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GOOD SOLUTIONS FOR A CLASS OF INFINITE HORIZON
DISCRETE-TIME OPTIMAL CONTROL PROBLEMS

Alexander J. Zaslavski

Abstract. In this paper we establish the existence of good solutions for a
large class of infinite horizon discrete-time optimal control problems. This
class contains optimal control problems arising in economic dynamics which
describe a model proposed by Robinson, Solow and Srinivasan with noncon-
cave utility functions representing the preferences of the planner.

1. INTRODUCTION

The study of the existence and the structure of solutions of optimal control
problems defined on infinite intervals and on sufficiently large intervals has recently
been a rapidly growing area of research. See, for example, [4, 7-9, 11, 14, 19-23,
31-33] and the references mentioned therein. These problems arise in engineering [1,
12], in models of economic growth [2, 6, 10, 15, 17, 18, 26, 29, 34-36], in infinite
discrete models of solid-state physics related to dislocations in one-dimensional
crystals [3, 30] and in the theory of thermodynamical equilibrium for materials [5,
13, 16]. In this paper we study a large class of infinite horizon discrete-time optimal
control problems. This class contains optimal control problems arising in economic
dynamics which describe a model proposed by Robinson, Solow and Srinivasan
[24, 25, 27, 28] with nonconcave utility functions representing the preferences of
the planner.

We begin with some preliminary notation. Let R (R+) be the set of real
(non-negative) numbers and let Rn be a finite-dimensional Euclidean space with
non-negative orthant Rn

+ = {x ∈ Rn : xi ≥ 0, i = 1, . . . , n}. For any x, y ∈ Rn,
let the inner product xy =

∑n
i=1 xiyi, and x >> y, x > y, x ≥ y have their usual

meaning. Let e(i), i = 1, . . . , n, be the ith unit vector in Rn, and e be an element
of Rn

+ all of whose coordinates are unity. For any x ∈ Rn, let ||x||2 denote the
Euclidean norm of x.
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For each mapping a : X → 2Y \ {∅}, where X, Y are nonempty sets, put
graph(a) = {(x, y) ∈ X × Y : y ∈ a(x)}.

Let K be a nonempty compact subset of Rn. Denote by P(K) the set of all
nonempty closed subsets of K. We assume that || · || is a norm on Rn.

For each nonempty A, B ⊂ Rn set

(1.1) H(A, B) = sup{sup
x∈A

inf
y∈B

||x− y||, sup
y∈B

inf
x∈A

||x− y||}.

For any integer t ≥ 0 let at : K → P(K) be such that graph(at) is a closed
subset of Rn × Rn.

Suppose that there exists κ ∈ (0, 1) such that for each x, y ∈ K and each integer
t ≥ 0,

(1.2) H(at(x), at(y)) ≤ κ||x− y||
and that for each integer t ≥ 0 the upper semicontinuous function

ut : {(x, x′) ∈ K × K, x′ ∈ at(x)} → [0,∞)

satisfies

(1.3) sup{sup{ut(x, x′) : (x, x′) ∈ graph(at)} : t = 0, 1, . . .} < ∞.

A sequence {x(t)}∞t=0 ⊂ K is called a program if x(t + 1) ∈ a(x(t)) for all
integers t ≥ 0.

Let T1, T2 be integers such that T1 < T2. A sequence {x(t)}T2
t=T1

⊂ K is called
a program if x(t + 1) ∈ at(x(t)) for all integers t satisfying T1 ≤ t < T2.

We suppose that the following assumptions hold:
(A1) for each δ > 0 there exists λ > 0 such that if an integer t ≥ 0 and if

(x, x′) ∈ graph(at) satisfies ut(x, x′) ≥ δ, then there is z ∈ at(x) for which
z ≥ x′ + λe;

(A2) there exist a program {x̂(t)}∞t=0 and ∆̂ > 0 such that ut(x̂(t), x̂(t + 1)) ≥ ∆̂
for all integers t ≥ 0;

(A3) for each integer t ≥ 0, each (x, y) ∈ graph(at) and each x̃ ∈ K satisfying
x̃ ≥ x there is ỹ ∈ at(x̃) such that

ỹ ≥ y, ut(x̃, ỹ) ≥ ut(x, y).

In the sequel we assume that supremum of empty set is −∞.
For each x0 ∈ K and each integer T > 0 set

(1.4)
U(x0, T ) = sup

{
T−1∑
t=0

ut(x(t), x(t + 1)) :

{x(t)}T−1
t=0 is a program and x(0) = x0

}
.
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Let x0, x̃0 ∈ K and let T be a natural number. Set

(1.5)

U(x0, x̃0, T ) = sup

{
T−1∑
t=0

ut(x(t), x(t+1)) :

{x(t)}T
t=0 is a program such that x(0)=x0, x(T )≥ x̃0

}
.

Let T be a natural number. Set

(1.6) Û(T ) = sup{
T−1∑
t=0

ut(x(t), x(t + 1)) : {x(t)}T
t=0 is a program}.

Upper semicontinuity of ut, t = 0, 1, . . . implies the following two results.

Proposition 1.1. For each x0 ∈ K and each natural number T there exists a
program {x(t)}T

t=0 such that x(0) = x0 and

T−1∑
t=0

ut(x(t), x(t + 1)) = U(x0, T ).

Proposition 1.2. For each natural number T there exists a program {x(t)} T
t=0

such that
∑T−1

t=0 ut(x(t), x(t + 1)) = Û(T ).
For each x0 ∈ K and each pair of integers T1 < T2 set

(1.7)
U(x0, T1, T2) = sup


T2∑

t=T1

ut(x(t), x(t + 1)) :

{x(t)}T2
t=T1

is a program and x(T1) = x0

}
.

Upper semicontinuity of ut, t = 0, 1, . . . implies the following result.

Proposition 1.3. For each x0 ∈ K and each pair of integers T1 < T2 there
exists a program {x(t)}T2

t=T1
such that x(T1) = x0 and

T2−1∑
t=T1

ut(x(t), x(t + 1)) = U(x0, T1, T2).

Let x0, x̃0 ∈ K and let T1 < T2 be integers. Set

U(x0, x̃0, T1, T2) = sup{
T2−1∑
t=T1

ut(x(t), x(t + 1)) : {x(t)}T2
t=T1

is a program and



1640 Alexander J. Zaslavski

(1.8) x(T1) = x0, {x(T2) ≥ x̃0}

Let T1, T2 be integers such that T1 < T2. Set

(1.9) Û(T1, T2) = sup


T2−1∑
t=T1

ut(x(t), x(t + 1)) : {x(t)}T2
t=T1

is a program

 .

We will establish the following theorem which is our main result.

Theorem 1.1. There is M > 0 such that for each x0 ∈ K there exists
a program {x̄(t)}∞t=0 such that x̄(0) = x0 and that for each pair of integers
T1, T2 ≥ 0 satisfying T1 < T2,∣∣∣∣∣∣

T2−1∑
t=T1

ut(x̄(t), x̄(t + 1)) − Û(T1, T2)

∣∣∣∣∣∣ ≤ M.

Moreover, for each integer T > 0,

T−1∑
t=0

ut(x̄(t), x̄(t + 1)) = U(x̄(0), x̄(T ), 0, T ),

if the following properties hold:
for each integer t ≥ 0 and each (z, z ′) ∈ graph(at) satisfying ut(z, z′) > 0 the

function ut is continuous at (z, z ′); for each integer t ≥ 0 and each z, z1, z2, z3 ∈
K satisfying z1 ≤ z2 ≤ z3 and zi ∈ at(z), i = 1, 3 the inclusion z2 ∈ at(z) holds.

The program {x̄(t)}∞t=0 whose existence is guaranteed by Theorem 1.1 in infinite
horizon optimal control is considered as an (approximately) optimal program [3, 5,
11, 13, 16, 35, 36].

We will also establish the following result.

