [\operatorname{epi}F - (\bar{x},\bar{y}-\epsilon)]\},\ \partial_{\epsilon}F(\bar{x};\bar{y}) := \{v \in \mathbb{R}^n \mid D_{\epsilon}F(\bar{x};\bar{y})(x) \ge D_{\epsilon}F(\bar{x};\bar{y})(0) + v^T x \text{ for any } x \in \mathbb{R}^n\}.$$

If $x \notin \Pr_{\mathbb{R}^n} \overline{\text{cone}} [\operatorname{epi} F - (\bar{x}, \bar{y} - \epsilon)]$, where Pr is the projection onto \mathbb{R}^n , then we let $D_{\epsilon}F(\bar{x}; \bar{y})(x) = +\infty$. We say that $D_{\epsilon}F(\bar{x}; \bar{y})$ is the radial ϵ -epiderivative of F at (\bar{x}, \bar{y}) and that $\partial_{\epsilon}F(\bar{x}; \bar{y})$ is the ϵ -subgradient of F at (\bar{x}, \bar{y}) . Moreover, we denote $D_0F(\bar{x}; \bar{y})$ by $DF(\bar{x}; \bar{y})$, and $\partial_0F(\bar{x}; \bar{y})$ by $\partial F(\bar{x}; \bar{y})$. We say that $DF(\bar{x}; \bar{y})$ is the radial epiderivative of F at (\bar{x}, \bar{y}) (see [6] for the definition of the radial epiderivative) and that $\partial F(\bar{x}; \bar{y})$ is the subgradient of F at (\bar{x}, \bar{y}) .

Now we give the set-valued version of the indicator function δ_C as follows:

$$\widetilde{\delta}_C(x) = \begin{cases} \{0\} & \text{if } x \in C \\ \emptyset & \text{if } x \notin C. \end{cases}$$

Then we can check that if $\bar{x} \in C$ and $\epsilon \geq 0$, $\partial_{\epsilon} \tilde{\delta}_{C}(\bar{x}; 0) = N_{C}^{\epsilon}(\bar{x})$. Indeed, let $\bar{x} \in C$. Clearly, $D_{\epsilon} \tilde{\delta}_{C}(\bar{x}; 0)(0) \leq 0$. Moreover, we can easily check that $0 \leq D_{\epsilon} \tilde{\delta}_{C}(\bar{x}; 0)(0)$. So, $D_{\epsilon} \widetilde{\delta}_{C}(\bar{x}; 0)(0) = 0$. Notice that $v \in \partial_{\epsilon} \widetilde{\delta}_{C}(\bar{x}; 0)$ if and only if for any $x \in \mathbb{R}^{n}$, $D_{\epsilon} \widetilde{\delta}_{C}(\bar{x}; 0)(x) \ge v^{T} x$. Since epi $D_{\epsilon} \widetilde{\delta}_{C}(\bar{x}; 0) = \overline{\operatorname{cone}}(C \times \mathbb{R}_{+} - (\bar{x}, -\epsilon)), v \in \partial_{\epsilon} \widetilde{\delta}_{C}(\bar{x}; 0)$ if and only if for any $(x, \alpha) \in C \times \mathbb{R}_{+} - (\bar{x}, -\epsilon)$,

$$(v, -1)^T (x, \alpha) \le 0.$$

Thus, $v \in \partial_{\epsilon} \widetilde{\delta}_C(\bar{x}; 0)$ if and only if for any $x \in C$ and any $\alpha \geq 0$,

$$v^T(x - \bar{x}) \le \alpha + \epsilon.$$

Hence, $\partial_{\epsilon} \widetilde{\delta}_C(\bar{x}; 0) = N_C^{\epsilon}(\bar{x}).$

Using the above argument used for proving that $\partial_{\epsilon} \delta_C(\bar{x}; 0) = N_C^{\epsilon}(\bar{x})$, we can prove that if F is a single-valued map, then $\partial_{\epsilon} F(\bar{x}; \bar{y})$ becomes the usual ϵ -subgradient $\partial_{\epsilon} F(\bar{x})$ at \bar{x} .

In this paper, we consider the following convex set-valued optimization problem:

(CSP) Minimize
$$F(x)$$

subject to $x \in C$,

where $F : \mathbb{R}^n \rightrightarrows \mathbb{R}$ is a convex set-valued map and C is a nonempty closed convex subset of \mathbb{R}^n . Let $\epsilon \ge 0$, $\bar{x} \in C$ and $\bar{y} \in F(\bar{x})$. Then (\bar{x}, \bar{y}) is said to be an ϵ -solution of (CSP) if for any $x \in C \cap \text{dom}F$ and any $y \in F(x)$,

$$\bar{y} - \epsilon \leq y$$

and (\bar{x}, \bar{y}) is called a solution of (CSP) if for any $x \in C \cap \text{dom}F$ and any $y \in F(x)$,

 $\bar{y} \leq y.$

This paper is organized as follows. In Section 2, we prove existence theorems for ϵ -subgradients of convex set-valued maps. We give a necessary optimality condition for an ϵ -solution of Problem (CSP) in Section 3 and introduce necessary and sufficient ϵ -optimality conditions for an ϵ -solution of (CSP) in Section 4. In particular, the ϵ -solution set of (CSP) is characterized at Theorem 4.5 in Section 4.

2. EXISTENCE OF ϵ -Subgradients

In this section, we prove propositions which tell about the existence for ϵ -subgradients of convex set-valued maps.

Proposition 2.1. Let $F : \mathbb{R}^n \rightrightarrows \mathbb{R}$ be a convex set-valued map. Let $\epsilon \ge 0$, and $\bar{x} \in \text{int dom}F$ and $\bar{y} \in F(\bar{x})$. Assume that $(\bar{x}, \bar{y} - \epsilon) \notin \text{int epi}F$. Then we have,

On ϵ -Optimality Conditions for Convex Set-valued Optimization Problems

(i) $D_{\epsilon}F(\bar{x};\bar{y}): \mathbb{R}^n \to \mathbb{R}$ is finite-valued, and sublinear, that is, for any $x, y \in \mathbb{R}^n$,

$$D_{\epsilon}F(\bar{x};\bar{y})(x+y) \leq D_{\epsilon}F(\bar{x};\bar{y})(x) + D_{\epsilon}F(\bar{x};\bar{y})(y)$$

and for any $x \in \mathbb{R}^n$ and any $\alpha \ge 0$, $D_{\epsilon}F(\bar{x};\bar{y})(\alpha x) = \alpha D_{\epsilon}F(\bar{x};\bar{y})(x)$.

(ii) $\partial_{\epsilon} F(\bar{x}; \bar{y})$ is a nonempty convex compact subset of \mathbb{R}^n .

Proof. Since $(\bar{x}, \bar{y} - \epsilon) \notin \text{int epi}F$, $(0, 0) \notin \text{int epi}F - (\bar{x}, \bar{y} - \epsilon)$. Let $\Omega := \text{epi}F - (\bar{x}, \bar{y} - \epsilon)$. From the convexity of the set int $\text{epi}F - (\bar{x}, \bar{y} - \epsilon)$ and from separation theorem, there exists $(a, b) \in \mathbb{R}^n \times \mathbb{R}$, $(a, b) \neq (0, 0)$ such that for any $(x, y) \in \Omega$, $a^T x + by \ge 0$, and hence for any $(x, y) \in \overline{\text{cone}}(\Omega)$,

$$(2.1) a^T x + by \ge 0$$

If b = 0, then $a^T x \ge 0$ for any $x \in \Pr_{\mathbb{R}^n} \overline{\operatorname{cone}}(\Omega)$. This shows that $a^T x \ge 0$ for any $x \in \operatorname{dom} F - \overline{x}$, and hence

(2.2)
$$a^T(x-\bar{x}) \ge 0 \text{ for any } x \in \operatorname{dom} F.$$

Since $\bar{x} \in \text{int dom} F$, we can find $\delta > 0$ such that $\bar{x} + B_{\delta}(0) \subset \text{dom} F$, where $B_{\delta}(0) = \{x \in \mathbb{R}^n \mid ||x|| < \delta\}$. Thus, from (2.2), for any $x \in B_{\delta}(0)$, $a^T x \ge 0$ and so, a = 0. Therefore, $b \ne 0$. Moreover, for any $r \ge 0$, $(0, r + \epsilon) = (\bar{x}, \bar{y} + r) - (\bar{x}, \bar{y} - \epsilon) \in \Omega$. From (2.1), b > 0, and hence for any $(x, y) \in \overline{\text{cone}}(\Omega)$, $y \ge -\frac{1}{b}a^T x$. This means that for any $x \in \Pr_{\mathbb{R}^n} \overline{\text{cone}}(\Omega)$, $D_{\epsilon}F(\bar{x}, \bar{y})(x) \ge -\frac{1}{b}a^T x$. Since $\bar{x} \in \text{int dom} F$, we can check that for any $x \in \mathbb{R}^n$,

$$D_{\epsilon}F(\bar{x};\bar{y})(x) \ge -\frac{1}{b}a^T x.$$

Moreover, we can easily check that

$$\operatorname{epi} D_{\epsilon} F(\bar{x}; \bar{y}) = \overline{\operatorname{cone}}(\Omega).$$

This means that $D_{\epsilon}F(\bar{x};\bar{y})$ is sublinear. Thus the function $D_{\epsilon}F(\bar{x};\bar{y}):\mathbb{R}^n \to \mathbb{R}$ is finite-valued and sublinear. Since $\partial_{\epsilon}F(\bar{x};\bar{y}) = \partial D_{\epsilon}F(\bar{x};\bar{y})(0), \ \partial_{\epsilon}F(\bar{x},\bar{y})$ is a nonempty compact convex set (see [16]).

Remark 2.1. Observe that by Proposition 2.1, for any $x \in \mathbb{R}^n$, $D_{\epsilon}F(\bar{x}; \bar{y})(0) = 0$ and $D_{\epsilon}F(\bar{x}; \bar{y})(x) > -\infty$ and so, $D_{\epsilon}F(\bar{x}; \bar{y})$ is proper and sublinear. Moreover, since $\partial_{\epsilon}F(\bar{x}; \bar{y}) = \partial D_{\epsilon}F(\bar{x}; \bar{y})(0)$, $v \in \partial_{\epsilon}F(\bar{x}; \bar{y})$ if and only if for any $x \in \mathbb{R}^n$, $D_{\epsilon}F(\bar{x}; \bar{y})(x) \ge v^T x$. Thus we can easily check that $v \in \partial_{\epsilon}F(\bar{x}; \bar{y})$ if and only if for any $(x, \lambda) \in \operatorname{epi} F - (\bar{x}, \bar{y} - \epsilon)$, $v^T x \le \lambda$. This shows that (\bar{x}, \bar{y}) is an ϵ -solution of (CSP) in the case $C = \mathbb{R}^n$ if and only if $0 \in \partial_{\epsilon}F(\bar{x}; \bar{y})$.

Let $F : \mathbb{R}^n \rightrightarrows \mathbb{R}$ is a set-valued map. Let us define $F_{\inf}(x) := \inf\{y \mid y \in F(x)\}$ if $x \in \operatorname{dom} F$ and $F_{\inf}(x) = +\infty$ if $x \notin \operatorname{dom} F$, and $\widetilde{F}(x) := F(x) \cup \{F_{\inf}(x)\}$ for all $x \in \mathbb{R}^n$.

Proposition 2.2. Let $F : \mathbb{R}^n \rightrightarrows \mathbb{R}$ be a convex set-valued map.

- (i) If F_{inf}(x) > -∞ for all x ∈ domF, then F_{inf} is a proper convex function. If we assume furthermore that domF and epiF_{inf} are closed, then F_{inf} is lower semicontinuous on ℝⁿ.
- (ii) For any $\epsilon \geq 0$, and any $\bar{x} \in \text{int dom}F$, $\partial_{\epsilon} \tilde{F}(\bar{x}; F_{\text{inf}}(\bar{x})) \neq \emptyset$ and

$$\partial_{\epsilon} F(\bar{x}; F_{\inf}(\bar{x})) = \partial_{\epsilon} F_{\inf}(\bar{x}).$$

If in addition that $F_{inf}(x) \in F(x)$ for all $x \in \text{dom}F$, then for any $\epsilon \ge 0$, and any $\overline{x} \in \text{int dom}F$,

$$\partial_{\epsilon} F(\bar{x}; F_{\inf}(\bar{x})) = \partial_{\epsilon} F_{\inf}(\bar{x}).$$

Proof. (i) Obviously, we only need to prove that F_{\inf} is a convex function on dom F. Assume to the contrary that there exist $x_1, x_2 \in \text{dom}F$ and $\lambda \in (0, 1)$ such that

(2.3)
$$F_{\inf}(x_{\lambda}) > \lambda F_{\inf}(x_1) + (1-\lambda)F_{\inf}(x_2),$$

where $x_{\lambda} = \lambda x_1 + (1 - \lambda) x_2$. Let us choose δ such that $0 < \delta < F_{\inf}(x_{\lambda}) - (\lambda F_{\inf}(x_1) + (1 - \lambda)F_{\inf}(x_2))$. By the definitions of $F_{\inf}(x_1)$ and $F_{\inf}(x_2)$, we can find $y_1 \in F_{\inf}(x_1)$, $y_2 \in F_{\inf}(x_2)$ such that

$$\begin{cases} F_{\inf}(x_1) > y_1 - \delta \\ F_{\inf}(x_2) > y_2 - \delta. \end{cases}$$

From these and from (2.3), it yields

(2.4)
$$F_{inf}(x_{\lambda}) > \lambda(y_1 - \delta) + (1 - \lambda)(y_2 - \delta) + \delta = \lambda y_1 + (1 - \lambda)y_2 =: y_{\lambda}.$$

Observe that epiF is a convex set since F is convex. So,

$$(x_{\lambda}, y_{\lambda}) = \lambda(x_1, y_1) + (1 - \lambda)(x_2, y_2) \in \operatorname{epi} F.$$

This implies that there exist $y \in F(x_{\lambda})$ and $r \ge 0$ such that

$$y_{\lambda} = y + r \ge y.$$

From this and from (2.4), we have

$$F_{\inf}(x_{\lambda}) > y.$$

This is impossible since $F_{inf}(x_{\lambda}) \leq y$, for all $y \in F(x_{\lambda})$. Therefore, F_{inf} is a convex function. Also, it is clear that under given assumptions, F_{inf} is proper and lower semicontinuous.

(ii) To apply Proposition 2.1 we need to prove that $(\bar{x}, F_{inf}(\bar{x}) - \epsilon) \notin int epiF$. Indeed, otherwise that there exists a $\delta > 0$ such that

$$\{\bar{x}\} \times (F_{\inf}(\bar{x}) - \epsilon - \delta, F_{\inf}(\bar{x}) - \epsilon + \delta) \subset epiF.$$

This means that $(F_{\inf}(\bar{x}) - \epsilon - \delta, F_{\inf}(\bar{x}) - \epsilon + \delta) \subset F(\bar{x}) + \mathbb{R}_+$. Then, for some δ' satisfying $0 < \delta' < \delta$, we can find $y \in F(\bar{x})$ and $r \ge 0$ such that $F_{\inf}(\bar{x}) - \epsilon - \delta' = y + r$. So, $F_{\inf}(\bar{x}) = y + r + \epsilon + \delta' > y$. This contradicts to the definition of $F_{\inf}(\bar{x})$. Therefore, $(\bar{x}, F_{\inf}(\bar{x}) - \epsilon) \notin int epiF$. Applying Proposition 2.1, we conclude that $\partial_{\epsilon} \widetilde{F}(\bar{x}; F_{\inf}(\bar{x})) \neq \emptyset$.

Observe that

$$v \in \partial_{\epsilon} F(\bar{x}; F_{\inf}(\bar{x})) \iff \forall (x, \lambda) \in \operatorname{epi} F - (\bar{x}, F_{\inf}(\bar{x}) - \epsilon), \ v^{T} x \leq \lambda$$

$$\iff \forall x \in \operatorname{dom} \tilde{F}, \ \forall y \in \tilde{F}(x), \ \forall r \geq 0,$$

$$v^{T}(x - \bar{x}) \leq y + r - (F_{\inf}(\bar{x}) - \epsilon)$$

$$\iff \forall x \in \operatorname{dom} F, \ \forall y \in \tilde{F}(x),$$

$$v^{T}(x - \bar{x}) \leq y - (F_{\inf}(\bar{x}) - \epsilon)$$

$$\iff \forall x \in \operatorname{dom} F, \ v^{T}(x - \bar{x}) \leq F_{\inf}(x) - (F_{\inf}(\bar{x}) - \epsilon)$$

$$\iff v \in \partial_{\epsilon} F_{\inf}(\bar{x}).$$

Therefore, $\partial_{\epsilon} \widetilde{F}(\bar{x}, F_{\inf}(\bar{x})) = \partial_{\epsilon} F_{\inf}(\bar{x}).$

Remark 2.2. Observe that if dom F and epiF are closed and if $F_{inf} > -\infty$ for any $x \in \text{dom}F$, then F_{inf} is lower semicontinuous. Indeed, we should prove that epi F_{inf} is closed. Let $(x_n, \alpha_n) \in \text{dom}F \times \mathbb{R}$ with $F_{inf}(x_n) \leq \alpha_n$ and let (x_n, α_n) converge to $(\bar{x}, \bar{\alpha})$. Then there exist $\epsilon_n > 0$ and $y_n \in F(x_n)$ such that ϵ_n converges to 0 and $F_{inf}(x_n) \leq y_n < \alpha_n + \epsilon_n$. Thus $(x_n, \alpha_n + \epsilon_n) \in \text{epi}F$ converges to $(\bar{x}, \bar{\alpha})$. Since epiF is closed, $(\bar{x}, \bar{\alpha}) \in \text{epi}F$. Hence, $(\bar{x}, \bar{\alpha}) \in \text{epi}F_{inf}$.

A set-valued map F, which is satisfied all of the conditions: dom F is closed, $F_{inf} > -\infty$ for any $x \in \text{dom}F$, and F_{inf} is lower semicontinuous, may not be satisfied the condition: epiF is closed. Indeed, it is clear that the set-valued map $F : \mathbb{R} \rightrightarrows \mathbb{R}$ defined by $F(x) = x^2 + \text{int } \mathbb{R}_+$ for all $x \in \mathbb{R}$, is satisfied all of the previous conditions except the closedness of epiF. Using the same proof way as the proof of Proposition 2.2(ii), we obtain the following proposition.

Proposition 2.3. Let $F^1, F^2 : \mathbb{R}^n \rightrightarrows \mathbb{R}$ be convex such that $\operatorname{dom} F^1 \cap \operatorname{dom} F^2 \neq \emptyset$. Assume that $F^i_{\inf}(x) > -\infty$ for all $x \in \operatorname{dom} F^i, i = 1, 2$. Then for all $\epsilon \ge 0$ and for all $\bar{x} \in \operatorname{int} \operatorname{dom} F^1 \cap \operatorname{int} \operatorname{dom} F^2$, we have

$$\partial_{\epsilon}(\widetilde{F^1} + \widetilde{F^2})(\bar{x}; F^1_{\inf}(\bar{x}) + F^2_{\inf}(\bar{x})) = \partial_{\epsilon}(F^1_{\inf} + F^2_{\inf})(\bar{x}).$$

If in addition that $F^i_{inf}(x) \in F^i(x), i = 1, 2$, for all $x \in int \operatorname{dom} F^1 \cap int \operatorname{dom} F^2$, then

$$\partial_{\epsilon}(F^{1} + F^{2})(\bar{x}; F^{1}_{\inf}(\bar{x}) + F^{2}_{\inf}(\bar{x})) = \partial_{\epsilon}(F^{1}_{\inf} + F^{2}_{\inf})(\bar{x}).$$

3. Necessary ϵ -Optimality Conditions

In this section, we give necessary ϵ -optimality conditions for ϵ -solutions and solutions of the convex optimization problem (CSP) formulated in Section 1. First, following the proof method for Theorem 23.8 in [16], we prove a sum formula for convex set-valued maps which will be used for getting necessary ϵ -optimality conditions for (CSP).