Theorem 1.2. Assume that {x(t)}∞t=0 is a program, there exists M0 > 0 such
that for each integer T > 0,

T−1∑
t=0

ut(x(t), x(t + 1)) ≥ U(0, T, x(0), x(T ))− M0

and that
lim sup

t→∞
ut(x(t), x(t + 1)) > 0.
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Then there exists M1 > 0 such that for each pair of integers T 1 ≥ 0, T2 > T1,∣∣∣∣∣∣
T2−1∑
t=T1

ut(x(t), x(t + 1))− Û(T1, T2)

∣∣∣∣∣∣ ≤ M1.

Theorem 1.1 is proved in Section 6 while Theorem 1.2 is obtained in Section 7.
Let M > 0 be as guaranteed by Theorem 1.1.

Proposition 1.4. Let x0 ∈ K and let a program {x̄(t)}∞
t=0 be as guaranteed

by Theorem 1.1. Assume that {x(t)}∞t=0 is a program. Then either the sequence

{
T−1∑
t=0

ut(x(t), x(t + 1))−
T−1∑
t=0

ut(x̄(t), x̄(t + 1))}∞T=1

is bounded or

(1.10)
T−1∑
t=0

ut(x(t), x(t + 1))−
T−1∑
t=0

ut(x̄(t), x̄(t + 1)) → −∞ as T → ∞.

Proof. Assume that the sequence {∑T−1
t=0 ut(x(t), x(t + 1)) −∑T−1

t=0 ut(x̄(t),
x̄(t + 1))}∞T=1 is not bounded. Then by Theorem 1.1,

lim inf
T→∞

[
T−1∑
t=0

ut(x(t), x(t + 1))−
T−1∑
t=0

ut(x̄(t), x̄(t + 1))] = −∞.

Let Q > 0. Then there exists an integer T0 > 0 such that

(1.11)
T0−1∑
t=0

ut(x(t), x(t + 1))−
T0−1∑
t=0

ut(x̄(t), x̄(t + 1)) < −Q − M.

By (1.11), the choice of {x̄(t)}∞t=0 and Theorem 1.1 for each integer T > T0,

T−1∑
t=0

ut(x(t), x(t + 1)) −
T−1∑
t=0

ut(x̄(t), x̄(t + 1)) =
T0−1∑
t=0

ut(x(t), x(t + 1))

−
T0−1∑
t=0

ut(x̄(t), x̄(t + 1)) +
T−1∑
t=T0

ut(x(t), x(t + 1))−
T−1∑
t=T0

ut(x̄(t), x̄(t + 1))

< −Q − M + Û(T0, T )−
T−1∑
t=T0

ut(x̄(t), x̄(t + 1)) < −Q.
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Since Q is any positive number we conclude that (1.10) is true. Proposition 1.4 is
proved.

Note that if the program {x(t)}∞t=0 satisfies (1.10), the it is called bad; otherwise
it is called good [6, 11, 34-36]. Thus in view of Theorem 1.1 for any initial state
there exists a good program. This is a difficult result because we study the infinite
horizon optimal control problem with constraints and the cost functions ut are
not assumed to be concave. The existence of good programs is established for
a large class of infinite horizon problems. We show in Section 3 that this class
contains optimal control problems arising in economic dynamics which describe
a nonstationary model proposed by Robinson, Solow and Srinivasan [24, 25, 27,
28] with nonconcave utility functions representing the preferences of the planner.
Existence of good programs for the stationary Robinson-Solow-Srinivasan model
with a nonconcave utility function was obtained in [35].

Now assume that ut = u0 and at = a0, t = 0, 1, . . . . Let M > 0 be as
guaranteed by Theorem 1.1 and set u = u0, a = a0. The following result which
will be proved in Section 8 is a generalization of one of the main results of [35].

Theorem 1.3. There exists µ = limp→∞ Û(0, p)/p and

|p−1Û(0, p)− µ| ≤ 2M/p for all natural numbers p.

2. UPPER SEMICONTINUITY OF COST FUNCTIONS

We use the notation from Section 1. For each integer t ≥ 0 let at : K → P(K)
be such that graph(at) is a closed set and assume that for each integer t ≥ 0 an
upper semicontinuous function φt : Rn

+ → [0,∞) be such that

(2.1) sup{sup{φt(z) : z ∈ (K − Rn
+) ∩ Rn

+} : t = 0, 1, . . .} < ∞.

For each integer t ≥ 0 and each (x, x′) ∈ graph(at) define

(2.2) ut(x, x′) = sup{φt(z) : z ∈ Rn
+, x′ + z ∈ a(x)}.

In view of (2.1) and (2.2) ut, t = 0, 1, . . . satisfy (1.3). Note that in many models
of economic dynamics cost functions ut, t = 0, 1, . . . are defined by (2.2).

Lemma 2.1. For each integer t ≥ 0 the function u t : graph(at) → [0,∞) is
upper semicontinuous.

Proof. Let t ≥ 0 be an integer and let {(x(j), y(j))}∞j=1 ⊂ graph(at) satisfy

(2.3) lim
j→∞

(x(j), y(j)) = (x, y).
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We show that ut(x, y) ≥ lim supj→∞ u(x(j), y(j)). Extracting a subsequence and
re-indexing if necessary we may assume without loss of generality that there exists
limj→∞ u(x(j), y(j)). By (2.2), for each integer j ≥ 1 there exists z(j) ∈ Rn

+ such
that

(2.4) y(j) + z(j) ∈ at(x(j)), φt(z(j)) ≥ ut(x(j), y(j))− 1/j.

Clearly, the sequence {z(j)}∞j=1 is bounded. Extracting a subsequence and re-
indexing, if necessary, we may assume without loss of generality that there exists

(2.5) z = lim
j→∞

z(j).

By (2.3), (2.4) and (2.5), z ≥ 0 and (x, y + z) = limj→∞(x(j), y(j) + z(j)) ∈
graph(at). Combined with (2.2), (2.4) and (2.5) this implies that

ut(x, y) ≥ φt(z) ≥ lim sup
j→∞

φt(z(j)) ≥ lim sup
j→∞

[ut(x(j), y(j)) − 1/j]

= lim
j→∞

ut(x(j), y(j)).

Lemma 2.1 is proved.

3. THE NONSTATIONARY ROBINSON-SOLOW-SRINIVASAN MODEL

In this section we consider a subclass of the class of infinite horizon optimal
control problems considered in Section 1. Infinite horizon problems of this subclass
correspond to the nonstationary Robinson-Solow-Srinivasan models [24, 25, 27, 28].

For each integer t ≥ 0 let

(3.1)

α(t) = (α(t)
1 , . . . , α(t)

n ) >> 0,

b(t) = (b(t)
1 , . . . , b(t)

n ) >> 0,

d(t) = (d(t)
1 , . . . , d(t)

n ) ∈ ((0, 1])n

and for each integer t ≥ 0 let wt : [0,∞) → [0,∞) be a strictly increasing
continuous function such that

(3.2) wt(0) = 0, inf{wt(z) : t = 0, 1, . . .} > 0 for all z > 0

and such that the following assumption holds:
(A4) for each ε > 0 there exists δ > 0 such that for each integer t ≥ 0 and

each z ∈ [0, δ] the inequality wt(z) ≤ ε is true.
Let t ≥ 0 be an integer. For each x ∈ Rn

+ set
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(3.3)
at(x) = {y ∈ Rn

+ : yi ≥ (1− d
(t)
i )xi, i = 1, . . . , n,

n∑
i=1

α
(t)
i (yi − (1 − d

(t)
i )xi) ≤ 1}.

It is clear that for each x ∈ Rn, at(x) is a nonempty closed bounded subset of
Rn

+ and graph(at) is a closed subset of Rn
+ × Rn

+. Suppose that

(3.4) inf{d(t)
i : i = 1, . . . , n, t = 0, 1, . . .} > 0,

(3.5) inf{eb(t) : t = 0, 1, . . .} > 0,

(3.6) inf{α(t)
i : i = 1, . . . , n, t = 0, 1, . . .} > 0,

(3.7) sup{b(t)
i : i = 1, . . . , n, t = 0, 1, . . .} < ∞,

(3.8) sup{α(t)
i : i = 1, . . . , n, t = 0, 1, . . .} < ∞

and that for each M > 0

(3.9) sup{wt(M) : t = 0, 1, . . .} < ∞, inf{wt(M) : t = 0, 1, . . .} > 0.