Theorem 3.1. Let $F : \mathbb{R}^n \Rightarrow \mathbb{R}$ be a convex set-valued map and C a closed convex subset of \mathbb{R}^n . Let $\bar{x} \in C \cap \text{int dom} F$ and $\bar{y} \in F(\bar{x})$, and $\epsilon \geq 0$. Suppose that $(\bar{x}, \bar{y} - \epsilon) \notin \text{int epi} F$. Then we have

$$\partial_{\epsilon}(F+\delta_C)(\bar{x};\bar{y}) \subset \partial_{\epsilon}F(\bar{x};\bar{y}) + N_C^{\epsilon}(\bar{x}).$$

Proof. Since $\operatorname{epi}(F + \widetilde{\delta}_C) \subset \operatorname{epi} F$, $D_{\epsilon}F(\bar{x}; \bar{y})(x) \leq D_{\epsilon}(F + \widetilde{\delta}_C)(\bar{x}; \bar{y})(x)$ for any $x \in \mathbb{R}^n$. Thus, by Proposition 2.1, $D_{\epsilon}(F + \widetilde{\delta}_C)(\bar{x}; \bar{y})(0) = 0$ and $D_{\epsilon}(F + \widetilde{\delta}_C)(\bar{x}; \bar{y})(x) > -\infty$ for any $x \in \mathbb{R}^n$, and so, $D_{\epsilon}(F + \widetilde{\delta}_C)(\bar{x}; \bar{y})$ is proper and sublinear. Moreover, since $\partial_{\epsilon}(F + \widetilde{\delta}_C)(\bar{x}; \bar{y}) = \partial D_{\epsilon}(F + \widetilde{\delta}_C)(\bar{x}; \bar{y})(0)$, $v \in \partial_{\epsilon}(F + \widetilde{\delta}_C)(\bar{x}; \bar{y})$ if and only if for any $x \in \mathbb{R}^n$, $D_{\epsilon}(F + \widetilde{\delta}_C)(\bar{x}; \bar{y})(x) \geq v^T x$. Thus we can easily check that $v \in \partial_{\epsilon}(F + \widetilde{\delta}_C)(\bar{x}; \bar{y})$ if and only if for any $(x, \lambda) \in$ $\operatorname{epi}(F + \widetilde{\delta}_C) - (\bar{x}, \bar{y} - \epsilon), v^T x \leq \lambda$. Moreover, we can check that $v \in \partial_{\epsilon}(F + \widetilde{\delta}_C)(\bar{x}; \bar{y})$ if and only if for any $x \in C \cap \operatorname{dom} F$ and any $y \in F(x)$,

(3.1)
$$0 \leq y - \bar{y} + \epsilon - v^T (x - \bar{x})$$

Let $G(x) = F(x) - \bar{y} + \epsilon - v^T(x - \bar{x})$, $C_1 = \operatorname{epi} G$ and $C_2 = \{(x, \lambda) \in C \times \mathbb{R} \mid \lambda \leq 0\}$. Then $G(\bar{x}) = F(\bar{x}) - \bar{y} + \epsilon$. Since $\bar{y} \in F(\bar{x})$, $\epsilon \in G(\bar{x})$, and since $\bar{x} \in \operatorname{int} \operatorname{dom} F$, $\operatorname{int} C_1 \neq \emptyset$. It is clear that C_1 and C_2 are convex. Moreover

int $C_1 \cap C_2 = \emptyset$. Indeed, suppose to the contrary that $\operatorname{int} C_1 \cap C_2 \neq \emptyset$. Then there exists $(\bar{z}, \bar{\lambda}) \in \operatorname{int} C_1 \cap C_2$. Thus $\bar{z} \in C \cap \operatorname{dom} F$ and $\bar{\lambda} \leq 0$, and there exists $\delta > 0$ such that $\{\bar{z}\} \times (\bar{\lambda} - \delta, \bar{\lambda} + \delta) \subset C_1$. Let λ be such that $\bar{\lambda} - \delta < \lambda < \bar{\lambda}$. Since $(\bar{z}, \lambda) \in C_1$, we can find $\bar{y} \in F(\bar{z})$ and $\lambda_1 \geq 0$ such that $\lambda = \bar{y} - \bar{y} + \epsilon - v^T(\bar{z} - \bar{x}) + \lambda_1$, that is, $\bar{y} - \bar{y} + \epsilon - v^T(\bar{z} - \bar{x}) = \lambda - \lambda_1 < \bar{\lambda} \leq 0$, which contradicts (3.1) since $\bar{z} \in C \cap \operatorname{dom} F$ and $\bar{y} \in F(\bar{z})$. Hence $\operatorname{int} C_1 \cap C_2 = \emptyset$. By separation theorem, there exist $(a, b) \in \mathbb{R}^n \times \mathbb{R}$, $(a, b) \neq (0, 0)$ and $\beta \in \mathbb{R}$ such that for any $(x, \lambda) \in C_1$ and any $(\tilde{x}, \tilde{\lambda}) \in C_2$,

(3.2)
$$a^T x + b\lambda \leq \beta \leq a^T \widetilde{x} + b\widetilde{\lambda}.$$

From (3.2), $a^T \bar{x} + b(\lambda + \epsilon) \leq a^T \bar{x}$ for any $\lambda \geq 0$, and hence, $b \leq 0$. If b = 0, it follows from (3.2) that $a^T(x - \bar{x}) \leq 0$ for any $x \in \text{dom}F$. Since $\bar{x} \in \text{int dom}F$, a = 0. This is impossible since $(a, b) \neq (0, 0)$. Hence, b < 0. From (3.2), $a^T(x - \bar{x}) + b\lambda \leq 0$ for any $(x, \lambda) \in C_1$, and hence, for any $x \in \text{dom}F$ and any $y \in F(x)$,

$$a^T(x-\bar{x}) + b[y-\bar{y}+\epsilon - v^T(x-\bar{x})] \le 0.$$

So, for any $x \in \text{dom}F$ and any $y \in F(x)$,

$$(v - \frac{1}{b}a)^T (x - \bar{x}) \le y - \bar{y} + \epsilon.$$

This means that $(v - \frac{1}{b}a, -1)^T((x, y) - (\bar{x}, \bar{y} - \epsilon)) \leq 0$ for any $(x, y) \in epiF$. Hence, $v - \frac{1}{b}a \in \partial_{\epsilon}F(\bar{x}; \bar{y})$. From (3.2), $a^T\bar{x} + b\epsilon \leq a^T\tilde{x}$ for any $\tilde{x} \in C$. This shows that $\frac{1}{b}a^T(\tilde{x} - \bar{x}) \leq \epsilon$ for any $\tilde{x} \in C$. Thus, we have

$$\frac{1}{b}a \in N_C^{\epsilon}(\bar{x}).$$

Therefore, $v = (v - \frac{1}{b}a) + \frac{1}{b}a \in \partial_{\epsilon}F(\bar{x};\bar{y}) + N_{C}^{\epsilon}(\bar{x})$. Consequently, we have,

$$\partial_{\epsilon}(F + \widetilde{\delta}_C)(\bar{x}; \bar{y}) \subset \partial_{\epsilon}F(\bar{x}; \bar{y}) + N_C^{\epsilon}(\bar{x}).$$

Corollary 3.1. Let $F : \mathbb{R}^n \rightrightarrows \mathbb{R}$ be a convex set-valued map and $\bar{x} \in C \cap$ int dom *F*. Let $\bar{y} \in F(\bar{x})$ and suppose that $(\bar{x}, \bar{y}) \notin$ int epi*F*. Then we have,

$$\partial (F + \delta_C)(\bar{x}; \bar{y}) = \partial F(\bar{x}; \bar{y}) + N_C(\bar{x}).$$

Proof. By Theorem 3.1, $\partial(F + \tilde{\delta}_C)(\bar{x}; \bar{y}) \subset \partial F(\bar{x}; \bar{y}) + N_C(\bar{x})$. Now we prove that the converse inclusion holds. Let $v \in \partial F(\bar{x}; \bar{y}) + N_C(\bar{x})$. Then there exist

 $v_1 \in \partial F(\bar{x}; \bar{y})$ and $v_2 \in N_C(\bar{x})$ such that $v = v_1 + v_2$. Thus for any $x \in \text{dom}F$ and any $y \in F(x)$, $v_1^T(x - \bar{x}) + \bar{y} \leq y$, and for any $x \in C$, $v_2^T(x - \bar{x}) \leq 0$. Hence, for any $x \in C \cap \text{dom}F$ and any $y \in F(x)$,

$$(v_1 + v_2)^T (x - \bar{x}) + \bar{y} \le y$$

Thus $v = (v_1 + v_2) \in \partial(F + \widetilde{\delta}_C)(\bar{x}; \bar{y})$. Hence, the converse inclusion holds.

Now we give ϵ -optimality conditions for the convex set-valued optimization problem (CSP) which was formulated in Section 1.

Theorem 3.2. Let $\bar{x} \in C \cap int \operatorname{dom} F$ and $\bar{y} \in F(\bar{x})$. Suppose that $(\bar{x}, \bar{y} - \epsilon) \notin int \operatorname{epi} F$. If (\bar{x}, \bar{y}) is an ϵ -solution of (CSP), then we have,

$$0 \in \partial_{\epsilon} F(\bar{x}; \bar{y}) + N_C^{\epsilon}(\bar{x}).$$

Proof. Let (\bar{x}, \bar{y}) be an ϵ -solution of (CSP). Then for any $x \in C \cap \operatorname{dom} F$ and any $y \in F(x)$, $y \geq \bar{y} - \epsilon$, and hence, for any $x \in \operatorname{dom}(F + \tilde{\delta}_C)$ and any $y \in (F + \tilde{\delta}_C)(x), y \geq \bar{y} - \epsilon$. Thus for any $(x, \lambda) \in \operatorname{epi}(F + \tilde{\delta}_C) - (\bar{x}, \bar{y} - \epsilon)$,

$$0 \leq \lambda$$
.

This shows that for any $(x, \lambda) \in \overline{\text{cone}} [(F + \widetilde{\delta}_C) - (\overline{x}, \overline{y} - \epsilon)],$

$$0 \leq \lambda$$
.

This implies that for any $x \in \operatorname{dom}(F + \widetilde{\delta}_C)$,

$$0 \le D_{\epsilon}(F + \widetilde{\delta}_C)(\bar{x}; \bar{y})(x).$$

In the proof of Theorem 3.1, we showed that

$$D_{\epsilon}(F + \tilde{\delta}_C)(\bar{x}; \bar{y})(0) = 0.$$

So, $0 \in \partial_{\epsilon}(F + \widetilde{\delta}_C)(\bar{x}; \bar{y})$, and hence by Theorem 3.1, $0 \in \partial_{\epsilon}F(\bar{x}; \bar{y}) + N_C^{\epsilon}(\bar{x})$.

When C is a closed convex cone in (CSP), we can get a necessary and sufficient ϵ -optimality condition for (CSP) as follows.

Corollary 3.2. Let C be a closed convex cone in \mathbb{R}^n and suppose that $0 \in C \cap \text{int dom}F$. Let $\bar{y} \in F(0)$. Assume that $(0, \bar{y} - \epsilon) \notin \text{int epi}F$. Then $(0, \bar{y})$ is an ϵ -solution of (CSP) if and only if $0 \in \partial_{\epsilon}F(0; \bar{y}) + N_C(0)$.

Proof. Suppose that $(0, \bar{y})$ is an ϵ -solution of (CSP). Then, since C is a convex cone, $N_C^{\epsilon}(0) = N_C(0)$, and hence it follows from Theorem 3.2 that

$$0 \in \partial_{\epsilon} F(\bar{x}; \bar{y}) + N_C(0).$$

Assume that $0 \in \partial_{\epsilon} F(\bar{x}; \bar{y}) + N_C(0)$. Then there exists $v \in \partial_{\epsilon} F(\bar{x}; \bar{y})$ such that $-v \in N_C(0)$. Thus for any $(x, \lambda) \in \operatorname{epi} F - (0, \bar{y} - \epsilon)$,

$$(3.3) v^T x \le \lambda,$$

and for any $x \in C$, $v^T x \ge 0$. So, from (3.3), for any $x \in \text{dom}F$ and any $y \in F(x)$,

$$0 \le v^T x \le y - \bar{y} + \epsilon.$$

Hence, for any $x \in C \cap \text{dom}F$ and any $y \in F(x)$,

$$\bar{y} - \epsilon \leq y.$$

So, $(0, \bar{y})$ is an ϵ -solution of (CSP).

From Theorem 3.2, we can obtain the following corollary.

Corollary 3.3. Let $\bar{x} \in C \cap$ int dom F and $\bar{y} \in F(\bar{x})$. Suppose that $(\bar{x}, \bar{y}) \notin$ int epiF. Then (\bar{x}, \bar{y}) is a solution of (CSP) if and only if $0 \in \partial F(\bar{x}; \bar{y}) + N_C(\bar{x})$.

Proof. If (\bar{x}, \bar{y}) is a solution of (CSP), it follows from Theorem 3.2 that $0 \in \partial F(\bar{x}; \bar{y}) + N_C(\bar{x})$. Suppose that $0 \in \partial F(\bar{x}; \bar{y}) + N_C(\bar{x})$. Then there exists $v \in \partial F(\bar{x}; \bar{y})$ such that $-v \in N_C(\bar{x})$. Thus for any $x \in \text{dom}F$ and any $y \in F(x)$,

$$v^T(x - \bar{x}) \le y - \bar{y},$$

and for any $x \in C$,

$$-v^T(x-\bar{x}) \le 0.$$

Hence, for any $x \in C \cap \operatorname{dom} F$ and any $y \in F(x)$,

$$\bar{y} \leq y.$$

So, (\bar{x}, \bar{y}) is a solution of (CSP).

Let $G : \mathbb{R}^n \rightrightarrows \mathbb{R}$ be convex and $C = \{x \in \mathbb{R}^n \mid G(x) \cap (-\mathbb{R}_+) \neq \emptyset\}$ and assume that $\bar{x} \in C$ and $0 \in G(\bar{x})$. Now we calculate the normal cone $N_C(\bar{x})$. Of course, if $\bar{x} \in \text{int}C$, then $N_C(\bar{x}) = \{0\}$. We need the following Slater condition for calculating the normal cone of C at some $\bar{x} \in C \setminus \text{int}C$, which is a set-valued version of the usual Slater condition:

Slater Condition: there exists $\hat{x} \in \mathbb{R}^n$ such that

$$G(\hat{x}) \cap (-\text{int } \mathbb{R}_+) \neq \emptyset.$$

Then we have the following proposition:

Proposition 3.1. Let $G : \mathbb{R}^n \rightrightarrows \mathbb{R}$ be convex and $C = \{x \in \mathbb{R}^n \mid G(x) \cap (-\mathbb{R}_+) \neq \emptyset\}$. Suppose that the Slater condition holds. Then we have,

(i) int $C \subset \{x \in \mathbb{R}^n \mid G(x) \cap (-\text{int } \mathbb{R}_+) \neq \emptyset\}.$

(ii) if G is lower semicontinuous, then

$$\{x \in \mathbb{R}^n \mid G(x) \cap (-\text{int } \mathbb{R}_+) \neq \emptyset\} \subset \text{int}C.$$

(iii) if G is lower semicontinuous, then

$$C \setminus \operatorname{int} C = \{ x \in \mathbb{R}^n \mid G(x) \cap (-\mathbb{R}_+) = \{ 0 \} \}.$$

(iv) if $0 \in G(\bar{x})$, $\bar{x} \in \text{int dom } G$ and $(\bar{x}, 0) \notin \text{int epi}G$, then

$$\bar{x} \in C \setminus \operatorname{int} C$$

Proof. (i) Let $S = \{x \in \mathbb{R}^n \mid G(x) \cap (-\text{int}\mathbb{R}_+) \neq \emptyset\}$. Let x be any point in int C. If $x = \hat{x}$, then $x \in S$. Assume that $x \neq \hat{x}$. Then we can find $\delta > 0$ such that $x + B_{\delta}(0) \subset C$, where $B_{\delta} = \{z \in \mathbb{R}^n \mid ||z|| < \delta\}$, and $\hat{x} \notin x + B_{\delta}(0)$. Moreover, since $x \neq \hat{x}$, we can find $v \in B_{\delta}(0) \setminus \{0\}$ such that x - v, $x + v \in \inf\{x, \hat{x}\} := \{\alpha x + (1 - \alpha)\hat{x} \mid \alpha \in \mathbb{R}\}, \hat{x} \notin [x - v, x + v] := \{\lambda (x - v) + (1 - \lambda)(x + v) \mid \lambda \in [0, 1]\}, x \in (x - v, x + v) := \{\lambda (x - v) + (1 - \lambda)(x + v) \mid \lambda \in (0, 1)\}$ and $x + v \in (x, \hat{x})$. Then there exists $\hat{\lambda} \in (0, 1)$ such that $x + v = \hat{\lambda}\hat{x} + (1 - \hat{\lambda})(x - v)$. So, since G is convex, we have,

(3.4)
$$\hat{\lambda}G(\hat{x}) + (1-\hat{\lambda})G(x-v) \subset G(x+v) + \mathbb{R}_+.$$

From Slater Condition, we can take $\hat{y} \in G(\hat{x})$ such that $\hat{y} < 0$. Moreover, since $x - v \in x + B_{\delta}(0) \subset C$, we can find $y_1 \in G(x - v)$ such that $y_1 \leq 0$. Assume to the contrary that $G(x + v) \cap (-int\mathbb{R}_+) = \emptyset$. Then, from (3.4),

(3.5)
$$\hat{\lambda}G(\hat{x}) + (1-\hat{\lambda})G(x-v) \subset \mathbb{R}_+.$$

Thus, from (3.5), $0 \leq \hat{\lambda}\hat{y} + (1 - \hat{\lambda})y_1 < 0$. This is a contradiction. Hence, $G(x+v) \cap (-int\mathbb{R}_+) \neq \emptyset$. So, there exists $y_2 \in G(x+v)$ such that $y_2 < 0$. Since G is convex, we have

$$\frac{1}{2}y_1 + \frac{1}{2}y_2 \in \frac{1}{2}G(x-v) + \frac{1}{2}G(x+v) \\ \subset G(x) + \mathbb{R}_+.$$

Hence there exist $y \in G(x)$ and $r \ge 0$ such that $y + r = \frac{1}{2}(y_1 + y_2) < 0$. Thus y < 0 and so $G(x) \cap (-int\mathbb{R}_+) \neq \emptyset$. Hence $x \in S$. Therefore, we have

 $\operatorname{int} C \subset S.$

(ii) If G is lower semicontinuous, then $\{x \in \mathbb{R}^n \mid G(x) \cap (-int\mathbb{R}_+) \neq \emptyset\}$ is open and hence $\{x \in \mathbb{R}^n \mid G(x) \cap (-int\mathbb{R}_+) \neq \emptyset\} \subset intC$.