The constraint mappings at, t = 0, 1, . . . have already been defined. Let us now
define the cost functions ut, t = 0, 1, . . . .

For each integer t ≥ 0 and each (x, x′) ∈ graph(at) set

(3.10)
ut(x, x′) = sup{wt(b(t)y) : 0 ≤ y ≤ x,

ey +
n∑

i=1

α
(t)
i (x′

i − (1− d
(t)
i )xi) ≤ 1}.

Choose α∗, α∗ > 0, d∗ > 0 such that

(3.11) α∗ < α
(t)
i < α∗, d∗ < d

(t)
i , i = 1, . . . , n, t = 0, 1, . . . .

Lemma 3.1. Let a number M0 > (α∗d∗)−1, an integer t ≥ 0 and let
(x, x′) ∈ graph(at) satisfy x ≤ M0e. Then x′ ≤ M0e.

Proof. By (3.3),
∑n

i=1 α
(t)
i (x′

i − (1 − d
(t)
i )xi) ≤ 1 and in view of (3.11) for

each i = 1, . . . , n,

x′
i ≤ (α(t)

i )−1 + (1 − d
(t)
i )xi ≤ α−1

∗ + (1 − d∗)xi ≤ α−1
∗ + (1 − d∗)M0

≤ d∗(α∗d∗)−1 + (1 − d∗)M0 ≤ d∗M0 + (1 − d∗)M0 = M0.
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Lemma 3.1 is proved.

Lemma 3.2. Let t ≥ 0 be an integer. Then the function u t : graph(at) →
[0,∞) is upper semicontinuous. Moreover, if (x, y) ∈ graph(a t) and ut(x, y) > 0,
then ut is continuous at (x, y).

Proof. Let

(3.12)
(x, y) ∈ graph(at), {(x(j), y(j))}∞j=1

⊂ graph(at), lim
j→∞

(x(j), y(j)) = (x, y).

We show that ut(x, y) ≥ lim supj→∞ ut(x(j), y(j)). Extracting a subsequence and
re-indexing we may assume that there exists limj→∞ ut(x(j), y(j)). By (3.9) and
(3.10) for each integer j ≥ 1 there exists z(j) ∈ Rn

+ such that

(3.13) z(j) ≤ x(j), ez(j) +
n∑

i=1

α
(t)
i (y(j)

i − (1 − d
(t)
i )x(j)

i ) ≤ 1,

(3.14) wt(b(t)z(j)) ≥ ut(x(j), y(j)) − 1/j.

Extracting a subsequence and re-indexing we may assume without loss of generality
that there exists

(3.15) z = lim
j→∞

z(j).

In view of (3.12) and (3.15)

(3.16) 0 ≤ z ≤ x.

By (3.10), (3.12) and (3.15),

ez +
n∑

i=1

α
(t)
i (yi − (1 − d

(t)
i )xi)

= lim
j→∞

[ez(j) +
n∑

i=1

α
(t)
i (y(j)

i − (1− d
(t)
i )x(j)

i )] ≤ 1.

Together with (3.10), (3.14) and (3.16) this implies that

ut(x, y) ≥ wt(b(t)z) = lim
j→∞

wt(b(t)z(j)) = lim
j→∞

ut(x(j), y(j)).

Thus ut is upper lower semicontinuous.
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Assume now that (x, y) ∈ graph(at) satisfies

(3.17) ut(x, y) > 0

and show that ut is continuous at (x, y). Clearly, it is sufficient to show that ut is
lower semicontinuous at (x, y). Assume that

(3.18) (x(j), y(j)) ∈ graph(at) for all integers j ≥ 1, lim
j→∞

(x(j), y(j)) = (x, y).

Let ε > 0. It is sufficient to show that lim infj→∞ ut(x(j), y(j)) ≥ ut(x, y)− ε. By
(3.10) and (3.17) there is z ∈ Rn

+ such that

(3.19) z ≤ x, ez +
n∑

i=1

α
(t)
i (yi − (1− d

(t)
i )xi) ≤ 1,

(3.20) wt(b(t)z) > 0, wt(b(t)z) > ut(x, y)− ε/4.

In view of (3.2) and (3.20) there is q ∈ {1, . . . , n} such that

(3.21) b(t)
q zq > 0.

It follows from (3.2) and (3.21) that there is γ ∈ (0, 1) such that

(3.22) wt(b(t)γz) ≥ wt(b(t)z) − ε/4.

By (3.18), (3.19) and (3.21) there exists a natural number j0 such that for each
integer j ≥ j0,

(3.23) γz ≤ x(j), e(γz) +
n∑

i=1

α
(t)
i (y(j)

i − (1− d
(t)
i )x(j)

i ) ≤ 1.

Relations (3.10), (3.20), (3.22) and (3.23) imply that for all integers j ≥ j0,

ut(x(j), y(j)) ≥ wt(b(t)γz) ≥ wt(b(t)z) − ε/4 > ut(x, y)− ε/2.

This implies that ut is lower semicontinuous at (x, y). Lemma 3.2 is proved.
For each x = (x1, . . . , xn) ∈ Rn set

(3.24) ||x||1 =
n∑

i=1

|xi|, ||x||∞ = max{|xi| : i = 1, . . . , n}.

By (3.3) and (3.11) for each integer t ≥ 0, each x, y ∈ K and for || · || = || · ||p,
where p = 1, 2,∞,

(3.25) H(at(x), at(y)) ≤ ||((1−d
(t)
i )xi)n

i=1−((1−d
(t)
i )yi)n

i=1|| ≤ (1−d∗)||x−y||
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(see (1.2)).

Proposition 3.1. Let δ > 0. Then there exists λ > 0 such that for each
integer t ≥ 0 and each (x, y) ∈ graph(at) which satisfies ut(x, y) ≥ δ the inclusion
y + λe ∈ at(x) holds.

Proof. By (A4) there is δ0 > 0 such that for each integer t ≥ 0 and each
ξ ∈ R+ satisfying wt(ξ) ≥ δ/2 the following inequality holds:

(3.26) ξ ≥ δ0.

Set

(3.27) b∗ = sup{b(t)
i : t = 0, 1, . . . , i = 1, . . . , n}

(see (3.7)). Choose a positive number λ such that

(3.28) λnα∗ < 2−1b−1
∗ δ0.

Assume that an integer t ≥ 0,

(3.29) (x, y) ∈ graph(at), ut(x, y) ≥ δ.

By (3.10) and (3.29) there exists z ∈ Rn
+ such that

(3.30) 0 ≤ z ≤ x, ez +
n∑

i=1

α
(t)
i (yi − (1 − d

(t)
i )xi) ≤ 1, wt(b(t)z) ≥ δ/2.

In view of (3.30) and the choice of δ0,

(3.31) b(t)z ≥ δ0.

It follows from (3.27) and (3.31) that

(3.32) ez =
n∑

i=1

zi =
n∑

i=1

(b(t)
i )−1b

(t)
i zi ≥ b−1

∗ bz ≥ b−1
∗ δ0.

We show that y + λe ∈ at(x). It is clear (see (3.3) and (3.29)) that for any
i = 1, . . . , n

(3.33) yi + λ ≥ yi ≥ (1− d
(t)
i )xi.

It follows from (3.11), (3.28), (3.30) and (3.32) that
n∑

i=1

α
(t)
i ((y + λe)i − (1− d

(t)
i )xi) =

n∑
i=1

α
(t)
i (yi − (1 − d

(t)
i )xi) + λ

n∑
i=1

α
(t)
i

≤ 1 − ez + λ

n∑
i=1

α
(t)
i ≤ 1 − b−1

∗ δ0 + λnα∗ < 1
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and together with (3.33) this implies that y +λe ∈ a t(x). Proposition 3.1 is proved.

Proposition 3.2. There exist a program {x̂(t)}∞t=0 and ∆̂ > 0 such that

ut(x̂(t), x̂(t + 1)) ≥ ∆̂ for all integers t ≥ 0.