(iii) Since G is lower semicontinuous, it follows from (i) and (ii) that

$$C \setminus \operatorname{int} C = C \setminus \{ x \in \mathbb{R}^n \mid G(x) \cap (-\operatorname{int} \mathbb{R}_+) \neq \emptyset \}.$$

Let $x \in C \setminus \text{int}C$. Then $G(x) \cap (-\mathbb{R}_+) \neq \emptyset$ and $G(x) \cap (-\text{int}\mathbb{R}_+) = \emptyset$. Thus $G(x) \cap (-\mathbb{R}_+) = \{0\}$. Hence we have

$$C \setminus \operatorname{int} C \subset \{ x \in \mathbb{R}^n \mid G(x) \cap (-\operatorname{int} \mathbb{R}_+) \neq \emptyset \}.$$

Conversely, we assume that $G(x) \cap (-\mathbb{R}_+) = \{0\}$. Then $x \in C$ and $x \neq \hat{x}$, where \hat{x} is the point in the definition of Slater condition. For any fixed $\lambda \in (0, 1)$, we let $x_{\lambda} = x + \lambda(\hat{x} - x)$ and $x'_{\lambda} = x - \lambda(\hat{x} - x)$. Since G is convex, $\lambda G(\hat{x}) + (1 - \lambda)G(x) \subset G(x_{\lambda}) + \mathbb{R}_+$, and hence, taking $\hat{y} \in G(\hat{x})$ with $\hat{y} < 0$ and $0 \in G(x)$, we can find $y_{\lambda} \in G(x_{\lambda})$ such that $y_{\lambda} < 0$. Since $\frac{1}{2}x_{\lambda} + \frac{1}{2}x'_{\lambda} = x$ and $G(x) \subset \mathbb{R}_+$,

$$\frac{1}{2}G(x_{\lambda}) + \frac{1}{2}G(x_{\lambda}') \subset G(x) + \mathbb{R}_{+} \subset \mathbb{R}_{+}.$$

So, for any $y'_{\lambda} \in G(x'_{\lambda})$, $\frac{1}{2}y_{\lambda} + \frac{1}{2}y'_{\lambda} \ge 0$ and hence, $y'_{\lambda} > 0$. Hence $G(x'_{\lambda}) \cap (-\mathbb{R}_{+}) = \emptyset$ for any $\lambda \in (0, 1)$, and so, $(x, 2x - \hat{x}) \cap C = \emptyset$. This means that $x \notin \text{int}C$. Thus, we have

$$\{x \in \mathbb{R}^n \mid G(x) \cap \mathbb{R}_+ = \{0\}\} \subset C \setminus \text{int}C.$$

(iv) Suppose that $\bar{x} \in C \cap \text{int } \operatorname{dom} G$, $0 \in G(\bar{x})$ and $(\bar{x}, 0) \notin \operatorname{int } \operatorname{epi} G$. Then from the proof of Proposition 2.1, we can check that there exist $\tilde{a} \in \mathbb{R}^n$ and $\tilde{b} > 0$ such that for any $(x, y) \in \overline{\operatorname{cone}}(\operatorname{epi} G - (\bar{x}, 0))$,

$$\tilde{a}^T x + b y \ge 0.$$

Let $\bar{y} \in G(\bar{x})$ be any point in \mathbb{R} . Then for any $\alpha \geq 0$, $(\bar{x}, \bar{y} + \alpha) \in \operatorname{epi} G$, that is, $(0, \bar{y} + \alpha) \in \operatorname{epi} G - (\bar{x}, 0)$. Thus from (3.6), $\tilde{b}(\bar{y} + \alpha) \geq 0$ for any $\alpha \geq 0$. Since $\tilde{b} > 0$, $\bar{y} \geq 0$. This means that $G(\bar{x}) \cap (-\operatorname{int} \mathbb{R}_+) = \emptyset$. So, by (i), $\bar{x} \notin \operatorname{int} C$. Since $0 \in G(\bar{x}), \bar{x} \in C$. Thus $\bar{x} \in C \setminus \operatorname{int} C$.

Proposition 3.2. Let $G : \mathbb{R}^n \rightrightarrows \mathbb{R}$ be a upper semicontinuous and convex setvalued map. Let $\bar{x} \in \text{int dom}G$ and $0 \in G(\bar{x})$, and assume that $(\bar{x}, 0) \notin \text{int epi}G$. Let $C = \{x \in \mathbb{R}^n \mid G(x) \cap (-\mathbb{R}_+) \neq \emptyset\}$ and suppose that Slater condition holds. Then $N_C(\bar{x}) = \text{cone } \partial G(\bar{x}; 0)$.

Proof. Since G is upper semicontinuous and convex, then C is a closed and convex subset of \mathbb{R}^n . If $v \in \partial G(\bar{x}; 0)$, then for any $x \in \text{dom}G$ and any $y \in G(x)$, $v^T(x - \bar{x}) \leq y$. So, for any $x \in C$, $v^T(x - \bar{x}) \leq 0$. Hence, $\partial G(\bar{x}; 0) \subset N_C(\bar{x})$. Since $N_C(\bar{x})$ is a convex cone,

(3.7) cone
$$\partial G(\bar{x}; 0) \subset N_C(\bar{x}).$$

By Slater condition, $0 \notin \partial G(\bar{x}; 0)$ and hence it follows from definition of $\partial G(\bar{x}; 0)$ and the fact that $DG(\bar{x}; 0)(0) = 0$ that $\{v \in \mathbb{R}^n \mid DG(\bar{x}; 0)(v) < 0\} \neq \emptyset$. Let $K = \overline{\text{cone}}(C - \bar{x})$. Then $N_C(\bar{x}) = K^0$, where K^0 is the nonpositive dual cone of K. If $DG(\bar{x}; 0)(v) < 0$, then $v \neq 0$, and so, it follows from definition of $DG(\bar{x}; 0)$ that there exist $\lambda_n > 0$ and $x_n \in C$, $n \in \mathbb{N}$, such that $v = \lim_{n \to \infty} \lambda_n(x_n - \bar{x})$ and so, $v \in K$. Thus $\{v \in \mathbb{R}^n \mid DG(\bar{x}; 0)(v) < 0\} \subset K$. Moreover, from Proposition 2.1, $DG(\bar{x}; 0)(\cdot)$ is sublinear and continuous, and so,

(3.8)
$$\{v \in \mathbb{R}^n \mid DG(\bar{x}; 0)(v) \leq 0\} \subset K.$$

Noticing that $DG(\bar{x}; 0)(v) = \sup_{y \in \partial G(\bar{x}; 0)} y^T v$, we get

(3.9)
$$\{v \in \mathbb{R}^n \mid DG(\bar{x}; 0)(v) \le 0\} = (\partial G(\bar{x}; 0))^0.$$

Moreover, since $\partial G(\bar{x}; 0)$ is compact and $0 \notin \partial G(\bar{x}; 0)$,

(3.10)
$$\overline{\operatorname{cone}} \,\,\partial G(\bar{x};0) = \operatorname{cone} \,\,\partial G(\bar{x};0).$$

So, from (3.8)-(3.10), $K^0 \subset \operatorname{cone} \partial G(\bar{x}; 0)$, i.e., $N_C(\bar{x}) \subset \operatorname{cone} \partial G(\bar{x}; 0)$. Hence, from (3.7), we have

$$N_C(\bar{x}) = \text{cone } \partial G(\bar{x}; 0),$$

as required.

From Corollary 3.3 and Proposition 3.2, we can get the following optimality theorem for (CSP).

Theorem 3.3. Let $F : \mathbb{R}^n \rightrightarrows \mathbb{R}$ be a convex set-valued map and $G : \mathbb{R}^n \rightrightarrows \mathbb{R}$ a upper semicontinuous and convex set-valued map and $C = \{x \in \mathbb{R}^n \mid G(x) \cap (-\mathbb{R}_+) \neq \emptyset\}$. Let $\bar{x} \in C \cap \operatorname{int}(\operatorname{dom} F \cap \operatorname{dom} G)$, $\bar{y} \in F(\bar{x})$ and $0 \in G(\bar{x})$. Assume that $(\bar{x}, \bar{y}) \notin \operatorname{int} \operatorname{epi} F$ and $(\bar{x}, 0) \notin \operatorname{int} \operatorname{epi} G$, and suppose that Slater condition holds. Then (\bar{x}, \bar{y}) is a solution of (CSP) if and only if there exists $\lambda \geq 0$ such that

$$0 \in \partial F(\bar{x}; \bar{y}) + \lambda \partial G(\bar{x}; 0).$$

4. Necessary and Sufficient ϵ -Optimality Conditions

In this section, using the single-valued function F_{inf} induced from the set-valued map F and defined in Section 2, we obtain theorems describing the ϵ -subgradient sum formula for two convex set-valued maps (see Theorems 4.1 and 4.2 below), and then give necessary and sufficient ϵ -optimality conditions for Problem (CSP). First, we establish the following proposition.

Proposition 4.1. Let $F^1, F^2 : \mathbb{R}^n \rightrightarrows \mathbb{R}$ be set-valued maps, $\operatorname{dom} F^1 \cap \operatorname{dom} F^2 \neq \emptyset$. Suppose that for any $x \in \operatorname{dom} F^1 \cap \operatorname{dom} F^2$, $F^1_{\inf}(x) > -\infty$ and $F^2_{\inf}(x) > -\infty$. Then

$$(F^1 + F^2)^* = (F^1_{\inf} + F^2_{\inf})^*.$$

Proof. Let us take an arbitrary $v \in \mathbb{R}^n$. For $x \in \text{dom}F^1 \cap \text{dom}F^2$,

$$v^T x - (F_{\inf}^1(x) + F_{\inf}^2(x)) \ge v^T x - (y_1 + y_2)$$
, for any $y_1 \in F^1(x)$ and any $y_2 \in F^2(x)$.

Hence,

$$\sup_{x \in \operatorname{dom} F^1 \cap \operatorname{dom} F^2} \{ v^T x - (F_{\inf}^1(x) + F_{\inf}^2(x)) \} \ge \sup_{x \in \operatorname{dom} F^1 \cap \operatorname{dom} F^2} \{ v^T x - (F^1 + F^2)(x) \}.$$

So,

$$(F_{\inf}^1 + F_{\inf}^2)^*(v) \ge (F^1 + F^2)^*(v).$$

For each $\epsilon > 0$ and each $x \in \text{dom}F^1 \cap \text{dom}F^2$, by the definition of F_{inf}^1 and F_{inf}^2 , we can find $y_1 \in F^1(x)$ and $y_2 \in F^2(x)$ such that

$$\begin{cases} F_{\inf}^1(x) + \frac{\epsilon}{2} > y_1\\ F_{\inf}^2(x) + \frac{\epsilon}{2} > y_2 \end{cases}$$

This shows that

$$v^{T}x - (F_{\inf}^{1} + F_{\inf}^{2})(x) - \epsilon < v^{T}x - (y_{1} + y_{2})$$

$$\leq \sup_{x \in \operatorname{dom} F^{1} \cap \operatorname{dom} F^{2}} \{v^{T}x - (y_{1} + y_{2}) \mid y_{1} \in F^{1}(x), y_{2} \in F^{2}(x)\}.$$

Hence,

$$\sup_{x \in \mathrm{dom}F^1 \cap \mathrm{dom}F^2} \{ v^T x - (F^1_{\mathrm{inf}} + F^2_{\mathrm{inf}})(x) \} - \epsilon \leq \sup_{x \in \mathrm{dom}F^1 \cap \mathrm{dom}F^2} \{ v^T x - (F^1 + F^2)(x) \}$$

Since ϵ is arbitrary, we have

$$(F_{\inf}^1 + F_{\inf}^2)^*(v) \le (F^1 + F^2)^*(v).$$

Therefore, $(F^1 + F^2)^* = (F_{\inf}^1 + F_{\inf}^2)^*$.

Remark 4.1. Observe that

(i) For any set-valued maps $F^1, F^2 : \mathbb{R}^n \rightrightarrows \mathbb{R}$,

$$(F^1 + F^2)^* = (\widetilde{F^1} + \widetilde{F^2})^* = (F^1_{\inf} + F^2_{\inf})^*$$

(ii) For any set-valued maps $F : \mathbb{R}^n \rightrightarrows \mathbb{R}, \ F^* = \widetilde{F}^* = F_{\inf}^*$. (Recall that $F_{\inf}(x) := \inf\{y \mid y \in F(x)\}$ and $\widetilde{F}(x) := F(x) \cup \{F_{\inf}(x)\}$).

Theorem 4.1. Let $F^1, F^2 : \mathbb{R}^n \rightrightarrows \mathbb{R}$ be convex set-valued maps such that for all $i = 1, 2, \operatorname{dom} F^i$ and $\operatorname{epi} F^i_{\inf}$ are closed, and $F^i_{\inf}(x) > -\infty$, for all $x \in \operatorname{dom} F^i$. Let $\epsilon \ge 0$. If $\operatorname{ri} \operatorname{dom} F^1 \cap \operatorname{ri} \operatorname{dom} F^2 \neq \emptyset$, then for all $x \in \operatorname{dom} F^1 \cap \operatorname{dom} F^2$,

(4.1)
$$\partial_{\epsilon}(\tilde{F}^{1}+\tilde{F}^{2})(x;F_{\inf}^{1}(x)+F_{\inf}^{2}(x)) = \bigcup_{\substack{\epsilon_{1}+\epsilon_{2}=\epsilon\\\epsilon_{1},\epsilon_{2}\geq 0}} \partial_{\epsilon_{1}}\tilde{F}^{1}(x;F_{\inf}^{1}(x)) + \partial_{\epsilon_{2}}\tilde{F}^{2}(x;F_{\inf}^{2}(x)).$$

Proof. Applying Proposition 2.2, we have that F_{inf}^1 and F_{inf}^2 are proper lower semicontinuous convex functions. Obviously,

ri dom $F_{\inf}^1 \cap$ ri dom F_{\inf}^2 = ri dom $F^1 \cap$ ri dom $F^2 \neq \emptyset$.

Thus, from Theorem 3.1.1 in [8], it yields that for all $x \in \text{dom}F_{\text{inf}}^1 \cap \text{dom}F_{\text{inf}}^2$,

$$\partial_{\epsilon}(F_{\inf}^{1} + F_{\inf}^{2})(x) = \bigcup_{\substack{\epsilon_{1} + \epsilon_{2} = \epsilon\\\epsilon_{1}, \epsilon_{2} \ge 0}} \partial_{\epsilon_{1}}F_{\inf}^{1}(x) + \partial_{\epsilon_{2}}F_{\inf}^{2}(x).$$

Using Propositions 2.2 and 2.3, we have the conclusion, as required.

Remark 4.2. Theorem 3.1.1 in [8] is a special case of our Theorem 4.1.

1802

Theorem 4.2. Let $F^1, F^2 : \mathbb{R}^n \rightrightarrows \mathbb{R}$ be convex set-valued maps such that $\operatorname{dom} F^1 \cap \operatorname{dom} F^2 \neq \emptyset$, for all i = 1, 2, $\operatorname{dom} F^i$ and $\operatorname{epi} F^i_{\inf}$ are closed, and $F^i_{\inf}(x) > -\infty$, for all $x \in \operatorname{dom} F^i$. Then the following statements are equivalent:

- (i) $(F^1 + F^2)^* = (F^1)^* \Box (F^2)^*$.
- (ii) $epi(F^1)^* + epi(F^2)^*$ is closed.
- (iii) For any $\epsilon \geq 0$ and any $x \in \operatorname{dom} F^1 \cap \operatorname{dom} F^2$,

$$\partial_{\epsilon}(\widetilde{F^{1}} + \widetilde{F^{2}})(x; F^{1}_{\inf}(x) + F^{2}_{\inf}(x)) \\= \bigcup_{\substack{\epsilon_{1}+\epsilon_{2}=\epsilon\\\epsilon_{1},\epsilon_{2}\geq 0}} \partial_{\epsilon_{1}}\widetilde{F^{1}}(x; F^{1}_{\inf}(x)) + \partial_{\epsilon_{2}}\widetilde{F^{2}}(x; F^{2}_{\inf}(x)).$$

Proof. Applying Proposition 2.2, we have that F_{inf}^1 , F_{inf}^2 are proper lower semicontinuous convex functions. It is easy to verify that

$$\mathrm{dom}F^1_{\mathrm{inf}} \cap \mathrm{dom}F^2_{\mathrm{inf}} = \mathrm{dom}F^1 \cap \mathrm{dom}F^2 \neq \emptyset.$$

Thus, from Theorem 1 in [3], it yields that the following statements are equivalent:

- (i) $(F_{\inf}^1 + F_{\inf}^2)^* = (F_{\inf}^1)^* \Box (F_{\inf}^2)^*$.
- (ii) $\operatorname{epi}(F_{\inf}^1)^* + \operatorname{epi}(F_{\inf}^2)^*$ is closed.
- (iii) For any $\epsilon \ge 0$ and any $x \in \mathrm{dom} F^1_{\mathrm{inf}} \cap \mathrm{dom} F^2_{\mathrm{inf}}$,

$$\partial_{\epsilon}(F_{\inf}^{1} + F_{\inf}^{2})(x) = \bigcup_{\substack{\epsilon_{1} + \epsilon_{2} = \epsilon\\\epsilon_{1}, \epsilon_{2} \ge 0}} \partial_{\epsilon_{1}}F_{\inf}^{1}(x) + \partial_{\epsilon_{2}}F_{\inf}^{2}(x).$$

To complete the proof, let us apply Remark 4.1 and Propositions 2.2, 2.3 and 4.1 to (i)-(iii) by replacing F_{inf}^1 (resp. F_{inf}^2) of statements (i)-(ii) with F^1 (resp. F^2), and F_{inf}^1 (resp. F_{inf}^2) of statements (iii) with $\widetilde{F^1}$ (resp. $\widetilde{F^2}$).

Remark 4.3. Observe that by our approach the main results of this paper are still correct if we replace \mathbb{R}^n by a Banach space X. So, our Theorem 4.2 can be seen as a generalized version of Theorem 1 of [3].

Remark 4.4. In Theorems 4.1 and 4.2, if in addition that for any $x \in \text{dom}F^1 \cap \text{dom}F^2$, $F_{\text{inf}}^i(x) \in F^i(x)$, i = 1, 2, then the equality (4.1) can be replaced by the following equality:

$$\partial_{\epsilon}(F^1+F^2)(x;F^1_{\inf}(x)+F^2_{\inf}(x)) = \bigcup_{\substack{\epsilon_1+\epsilon_2=\epsilon\\\epsilon_1,\epsilon_2 \ge 0}} \partial_{\epsilon_1}F^1(x;F^1_{\inf}(x)) + \partial_{\epsilon_2}F^2(x;F^2_{\inf}(x)).$$

Applying Theorem 4.1, we can obtain the following necessary and sufficient ϵ -optimality condition for Problem (CSP).