Proof. Choose λ0 > 0, λ1 > 0 such that

(3.34) λ0nα∗ < 1/2, λ1 < λ0, λ1n < 1/4.

By (3.5), there is ε0 > 0 such that

(3.35) eb(t) ≥ ε0, t = 0, 1, . . . .

Put

(3.36) ∆̂ = inf{wt(λ1ε0) : t = 0, 1, . . .}.

By (3.9), ∆̂ > 0. Set

(3.37) x̂(t) = λ0e, t = 0, 1, . . . , ŷ(t) = λ1e, t = 0, 1, . . .

By (3.11), (3.34) and (3.37) for i = 1, . . . , n, t = 0, 1, . . . ,

(3.38) x̂i(t + 1)− (1− d
(t)
i )x̂i(t) = λ0d

(t)
i > 0,

(3.39)

n∑
i=1

α
(t)
i [x̂i(t + 1) − (1 − d

(t)
i )x̂i(t)]

=

(
n∑

i=1

α
(t)
i d

(t)
i

)
λ0 ≤ λ0

n∑
i=1

α
(t)
i ≤ λ0nα∗ < 1/2

and for t = 0, 1, . . . ,

(3.40) eŷ(t) +
n∑

i=1

α
(t)
i [x̂i(t + 1)− (1− d

(t)
i )x̂i(t)] ≤ λ1n + 1/2 < 1.

Therefore {x̂(t)}∞t=0 is a program. By (3.10), (3.34), (3.35), (3.37), (3.36) and
(3.40) for all integers t ≥ 0,

ut(x̂(t), x̂(t + 1)) ≥ wt(b(t)ŷ(t)) ≥ wt(λ1eb
(t)) ≥ wt(λ1ε0) ≥ ∆̂.

Proposition 3.2 is proved.
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Proposition 3.3. Let t ≥ 0 be an integer, (x, y) ∈ graph(at) and let x̃ ∈ Rn
+

satisfy x̃ ≥ x. Then there is ỹ ∈ at(x̃) such that ỹ ≥ y and ut(x̃, ỹ) ≥ ut(x, y).

Proof. By (3.10), there is z ∈ Rn
+ such that

(3.41) 0 ≤ z ≤ x, ez +
n∑

i=1

α
(t)
i (yi − (1− d

(t)
i )xi) ≤ 1, wt(b(t)z) = ut(x, y).

For any i = 1, . . . , n set

(3.42) ỹi = x̃i(1− d
(t)
i ) + yi − (1 − d

(t)
i )xi.

By (3.3), (3.41) and (3.42), for i = 1, . . . , n, ỹi ≥ (1 − d
(t)
i )x̃i,

n∑
i=1

α
(t)
i (ỹi − (1− d

(t)
i )x̃i) =

n∑
i=1

α
(t)
i (yi − (1− d

(t)
i )xi) ≤ 1 − ez.

Therefore ỹ ∈ at(x̃). In view of the inequality x̃ ≥ x and (3.42) we have ỹ ≥ y. It
is easy to see that

ut(x̃, ỹ) ≥ wt(b(t)z) = ut(x, y).

This completes the proof of Proposition 3.3 is proved.

It is easy to see that the following result is true.

Proposition 3.4. Let an integer t ≥ 0, x, x1, x2, x3 ∈ Rn
+, xi ∈ at(x),

i = 1, 3, x1 ≤ x2 ≤ x3. Then x2 ∈ a(xt).

Thus we have defined the mappings at and the cost functions ut, t = 0, 1, . . . .
The control system considered in this section is a special case of the control system
studied in Section 1. As we have already mentioned before this control system
corresponds to the nonstationary Robinson-Solow-Srinivasan model [24, 25, 27,
28]. Note that this control system satisfies the assumptions posed in Section 1 and
therefore all the results stated there hold for this system. Indeed, choose M0 >
(α∗d∗)−1 and put K = {z ∈ Rn

+ : z ≤ M0e}. By Lemma 3.1, at(K) ⊂ K , t =
0, 1, . . . . Relation (1.2) follows from (3.25). Clearly, (1.3) holds. In view of Lemma
3.2, ut is upper semicontinuous for all integers t ≥ 0. Proposition 3.1 implies (A1).
(A2) follows from Proposition 3.2 and (A3) follows from Proposition 3.3.

4. AUXILIARY RESULTS FOR THEOREMS 1.1-1.3

In this section we use the notation and the assumptions of Section 1.
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Lemma 4.1. Let δ > 0. Then there exists a natural number T0 ≥ 4 such
that for each integer τ1 ≥ 0, each integer τ2 ≥ T0 + τ1, each program {x(t)}τ2

t=τ1

which satisfies

(4.1) uτ2−1(x(τ2 − 1), x(τ2)) ≥ δ

and each x̃0 ∈ K there exists a program {x̃(t)}τ2
t=τ1

such that

x̃(τ1) = x̃0, x̃(τ2) ≥ x(τ2).

Proof. By (A1) there exists λ ∈ (0, 1) such that the following property holds:
(P1) For each integer t ≥ 0 and each (x, x′) ∈ graph(at) satisfying ut(x, x′) ≥

δ there is z ∈ at(x) such that z ≥ x′ + λe.
Choose D0 > 0 such that

(4.2) ||z|| ≤ D0 for all z ∈ K.

There is c0 > 0 such that

(4.3) ||z||2 ≤ c0||z|| for all z ∈ K.

Choose a natural number T0 ≥ 4 such that

(4.4) 2D0c0κ
T0 < λ

(see (1.2)).
Assume that integers τ1 ≥ 0, τ2 ≥ T0 + τ1, a program {x(t)}τ2

t=τ1
satisfies (4.1)

and that x̃0 ∈ K. By (4.1) and (P1) there exists z ∈ Rn
+ such that

(4.5) z ∈ aτ2−1(x(τ2 − 1)), z ≥ x(τ2) + λe.

By (1.2) there exists a program {x̃(t)}τ2−1
t=τ1

such that

(4.6)
x̃(τ1) = x̃0,

||x̃(t + 1)− x(t + 1)|| ≤ κ||x̃(t) − x(t)||, t = τ1, . . . , τ2 − 2.

In view of (1.2) and (4.5) there is x̃(τ2) ∈ aτ2−1(x̃(τ2 − 1)) such that

(4.7) ||x̃(τ2) − z|| ≤ κ||x(τ2 − 1)− x̃(τ2 − 1)||.

Clearly, {x̃(t)}τ2
t=τ1

is a program. Relations (4.2), (4.6) and (4.7) imply that

||x̃(τ2) − z|| ≤ κτ2−τ1||x̃(τ1)− x(τ1)|| ≤ κτ2−τ1(2D0) ≤ κT0(2D0)
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and in view of (4.3) ||x̃(τ2) − z||2 ≤ 2D0c0κ
T0. This implies that for each integer

i = 1, . . . , n, |x̃i(τ2) − zi| ≤ 2D0c0κ
T0 and in view of (4.4) and (4.5)

x̃(τ2) ≥ z − 2D0c0κ
T0e ≥ x(τ2) + [λ − 2D0c0κ

T0]e ≥ x(τ2).

Lemma 4.1 is proved.
Choose a positive number γ such that

(4.8) γ < 1/2 and γ < 4−1∆̂.

Lemma 4.2. Let M1 > 0. Then there exist natural numbers L1, L2 ≥ 4 such
that for each pair of integers T 1 ≥ 0, T2 ≥ L1+L2 +T1, each program {x(t)}T2

t=T1

which satisfies

(4.9)
T2−1∑
t=T1

ut(x(t), x(t + 1)) ≥ U(x(T1), T1, T2) − M1

and each integer τ ∈ [T1 + L1, T2 − L2] the following inequality holds:

(4.10) max{ut(x(t), x(t + 1)) : t = τ, . . . , τ + L2 − 1} ≥ γ.