Theorem 4.3. Let $F : \mathbb{R}^n \rightrightarrows \mathbb{R}$ be a convex set-valued maps such that dom Fand epi F_{inf} are closed, and $F_{inf}(x) > -\infty$, for any $x \in \text{dom}F$ and such that dom F^i and epi F_{inf}^i are closed, i = 1, 2. Let C be a closed convex subset of Xsuch that ri $C \cap$ ri dom $F \neq \emptyset$. Let $\bar{x} \in C \cap$ int dom F, and $F_{inf}(\bar{x}) \in F(\bar{x})$. Let $\epsilon \ge 0$. Then $(\bar{x}, F_{inf}(\bar{x}))$ is an ϵ -solution of (CSP) if and only if there exist $\epsilon_1, \epsilon_2 \ge 0$ such that $\epsilon_1 + \epsilon_2 = \epsilon$, and

$$0 \in \partial_{\epsilon_1} F(\bar{x}; F_{\inf}(\bar{x})) + N_C^{\epsilon_2}(\bar{x}).$$

Proof. Observe that $(\bar{x}; F_{inf}(\bar{x}))$ is an ϵ -solution of (CSP) if and only if

$$0 \in \partial_{\epsilon}(F + \delta_C)(\bar{x}; F_{\inf}(\bar{x}))$$

Hence, apply Theorem 4.1 setting $F^1 = F$, $F^2 = \tilde{\delta}_C$ and applying Theorem 4.1, we obtain that $(\bar{x}, F_{inf}(\bar{x}))$ is an ϵ -solution of (CSP) if and only if

$$0 \in \bigcup_{\substack{\epsilon_1 + \epsilon_2 = \epsilon \\ \epsilon_1, \epsilon_2 \ge 0}} \partial_{\epsilon_1} F(\bar{x}; F_{\inf}(\bar{x})) + \partial_{\epsilon_2} \widetilde{\delta}_C(\bar{x}, 0),$$

i.e., there exist $\epsilon_1, \epsilon_2 \ge 0$ such that $\epsilon_1 + \epsilon_2 = \epsilon$, and

$$0 \in \partial_{\epsilon_1} F(\bar{x}; F_{\inf}(\bar{x})) + N_C^{\epsilon_2}(\bar{x}).$$

Applying Theorem 4.2 to $F^1 = \tilde{\delta}_{C_1}$, $F^2 = \tilde{\delta}_{C_2}$, where C_1, C_2 are closed convex sets, we have the following result about the ϵ -normal cone $N_{C_1 \cap C_2}^{\epsilon}(x)$.

Corollary 4.1. Let C_1 and C_2 be closed convex subsets of X such that $C_1 \cap C_2 \neq \emptyset$. Then, the set $\operatorname{epi}\delta^*_{C_1} + \operatorname{epi}\delta^*_{C_2}$ is closed if and only if for each $\epsilon \geq 0$ and each $x \in C_1 \cap C_2$,

$$N_{C_1 \cap C_2}^{\epsilon}(x) = \bigcup_{\substack{\epsilon_1 + \epsilon_2 = \epsilon \\ \epsilon_1, \epsilon_2 \ge 0}} N_{C_1}^{\epsilon_1}(x) + N_{C_2}^{\epsilon_2}(x).$$

Now let us consider the following problem (CSP)

(CSP) Minimize F(x)subject to $x \in C := C_1 \cap C_2$

where $F : \mathbb{R}^n \rightrightarrows \mathbb{R}$ is a convex set-valued maps, $G_i : \mathbb{R}^n \rightrightarrows \mathbb{R}$ are upper semicontinuous and convex set-valued maps, $C_i = \{x \in \mathbb{R}^n \mid G_i(x) \cap (-\mathbb{R}_+) \neq \emptyset\}, i = 1, 2$ are closed convex subsets of \mathbb{R}^n and $C \neq \emptyset$.

Now we give a necessary and sufficient condition for (CSP).

Theorem 4.4. Let $\bar{x} \in \text{int } \text{dom}F \cap \text{int } \text{dom}G_1 \cap \text{int } \text{dom}G_2 \text{ and } \bar{y} \in F(\bar{x})$ such that $(\bar{x}, \bar{y}) \notin \text{int } \text{epi}F, \ 0 \in G_i(\bar{x}), (\bar{x}, 0) \notin \text{int } \text{epi}G_i, \ i = 1, 2.$ Assume that the set $\text{epi}\delta_{C_1}^* + \text{epi}\delta_{C_2}^*$ is closed, and for each $i \in I$, there exists $\hat{x} \in \mathbb{R}^n$ such that

$$G_i(\widehat{x}) \cap (-\mathrm{int}\mathbb{R}_+) \neq \emptyset.$$

Then, (\bar{x}, \bar{y}) is a solution of (\widetilde{CSP}) if and only if there exist $\lambda_1, \lambda_2 \geq 0$ such that

$$0 \in \partial F(\bar{x}; \bar{y}) + \lambda_1 \partial G_1(\bar{x}; 0) + \lambda_2 \partial G_2(\bar{x}; 0).$$

Proof. Using Theorem 3.3, we have that (\bar{x}, \bar{y}) is a solution of Problem $(\widetilde{\text{CSP}})$ if and only if

(4.2)
$$0 \in \partial F(\bar{x}; \bar{y}) + N_C(\bar{x}).$$

By Corollary 4.1, (4.2) is equivalent to

$$0 \in \partial F(\bar{x}; \bar{y}) + N_{C_1}(\bar{x}) + N_{C_2}(\bar{x}).$$

From Proposition 3.2, this means that

$$0 \in \partial F(\bar{x}; \bar{y}) + \text{cone } \partial G_1(\bar{x}; 0) + \text{cone } \partial G_2(\bar{x}; 0),$$

i.e., there exist $\lambda_1, \lambda_2 \geq 0$ such that

$$0 \in \partial F(\bar{x}; \bar{y}) + \lambda_1 \partial G_1(\bar{x}; 0) + \lambda_2 \partial G_2(\bar{x}; 0).$$

Thus the proof is completed.

Let us now consider the following theorem which will provide a relation between the ϵ -solution set of Problem (CSP) and the ϵ -solution set of the following auxiliary Problem (CSP)'

Theorem 4.5. If $\inf_{x' \in C \cap \text{dom}F} F(x')$ is finite, then

$$\begin{split} \epsilon-\mathrm{sol}(\mathrm{CSP}) &= \{(x,y) \mid x \in \epsilon - \mathrm{sol}(\mathrm{CSP})', \ y \in F(x)\} \cap \{(x,y) \mid y - \epsilon \\ &\leq \inf_{x' \in C \cap \mathrm{dom}F} F(x')\}, \end{split}$$

where ϵ -sol(CSP) and ϵ -sol(CSP)' are the set of all ϵ -solutions of (CSP) and (CSP)', respectively.

Proof. Let us set $E := \{(x, y) \mid y - \epsilon \leq \inf_{x' \in C \cap \text{dom}F} F(x')\}$. For $(\bar{x}, \bar{y}) \in \epsilon - \text{sol}(\text{CSP})$,

 $\bar{x} \in C, \ \bar{y} \in F(\bar{x}) \text{ and for any } x \in C \cap \operatorname{dom} F \text{ and any } y \in F(x), \bar{y} - \epsilon \leq y.$

Then

$$\bar{x} \in C, \ \bar{y} \in F(\bar{x}) \text{ and for any } x \in C \cap \operatorname{dom} F,$$

$$\begin{cases} F_{\inf}(\bar{x}) - \epsilon \leq \bar{y} - \epsilon \leq F_{\inf}(x) \\ \bar{y} - \epsilon \leq \inf_{x \in C \cap \operatorname{dom} F} F(x). \end{cases}$$

Since $\bar{x} \in \epsilon$ -sol(CSP)', $\bar{y} \in F(\bar{x})$ and $(\bar{x}, \bar{y}) \in E$. Therefore, we have

$$(\bar{x}, \bar{y}) \in \{(x, y) \mid x \in \epsilon - \operatorname{sol}(\operatorname{CSP})', y \in F(x)\} \cap E$$

For $(\bar{x}, \bar{y}) \in \{(x, y) \mid x \in \epsilon - \operatorname{sol}(\operatorname{CSP})', y \in F(x)\} \cap E$, we have that $\bar{x} \in C$, $\bar{y} \in F(\bar{x})$ such that for all $x \in C \cap \operatorname{dom} F$,

$$\begin{cases} F_{\inf}(\bar{x}) - \epsilon \leq F_{\inf}(x) \\ \bar{y} - \epsilon \leq F(x). \end{cases}$$

This implies that $\bar{x} \in C$, $\bar{y} \in F(\bar{x})$ such that for any $x \in C \cap \text{dom}F$, and any $y \in F(x)$, we have $\bar{y} - \epsilon \leq y$. Therefore, $(\bar{x}, \bar{y}) \in \epsilon - \text{sol}(\text{CSP})$, and hence,

$$\epsilon - \operatorname{sol}(\operatorname{CSP}) = \{ (x, y) \mid x \in \epsilon - \operatorname{sol}(\operatorname{CSP})', \ y \in F(x) \} \cap \{ (x, y) \mid y - \epsilon \\ \leq \inf_{x \in C \cap \operatorname{dom} F} F(x) \}.$$

Now we give an example to illustrate Theorems 4.3 and 4.5.

Example 4.1. Let $F : \mathbb{R} \Rightarrow \mathbb{R}$, $F(x) = x^2 + \mathbb{R}_+$, $C = (-\infty, 0]$. Consider the following problem:

(CSP) Minimize
$$F(x)$$

subject to $x \in C$.