Proof. By Lemma 4.1 there exists a natural number L1 ≥ 4 such that the
following property holds:

(P2) If integers S1 ≥ 0, S2 ≥ S1 + L1, if a program {v(t)}S2
t=S1

satisfies

uS2−1(v(S2 − 1), v(S2)) ≥ γ

and if ṽ0 ∈ K, then there exists a program {ṽ(t)}S2
t=S1

such that ṽ(S1) = ṽ0,
ṽ(S2) ≥ v(S2).

Choose a number M2 such that

(4.11) M2 > ut(z, z′) for each integer t ≥ 0 and each (z, z′) ∈ graph(at)

and a natural number L2 such that

(4.12) L2 > 4(L1 + 1) + 16∆̂−1(M1 + L1γ + 1) + 16∆̂−1(M1 + M2 + L1 + 2).

Assume that integers T1 ≥ 0, T2 ≥ L1+L2+T1, a program {x(t)}T2−1
t=T1

satisfies
(4.9) and an integer τ satisfies

(4.13) T1 + L1 ≤ τ ≤ T2 − L2.
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We show that (4.10) holds. Let us assume the contrary. Then

(4.14) ut(x(t), x(t + 1)) < γ, t = τ, . . . , τ + L2 − 1.

There are two cases:

(4.15) ut(x(t), x(t + 1)) < γ, t = τ, . . . , T2 − 1;

(4.16) max{ut(x(t), x(t + 1)) : t = τ, . . . , T2 − 1} ≥ γ.

Now we define a natural number τ0 as follows. If (4.15) is true, then we set τ0 = T2.
If (4.16) is true, then by (4.14) there is a natural number τ0 such that

(4.17) τ + L2 ≤ τ0 ≤ T2 − 1,

(4.18) uτ0(x(τ0), x(τ0 + 1)) ≥ γ,

(4.19) ut(x(t), x(t + 1)) < γ, t = τ, . . . , τ0 − 1.

It is clear that in the both cases (4.19) holds and that in the both cases

(4.20) τ0 − τ ≥ L2.

Assume that (4.15) is true. It follows from the choice of L1, (A2), property (P2),
(4.8), (4.12) and (4.13) that there exists a program {x̃(t)}τ+L1

t=τ such that

(4.21) x̃(τ) = x(τ), x̃(τ + L1) ≥ x̂(τ + L1).

Set

(4.22) x̃(t) = x(t), t = T1, . . . , τ.

By (4.21), (4.22), (A3) and (A2) there exists x̃(t) ∈ K , t = τ + L1 + 1, . . . , T2

such that {x̃(t)}T2
t=T1

is a program,

(4.23) x̃(t) ≥ x̂(t) for all integers t = τ + L1, . . . , T2,

(4.24) ut(x̃(t), x̃(t + 1)) ≥ ut(x̂(t), x̂(t + 1)), t = τ + L1, . . . , T2 − 1.

It follows from (4.9), (4.13), (4.22), (4.24), (A2), (4.15), (4.8) and (4.12) that
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M1 ≥ U(x(T1), T1, T2) −
T2−1∑
t=T1

ut(x(t), x(t + 1))

≥
T2−1∑
t=T1

ut(x̃(t), x̃(t + 1))−
T2−1∑
t=T1

ut(x(t), x(t + 1))

=
T2−1∑
t=τ

ut(x̃(t), x̃(t + 1))−
T2−1∑
t=τ

ut(x(t), x(t + 1))

≥
τ+L1−1∑

t=τ

ut(x̃(t), x̃(t + 1)) +
T2−1∑

t=τ+L1

ut(x̂(t), x̂(t + 1))−
T2−1∑
t=τ

ut(x(t), x(t + 1))

≥
T2−1∑

t=τ+L1

ut(x̂(t), x̂(t + 1))−
T2−1∑
t=τ

ut(x(t), x(t + 1))

≥ (T2 − τ − L1)∆̂− (T2 − τ)γ

= (T2 − τ − L1)(∆̂− γ)− L1γ ≥ ∆̂2−1(T2 − τ − L1)− L1γ

≥ 2−1∆̂(L2 − L1) − L1γ ≥ 4−1∆̂L2 − L1γ

and
L2 ≤ 8∆̂−1(M1 + L1γ).

This inequality contradicts (4.12). The contradiction we have reached proves that
(4.15) does not hold. Therefore (4.16) is true and there is a natural number τ0 which
satisfies (4.17)-(4.19). It follows from the choice of L1, property (P2), (A2) and
(4.8) that there exists a program {x̃(t)}τ+L1

t=τ such that

(4.25) x̃(τ) = x(τ), x̃(τ + L1) ≥ x̂(τ + L1).

Set

(4.26) x̃(t) = x(t), t = T1, . . . , τ.

In view of (A2), (A3), (4.25), (4.17) and (4.12) there exist x̃(t) ∈ K, t = τ + 1 +
L1, . . . , τ0 − L1 such that {x̃(t)}τ0−L1

t=τ+L1
is a program,

(4.27) x̃(t) ≥ x̂(t), t = τ + L1, . . . , τ0 − L1,

(4.28) ut(x̃(t), x̃(t + 1)) ≥ ut(x̂(t), x̂(t + 1)), t = τ + L1, . . . , τ0 − L1 − 1.

Clearly, {x̃(t)}τ0−L1
t=T1

is a program. By the choice of L1, property (P2) and (4.18)
there exist x̃(t) ∈ K, t = τ0 − L1 + 1, . . . , τ0 + 1 such that {x̃(t)}τ0+1

t=τ0−L1
is a

program,

(4.29) x̃(τ0 + 1) ≥ x(τ0 + 1).
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Clearly, {x̃(t)}τ0+1
t=T1

is a program. If T2 > τ0 + 1, then it follows from (4.29) and
(A3) that there exist x̃(t) ∈ K, t = τ0 + 2, . . . , T2 such that {x̃(t)}T2

t=τ0+1 is a
program,

(4.30) x̃(t) ≥ x(t), t = τ0 + 1, . . . , T2,

(4.31) ut(x̃(t), x̃(t + 1)) ≥ ut(x(t), x(t + 1)), t = τ0 + 1, . . . , T2 − 1.

By (4.9), (4.26), (4.13), (4.17), (4.31), (4.12), (4.19), (4.28), (4.8), (4.11) and (A2),

M1 ≥ U(x(T1), T1, T2)−
T2−1∑
t=T1

ut(x(t), x(t + 1))

≥
T2−1∑
t=T1

ut(x̃(t), x̃(t + 1)) −
T2−1∑
t=T1

ut(x(t), x(t + 1))

=
T2−1∑
t=τ

ut(x̃(t), x̃(t + 1)) −
T2−1∑
t=τ

ut(x(t), x(t + 1))

≥
τ0∑

t=τ

ut(x̃(t), x̃(t + 1))−
τ0∑

t=τ

ut(x(t), x(t + 1))

≥
τ0−L1−1∑
t=τ+L1

ut(x̃(t), x̃(t + 1))− (τ0 − τ)γ − uτ0(x(τ0), x(τ0 + 1))

≥
τ0−L1−1∑
t=τ+L1

ut(x̂(t), x̂(t + 1))− (τ0 − τ)γ − uτ0(x(τ0), x(τ0 + 1))

≥ ∆̂(τ0 − τ − 2L1) − (τ0 − τ)γ − M2 = (∆̂ − γ)(τ0 − τ − 2L1) − 2L1γ − M2

≥ (∆̂/2)(τ0 − τ − 2L1) − 2L1 − M2

≥ (∆̂/2)(L2 − 2L1)− 2L1 − M2 ≥ 4−1L2∆̂ − 2L1 − M2

and
L2 ≤ 4(∆̂)−1(M1 + M2 + 2L1).

This inequality contradicts (4.12). The contradiction we have reached proves (4.10).
Lemma 4.2 is proved.

Lemma 4.3. Let M1 > 0. Then there exist natural numbers L̄1, L̄2 and
M2 > 0 such that for each pair of integers τ 1 ≥ 0, τ2 ≥ L̄1 + L̄2 + τ1 and each
program {x(t)}τ2

t=τ1
which satisfies

(4.32)
τ2−1∑
t=τ1

ut(x(t), x(t + 1)) ≥ U(x(τ1), τ1, τ2)− M1
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the following assertion holds.
If integers T1, T2 ∈ [τ1, τ2 − L̄2] satisfy L̄1 ≤ T2 − T1, then

(4.33)
T2−1∑
t=T1

ut(x(t), x(t + 1)) ≥ U(x(T1), T1, T2) − M2.

Proof. Let natural numbers L1, L2 ≥ 4 be as guaranteed by Lemma 4.2. By
Lemma 4.1 there exists a natural number L3 ≥ 4 such that the following property
holds:

(P3) If integers S1 ≥ 0, S2 ≥ L3 + S1, if a program {v(t)}S2
t=S1

satisfies

uS2−1(v(S2 − 1), v(S2)) ≥ γ

and if ṽ0 ∈ K, then there exists a program {ṽ(t)}S2
t=S1

such that ṽ(S1) = ṽ0,
ṽ(S2) ≥ v(S2).

Choose a number M0 such that

(4.34) M0 > ut(z, z′) for each integer t ≥ 0 and each (z, z′) ∈ graph(at),

natural numbers L̄1, L̄2 and positive number M2 such that

(4.35) L̄1 ≥ L1, L̄2 > 2(L1 + L2 + L3 + 1),

(4.36) M2 > M1 + M0(L3 + L2).

Assume that integers τ1 ≥ 0, τ2 ≥ L̄1 + L̄2 + τ1, a program {x(t)}τ2
t=τ1

which
satisfies (4.32) and integers T1, T2 satisfy

(4.37) T1, T2 ∈ [τ1, τ2 − L̄2], L̄1 ≤ T2 − T1.

We show that (4.33) is true. By Proposition 1.3 there exists a program {x(1)(t)}T2
t=T1

such that

(4.38) x(1)(T1) = x(T1),
T2−1∑
t=T1

ut(x(1)(t), x(1)(t + 1)) = U(x(T1), T1, T2).

Relations (4.35) and (4.37) imply that

(4.39) T1 + L1 ≤ T1 + L̄1 + L3 ≤ T2 + L3 ≤ τ2 − L̄2 + L3 ≤ τ2 − 2L2 − L3.

It follows from the choice of L1, L2, Lemma 4.2, (4.32), (4.35) and (4.39) that

max{ut(x(t), x(t + 1)) : t = T2 + L3, . . . , T2 + L2 + L3 − 1} ≥ γ.
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Thus there exists an integer τ ∈ [T2 + L3, . . . , T2 + L3 + L2 − 1] such that

(4.41) uτ (x(τ), x(τ + 1)) ≥ γ.

It follows from property (P3) and (4.41) that there exists a program {x(2)(t)}τ+1
t=T2

such that

(4.42) x(2)(T2) = x(1)(T2), x(2)(τ + 1) ≥ x(τ + 1).

Set
x̃(t) = x(t), t = τ1, . . . , T1, x̃(t) = x(1)(t), t = T1 + 1, . . . , T2,

(4.43) x̃(t) = x(2)(t), t = T2 + 1, . . . , τ + 1.

It is clear that {x̃(t)}τ+1
t=τ1

is a program. In view of (4.42) and (4.43)

(4.44) x̃(τ + 1) ≥ x(τ + 1).

It follows from (4.44) and (A3) that there exist x̃(t) ∈ K, t = τ + 2, . . . , τ2 such
that (x̃(t)}τ2

t=τ1
is a program,

(4.45) x̃(t) ≥ x(t), t = τ + 1, . . . , τ2,

(4.46) ut(x̃(t), x̃(t + 1)) ≥ ut(x(t), x(t + 1)), t = τ + 1, . . . , τ2 − 1.

It follows from (4.32), (4.43), (4.46), (4.38). (4.34), (4.36) and the choice of L̄ that

M1 ≥ U(x(τ1), τ1, τ2)−
τ2−1∑
t=τ1

ut(x(t), x(t + 1))

≥
τ2−1∑
t=τ1

ut(x̃(t), x̃(t + 1)) −
τ2−1∑
t=τ1

ut(x(t), x(t + 1))

=
τ2−1∑
t=T1

ut(x̃(t), x̃(t + 1)) −
τ2−1∑
t=T1

ut(x(t), x(t + 1))

≥
τ∑

t=T1

ut(x̃(t), x̃(t + 1)) −
τ∑

t=T1

ut(x(t), x(t + 1))

≥
T2−1∑
t=T1

ut(x̃(t), x̃(t + 1))−
T2−1∑
t=T1

ut(x(t), x(t + 1)) −
τ∑

t=T2

ut(x(t), x(t + 1))

≥ U(x(T1), T1, T2) −
T2−1∑
t=T1

ut(x(t), x(t + 1))− (τ − T2 + 1)M0
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and

T2−1∑
t=T1

ut(x(t), x(t + 1)) ≥ U(x(T1), T1, T2)− M1 − M0(L3 + L2) >

U(x(T1), T1, T2) − M2.

Lemma 4.3 is proved.

5. PROPERTIES OF THE FUNCTION U

It is not difficult to see that the following proposition is true.

Proposition 5.1. Let τ1 ≥ 0, τ1 > τ1 be integers, ∆ ≥ 0, T1, T2 be integers
such that τ1 ≤ T1 < T2 ≤ τ2 and let {x(t)}τ2

t=τ1
be a program satisfying

τ2−1∑
t=τ1

ut(x(t), x(t + 1)) ≥ U(x(τ1), x(τ2), τ1, τ2) − ∆.

Then
T2−1∑
t=T1

ut(x(t), x(t + 1)) ≥ U(x(T1), x(T2), T1, T2) − ∆.

Lemma 5.1. There exist a natural number L and M1 > 0 such that for each
x0, x̃0 ∈ K and each pair of integers T1 ≥ 0, T2 ≥ T1 +L the following inequality
holds:

|U(x0, T1, T2) − U(x̃0, T1, T2)| ≤ M1.

Proof. Let natural numbers L1, L2 ≥ 4 be as guaranteed by Lemma 4.2 with
M1 = 1. By Lemma 4.1 there exists an integer L3 ≥ 4 such that the following
property holds:

(P4) If integers S1 ≥ 0, S2 ≥ S1 + L3, a program {v(t)}S2
t=S1

satisfies

uS2−1(v(S2 − 1), v(S2)) ≥ γ

and if ṽ0 ∈ K, then there exists a program {ṽ(t)}S2
t=S1

such that ṽ(S1) = ṽ0,
ṽ(S2) ≥ v(S2).

Choose a natural number

(5.1) L > 2(L1 + L2 + L3 + 1),
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a number

(5.2) M0 > ut(z, z′), t = 0, 1, . . . , (z, z′) ∈ graph(at)

and put

(5.3) M1 = M0(L1 + L2 + L3).

Assume that x0, x̃0 ∈ K and that integers T1 ≥ 0, T2 ≥ T1 +L. By Proposition
1.3 there exists a program {x(t)}T2

t=T1
such that

(5.4) x(T1) = x0,

T2−1∑
t=T1

ut(x(t), x(t + 1)) = U(x0, T1, T2).

In view of (5.1)

(5.5) T1 + L1 + L3 < T1 + L − L2 ≤ T2 − L2.

It follows from the choice of L1, L2, Lemma 4.2, (5.1) and (5.4) that

max{ut(x(t), x(t + 1)) : t = L3 + L1 + T1, . . . , L3 + L1 + L2 + T1 − 1} ≥ γ.

Hence there is an integer

(5.6) τ ∈ {T1 + L1 + L3, . . . , T1 + L3 + L1 + L2 − 1}

such that

(5.7) uτ (x(τ), x(τ + 1)) ≥ γ.

It follows from the property (P4), the choice of L3, (5.6) and (5.7) that there exists
a program {x̃(t)}τ+1

t=T1
such that

(5.8) x̃(T1) = x̃0, x̃(τ + 1) ≥ x(τ + 1).