Let us establish the auxiliary problem (CSP)':

where $F_{inf}(x) = x^2$, for any $x \in \mathbb{R}$. For each $\epsilon \ge 0$, we have that

$$\begin{split} \partial_{\epsilon}F_{\mathrm{inf}}(\bar{x}) &= \begin{cases} \left[-2\sqrt{\epsilon},2\sqrt{\epsilon}\right] & \text{if} \quad \bar{x}=0\\ \left[2(\bar{x}-\sqrt{\epsilon}),2(\bar{x}+\sqrt{\epsilon})\right] & \text{if} \quad \bar{x}<0, \end{cases}\\ N_{C}^{\epsilon}(\bar{x}) &= \begin{cases} \left[0,+\infty\right) & \text{if} \quad \bar{x}=0\\ \left[0,-\frac{\epsilon}{\bar{x}}\right] & \text{if} \quad \bar{x}<0. \end{cases} \end{split}$$

Observe that from Theorem 4.3, $\bar{x} \in C$ is an ϵ -solution of (CSP)' if and only if

$$0 \in \bigcup_{\substack{\epsilon_1 + \epsilon_2 = \epsilon \\ \epsilon_1, \epsilon_2 \ge 0}} \partial_{\epsilon_1} F_{\inf}(\bar{x}) + N_C^{\epsilon_2}(\bar{x}).$$

This means that there exists $\epsilon_1, \epsilon_2 \ge 0, \ \epsilon_1 + \epsilon_2 = \epsilon$ such that

$$0 \in \partial_{\epsilon_1} F_{\inf}(\bar{x}) + N_C^{\epsilon_2}(\bar{x}),$$

or equivalently,

(4.3)
$$\partial_{\epsilon_1} F_{\inf}(\bar{x}) \cap -N_C^{\epsilon_2}(\bar{x}) \neq \emptyset.$$

Let $\epsilon \ge 0$. Now we will find the ϵ -sol(CSP)'.

Case I. $\bar{x} = 0 \in C$. Taking $\epsilon_1 = \epsilon$, $\epsilon_2 = 0$, we have that (4.3) holds. So, $0 \in \epsilon$ -sol(CSP)'.

Case II. $\bar{x} \in [-\sqrt{\epsilon}, 0) \subset C$. Taking $\epsilon_1 = \epsilon$, $\epsilon_2 = 0$, by $\bar{x} + \sqrt{\epsilon} \ge 0$, we have

$$0 \in [2(\bar{x} - \sqrt{\epsilon}), 2(\bar{x} + \sqrt{\epsilon})] = \partial_{\epsilon} F_{\inf}(\bar{x}) + N_C(\bar{x}).$$

This shows that $[-\sqrt{\epsilon}, 0] \subset \epsilon - \operatorname{sol}(\operatorname{CSP})'$.

Case III. $\bar{x} \in (-\infty, -\sqrt{\epsilon}) \subset C$. We will prove that $\bar{x} \notin \epsilon$ -sol(CSP)', i.e., for any $\epsilon_1, \epsilon_2 \geq 0, \epsilon_1 + \epsilon_2 = \epsilon$, we have

(4.4)
$$[2(\bar{x}-\sqrt{\epsilon_1}),2(\bar{x}+\sqrt{\epsilon_1})]\cap \left[\frac{\epsilon_2}{\bar{x}},0\right]=\emptyset.$$

In the other words,

$$\begin{split} 2(\bar{x}+\sqrt{\epsilon_1}) < &\frac{\epsilon_2}{\bar{x}} \iff 2\bar{x}^2 + 2\bar{x}\sqrt{\epsilon_1} - \epsilon_2 > 0 \\ \Leftrightarrow & \left[\frac{\bar{x} < \frac{-\sqrt{\epsilon_1} - \sqrt{\epsilon_1 + 2\epsilon_2}}{2} = \frac{-\sqrt{\epsilon - \epsilon_2} - \sqrt{\epsilon + \epsilon_2}}{2} \\ \bar{x} > \frac{-\sqrt{\epsilon_1} + \sqrt{\epsilon_1 + 2\epsilon_2}}{2} \ge \frac{-\sqrt{\epsilon_1} + \sqrt{\epsilon_2}}{2} = 0 \\ \Leftrightarrow & \bar{x} < \frac{-\sqrt{\epsilon - \epsilon_2} - \sqrt{\epsilon + \epsilon_2}}{2} \end{split} \quad (\text{by } \bar{x} \in C = (-\infty, 0]). \end{split}$$

By the Schwartz inequality,

$$(\sqrt{\epsilon - \epsilon_2} + \sqrt{\epsilon + \epsilon_2})^2 \le (1^2 + 1^2)(\epsilon - \epsilon_2 + \epsilon + \epsilon_2) = 4\epsilon,$$

or, equivalently,

(4.5)
$$\frac{\sqrt{\epsilon - \epsilon_2} + \sqrt{\epsilon + \epsilon_2}}{2} \le \sqrt{\epsilon}.$$

In inequality (4.5) the symbol "=" is appeared if and only if

$$\sqrt{\epsilon - \epsilon_2} = \sqrt{\epsilon + \epsilon_2} \iff \epsilon_2 = 0.$$

Hence,

(i) If $\epsilon_2 = 0$, then it is clear that (4.4) holds.

(ii) If $\epsilon_2 > 0$, then we have that

$$\frac{-\sqrt{\epsilon-\epsilon_2}-\sqrt{\epsilon+\epsilon_2}}{2} > -\sqrt{\epsilon} > \bar{x}.$$

This shows that (4.4) also holds. Therefore, $\epsilon - \operatorname{sol}(\operatorname{CSP})' = [-\sqrt{\epsilon}, 0]$ and $\operatorname{sol}(\operatorname{CSP})' = \{0\}$. So, $\inf_{x \in C} \bigcup F(x) = \inf_{x \in C} F_{\inf}(x) = F_{\inf}(0) = 0$. Then, by Theorem 4.5, the ϵ -solution set of (CSP) is established as follows:

$$\begin{aligned} \epsilon\text{-sol}\ (\text{CSP}) &= \{(x,y) \mid x \in \epsilon\text{-sol}(\text{CSP})', \ y \in F(x)\} \cap \mathbb{R} \times \{y \mid y - \epsilon \leq 0\} \\ &= \{(x,y) \mid x \in [-\sqrt{\epsilon}, 0], \ y \in F(x)\} \cap \mathbb{R} \times \{y \mid y \leq \epsilon\} \\ &= \{(x,y) \mid x \in [-\sqrt{\epsilon}, 0], \ y \in [x^2, \epsilon]\}. \end{aligned}$$

Remark 4.5. In Example 4.1 if F is replaced by the set-valued map defined by $F(x) = x^2 + \text{int } \mathbb{R}_+$, then it is worth noticing that although the solution set of Problem (CSP) is empty, for each $\epsilon > 0$ the ϵ -solution set of Problem (CSP) is nonempty. Using our approach, we can see that

$$\epsilon$$
-sol (CSP) = { $(x, y) \mid x \in [-\sqrt{\epsilon}, 0], y \in (x^2, \epsilon]$ }.

References

- 1. J. Baier and J. Jahn, On subdifferentials of set-valued maps, J. Optim. Th. Appl., 100 (1999), 233-240.
- G. Bigi and M. Castellani, K-epidrivatives for set-valued functions and optimization, Math. Meth. Oper. Res., 55 (2002), 401-412.
- 3. R. S. Burachik and V. Jeyakumar, A new geometric condition for Fenchel's duality in infinite dementional spaces, *Math. Program. Ser. B*, **104** (2005), 229-233.
- G. Y. Chen and J. Jahn, Optimality conditions for set-valued optimization problems, Math. Meth. Oper. Res., 48 (1998), 187-200.
- 5. H. W. Corley, Optimality conditions for maximizations of set-valued functions, J. Optim. Th. Appl., 58 (1998), 1-10.
- Fabián Flores-Bazán, Optimality conditions in non-convex set-valued optimization, Math. Meth. Oper. Res., 53 (2001), 403-417.
- A. Götz and J. Jahn, The Lagrange multiplier rule in set-valued optimization, SIAM J. Optim., 10 (1999), 331-344.
- J. B. Hiriart-Urruty and C. Lemarechal, *Convex Analysis and Minimization Algo*rithms, Vol. I and II, Springer-Verlag, Berlin, Heidelberg, 1993.
- J. B. Hiriart-Urruty, M. Moussaoui, A. Seeger and M. Volle, Subdifferential calculus without qualification conditions, using approximate subdifferentials: a survey, *Nonlinear Analysis*, 24 (1995), 1727-1754.
- 10. J. Jahn and R. Rauh, Contingent epiderivatives and set-valued optimization, *Math. Meth. Oper. Res.*, 46 (1997), 193-211.
- 11. V. Jeyakumar and B. M. Glover, Characterizing global optimality for DC optimization problems under convex inequality constraints, *J. Global Optim.*, **8** (1996), 171-187.
- G. S. Kim and G. M. Lee, On ε-approximate solutions for convex semidefinite optimization problems, *Taiwanese J. Math.*, **11** (2007), 765-784.
- 13. D. Kuroiwa, On set-valued optimization, Nonlinear Analysis, 47 (2001), 1395-1400.
- 14. P. Loridan, Necessary conditions for ϵ -optimality, *Math. Programming*, **19** (1982), 140-152.
- P. Loridan, ε-Solutions in vector minimization problems, J. Optim. Th. Appl., 43 (1984), 265-276.
- 16. R. T. Rockafellar, Convex Analysis, Princeton Univ. Press, 1997.
- 17. W. Song, Weak subdifferential of set-valued mappings, *Optimization*, **52** (2003), 263-276.
- J. J. Strodiot, V. H. Nguyen and N. Heukemes, *ϵ*-Optimal solutions in nondifferentiable convex programming and some related questions, *Math. Programming*, 25 (1983), 307-328.

19. K. Yokoyama, *ε*-Optimality criteria for convex programming problems via exact penalty functions, *Math. Programming*, **56** (1992), 233-243.

Gue Myung Lee Pukyong National University, Pusan, Korea E-mail: gmlee@pknu.ac.kr

Le Anh Tuan Ninh Thuan College of Pedagogy, Ninh Thuan, Vietnam E-mail: latuan02@yahoo.com