By (5.8) and (A3) there exist x̃(t) ∈ K , t = τ + 2, . . . , T2 such that {x̃(t)}T2
t=τ+1

is a program,

(5.9) x̃(t) ≥ x(t), t = τ + 1, . . . , T2,

(5.10) ut(x̃(t), x̃(t + 1)) ≥ ut(x(t), x(t + 1)), t = τ + 1, . . . , T2 − 1.

Clearly, {x̃(t)}T2
t=T1

is a program. By (5.2), (5.3), (5.4), (5.6) and (5.8),
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U(x̃0, T1, T2) ≥
T2−1∑
t=T1

ut(x̃(t), x̃(t + 1))

=
T2−1∑
t=T1

ut(x(t), x(t + 1))−
T2−1∑

t=T1

ut(x(t), x(t + 1))−
T2−1∑
t=T1

ut(x̃(t), x̃(t + 1))


≥ U(x0, T1, T2)− [

τ∑
t=T1

ut(x(t), x(t + 1))−
τ∑

t=T1

ut(x̃(t), x̃(t + 1))]

≥ U(x0, T1, T2)−
τ∑

t=T1

ut(x(t), x(t + 1)) ≥ U(x0, T1, T2)− (τ − T1)M0

≥ U(x0, T1, T2)− (L1 + L2 + L3)M0 = U(x0, T1, T2) − M1.

Thus we have shown that for each x0, x̃0 ∈ K and each pair of integers T1 ≥ 0,
T2 ≥ T1 + L, U(x̃0, T1, T2) ≥ U(x0, T1, T2) − M1. This completes the proof of
Lemma 5.1.

Corollary 5.1. There exists M1 > 0 and a natural number L such that for
each pair of integers T1 ≥ 0, T2 ≥ T1 + L and each x0 ∈ K, |U(x0, T1, T2) −
Û(T1, T2)| ≤ M1.

Lemmas 4.2 and 4.3 and Corollary 5.1 imply the following result.

Lemma 5.2. Let M1 > 0. Then thee exist natural numbers L̄1, L̄2 and M2 > 0
such that for each pair of integers τ 1 ≥ 0, τ2 ≥ τ1 + L̄1 + L̄2 and each program
{x(t)}τ2

t=τ1
which satisfies

∑τ2−1
t=τ1

ut(x(t), x(t + 1)) ≥ U(x(τ1), τ1, τ2) − M1 the
following assertion holds:

If integers T1, T2 ∈ [τ1, τ2 − L̄2] satisfy L̄1 ≤ T2 − T1, then

T2−1∑
t=T1

ut(x(t), x(t + 1)) ≥ Û(T1, T2) − M2.

6. PROOF OF THEOREM 1.1

Let M1 = 1 and let natural numbers L̄1, L̄2 and M2 > 0 be as guaranteed by
Lemma 5.2.

Let x0 ∈ K. By Proposition 1.3 for each natural number k there exists a
program {x(k)(t)}k

t=0 such that

(6.1) x(k)(0) = x0,

k−1∑
t=0

ut(x(k)(t), x(k)(t + 1)) = U(x0, 0, k).
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It follows from the choice of L̄1, L̄2, M2 and Lemma 5.2 that the following property
holds:

(i) For each integer k ≥ L̄1 + L̄2 and each pair of integers T1, T2 ∈ [0, k− L̄2]
satisfying L̄1 ≤ T2 − T1,

∑T2−1
t=T1

ut(x(k)(t), x(k)(t + 1)) ≥ Û(T1, T2) − M2.
Clearly, there exists a strictly increasing sequence of natural numbers {kj}∞j=1

such that for each integer t ≥ 0 there exists

(6.2) x̄(t) = lim
j→∞

x(kj)(t).

Evidently, {x̄(t)}∞t=0 is a program. In view of (6.1) and (6.2),

(6.3) x̄(0) = x0.

It follows from (6.2), the property (i) and upper semicontinuity of the functions ut,
t − 0, 1, . . . that the following property holds:

(ii) for each pair of integers T1, T2 ≥ 0 satisfying T2 − T1 ≥ L̄1,

(6.4) |
T2−1∑
t=T1

ut(x̄(t), x̄(t + 1))− Û(T1, T2)| ≤ M2.

Choose a positive number M0 such that

(6.5) M0 > ut(z, z′) for each integer t ≥ 0 and each (z, z′) ∈ graph(at).

Set

(6.6) M = M2 + M0L̄1.

Assume that nonnegative integers T1, T2 satisfy T1 < T2. If T2−T1 ≥ L̄1, then
by property (ii), (6.4) and (6.6),

|
T2−1∑
t=T1

ut(x̄(t), x̄(t + 1))− Û(T1, T2)| ≤ M2 ≤ M.

If T2 − T1 ≤ L̄1, then by (6.5) and (6.6)

|
T2−1∑
t=T1

ut(x̄(t), x̄(t + 1))− Û(T1, T2)| ≤ (T2 − T1)M0 ≤ M0L̄1 < M.

Thus in the both cases

(6.7) |
T2−1∑
t=T1

ut(x̄(t), x̄(t + 1))− Û(T1, T2)| ≤ M.
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Assume now that the following properties hold:
(iii) for each integer t ≥ 0 and each (z, z′) ∈ graph(at) satisfying ut(z, z′) > 0

the function ut is continuous at (z, z ′);
(iv) if an integer t ≥ 0 and z, z1, z2, z3 ∈ K satisfy zi ∈ at(z), i = 1, 3 and

z1 ≤ z2 ≤ z3, then z2 ∈ at(z).
In order to complete the proof of the theorem it is sufficient to show that for

each integer T > 0,

(6.8)
T−1∑
t=0

ut(x̄(t), x̄(t + 1)) = U(x(0), x(T ), 0, T ).

Denote by E the set of all natural numbers τ such that

(6.9) uτ−1(x̄(τ − 1), x̄(τ)) > 0.

By (A2) and (6.7) the set E is infinite. In view of Proposition 5.1 it is sufficient to
show that (6.8) holds for all T = τ − 1, where τ ∈ E .

Let τ ∈ E and T = τ − 1. We show that (6.8) is valid. Let us assume the
contrary. Then there exist a program {x(t)}Tt=0 and a positive number ∆ such that

(6.10) x(0) = x̄(0), x(T ) ≥ x̄(T ),

(6.11)
T−1∑
t=0

ut(x(t), x(t + 1)) ≥
T−1∑
t=0

ut(x̄(t), x̄(t + 1)) + 2∆.

By the inclusion τ ∈ E and the definition of E ,

(6.12) uT (x̄(T ), x̄(T + 1)) = uτ−1(x̄(τ − 1), x̄(τ)) > 0.

In view of (6.12) and (A1) there is a number λ0 ∈ (0, 1),

(6.13) z0 ∈ aτ−1(x̄(τ − 1)) = aT (x̄(T ))

such that

(6.14) z0 ≥ x̄(τ) + λ0e = x̄(T + 1) + λ0e.

There is c0 > 1 such that

(6.15) ||y|| ≤ c0||y||2 ≤ c2
0||y|| for all y ∈ Rn.

By (6.12), (6.14) and properties (iii) and (iv) we may assume without loss of gen-
erality that

(6.16) |uτ−1(x̄(τ − 1), z0)− uτ−1(x̄(τ − 1), x̄(τ))| ≤ ∆/4.
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It follows from (A3), (6.10) and (6.13) that there is z1 ∈ aT (x(T )) such that

(6.17) z1 ≥ z0, uT (x(T ), z1) ≥ uT (x̄(T ), z0).

Choose a positive number

(6.18) δ < min{1, λ0, ∆τ−1}.
By the construction of the program {x̄(t)}∞t=0 (see (6.2)) and upper semicontinuity
of ut, t = 0, 1, . . . there is a natural number k > τ + 4 such that

(6.19) ||x(k)(t) − x̄(t)||2 ≤ δ, t = 0, . . . , τ + 2,

(6.20) ut(x(k)(t), x(k)(t + 1)) ≤ ut(x̄(t), x̄(t + 1)) + δ, t = 0, . . . , τ + 2.

Set

(6.21) x̃(t) = x(t), t = 0, . . . , τ − 1.

We show that z1 ≥ x(k)(τ). By (6.19),

(6.22) ||x(k)(τ)− x̄(τ)||2 ≤ δ.

In view of (6.18), (6.22), (6.14) and (6.17),

(6.23) x(k)(τ) ≤ x̄(τ) + δe ≤ x̄(τ) + λ0e ≤ z0 ≤ z1.

Set

(6.24) x̃(τ) = z1.

Since z1 ∈ aT (xT ) = aτ−1(x̃τ−1), {x̃(t)}τ
t=0 is a program. By (6.21), (6.10), (6.3),

(6.23), and (6.24),

(6.25) x̃(0) = x̄(0) = x0, x̃(τ) ≥ x(k)(τ).

In view of (6.21), (6.11), equality T = τ − 1, (6.24), (6.17) and (6.16),

(6.26)

τ−1∑
t=0

ut(x̃(t), x̃(t + 1))−
τ−1∑
t=0

ut(x̄(t), x̄(t + 1))

≥
τ−2∑
t=0

ut(x(t), x(t + 1)) + uτ−1(x̃(τ−1), x̃(τ))−
τ−1∑
t=0

ut(x̄(t), x̄(t+1))

≥
τ−2∑
t=0

ut(x̄(t), x̄(t+1))+2∆+uτ−1(x(τ−1), z1)−
τ−1∑
t=0

ut(x̄(t), x̄(t+1))

≥ 2∆+
τ−2∑
t=0

ut(x̄(t), x̄(t+1))+uτ−1(x̄(τ−1), z0)−
τ−1∑
t=0

ut(x̄(t), x̄(t+1))

≥ 2∆ + uτ−1(x̄(τ − 1), z0) − uτ−1(x̄(τ − 1), x̄(τ)) ≥ (3/2)∆.



Good Solutions 1663

Relations (6.18), (6.20) and (6.26) imply that

(6.27)

τ−1∑
t=0

ut(x̃(t), x̃(t + 1))−
τ−1∑
t=0

ut(x(k)(t), x(k)(t + 1))

=
τ−1∑
t=0

ut(x̃(t), x̃(t + 1)) −
τ−1∑
t=0

ut(x̄(t), x̄(t + 1))

+
τ−1∑
t=0

ut(x̄(t), x̄(t + 1))−
τ−1∑
t=0

ut(x(k)(t), x(k)(t + 1))

≥ (3/2)∆− δτ ≥ ∆/2.

By (6.25) and (6.27),

U(x0, x
(k)(τ), 0, τ)≥

τ−1∑
t=0

ut(x(k)(t), x(k)(t + 1)) + ∆/2.

This inequality contradicts (6.1). The contradiction we have reached proves that
(6.8) is valid for all T = τ −1 where τ ∈ E . This completes the proof of Theorem
1.1.

7. PROOF OF THEOREM 1.2

In the sequel we assume that the sum over empty set is zero. There exist ∆ > 0
and a strictly increasing sequence of natural numbers {τi}∞i=1 such that τ1 ≥ 4 and

(7.1) uτi−1(x(τi−1), x(τi)) ≥ ∆ for all integers i ≥ 1.

Let M > 0 be as guaranteed by Theorem 1.1. By Lemma 4.1 there exists a natural
number L0 ≥ 4 such that the following property holds:

(P5) For each integer S1 ≥ 0, each integer S2 ≥ S1 + L0, each program
{v(t)}S2

t=S1
which satisfies uS2−1(v(S2 − 1), v(S2)) ≥ ∆ and each ṽ0 ∈ K there

exists a program {ṽ(t)}S2
t=S1

such that ṽ(S1) = ṽ0, ṽ(S2) ≥ v(S2).
By Corollary 5.1 and (1.3) there exists M∗ > 0 such that

(7.2)
|U(v0, T1, T2)−Û(T1, T2)| ≤ M∗ for each v0 ∈ K and each pair of integers T1 < T2,

(7.3) ut(z, z′) ≤ M∗ for each integer t ≥ 0, and each (z, z′) ∈ graph(at).

Choose a positive number

(7.4) M1 > L0M∗ + M0 + 3M.
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By Theorem 1.1 there exists a program {x̄(t)}∞t=0 such that

(7.5) x̄(0) = x(0)

and that for each pair of integers S1, S2 satisfying S1 < S2,

(7.6) |
S2−1∑
t=S1

ut(x̄(t), x̄(t + 1))− Û(S1, S2)| ≤ M.

Assume that T1, T2 are integers such that 0 ≤ T1 < T2. We show that

(7.7) |
T2−1∑
t=T1

ut(x(t), x(t + 1))− Û(T1, T2)| ≤ M1.

If T2 ≤ T1 + L0, then this inequality follows from (7.3) and (7.4).
Assume that T2 > T1 + L0. There exists an integer i ≥ 1 such that

(7.8) τi > T2 + 2L0.

It follows from (7.1), (7.8) and (P5) that there exists a program {x̃(t)}τi
t=τi−L0

such
that

(7.9) x̃(τi − L0) = x̄(τi − L0), x̃(τi) ≥ x(τi).

Set

(7.10) x̃(t) = x̄(t), t = 0, . . . , τi − L0 − 1.

Clearly, {x̃(t)}τi
t=0 is a program and in view of (7.9),

(7.11)
τi−1∑
t=0

ut(x(t), x(t + 1)) ≥
τi−1∑
t=0

ut(x̃(t), x̃(t + 1))− M0.

It follows from (7.11) and (7.3) that

τi−1∑
t=0

ut(x(t), x(t + 1)) ≥
τi−L0−1∑

t=0

ut(x̄(t), x̄(t + 1))− M0

≥
τi−1∑
t=0

ut(x̄(t), x̄(t + 1))− M0 − L0M∗.
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Combined with (7.6) this implies that

−(M0 + L0M∗) ≤
τi−1∑
t=0

ut(x(t), x(t + 1))−
τi−1∑
t=0

ut(x̄(t), x̄(t + 1))

≤
∑

{ut(x(t), x(t + 1)) : 0 ≤ t < T1} −
∑

{ut(x̄(t), x̄(t + 1)) : 0 ≤ t < T1}

+
T2−1∑
t=T1

ut(x(t), x(t + 1))−
T2−1∑
t=T1

ut(x̄(t), x̄(t + 1))

+
τi−1∑
t=T2

ut(x(t), x(t + 1))−
τi−1∑
t=T2

ut(x̄(t), x̄(t + 1))

≤ M +
T2−1∑
t=T1

ut(x(t), x(t + 1))− (Û(T1, T2) − M) + Û(T2, τi)

−
τi∑

t=T2

ut(x̄(t), x̄(t + 1))

≤
T2−1∑
t=T1

ut(x(t), x(t + 1))− Û(T1, T2) + 3M

and together with (7.4) this implies that
T2−1∑
t=T1

ut(x(t), x(t + 1))− Û(T1, T2) ≥ −3M − (M0 + L0M∗) > −M1.

Theorem 1.2 is proved.

8. PROOF OF THEOREM 1.3

Let x0 ∈ K and let {x̄(t)}∞t=0 be as guaranteed by Theorem 1.1. Then for each
pair of integers T1, T2 ≥ 0 satisfying T1 < T2,

(8.1) |
T2−1∑
t=T1

ut(x̄(t), x̄(t + 1)) − Û(T1, T2)| ≤ M.

Choose ∆ > 0 such that

(8.2) ∆ > u(z, z′) for each (z, z′) ∈ graph(a).

Let p be a natural number. We show that for all sufficiently large natural
numbers T ,

(8.3) |p−1Û(0, p)− T−1
T−1∑
t=0

u(x̄(t), x̄(t + 1))| ≤ 2M/p.
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Assume that T ≥ p is a natural number. Then there exist integers q, s such that

(8.4) q ≥ 1, 0 ≤ s < p, T = pq + s.

It follows from (8.4) that

(8.5)

T−1
T−1∑
t=0

u(x̄(t), x̄(t+1))− p−1Û(0, p)=T−1(
pq−1∑
t=0

u(x̄(t), x̄(t+1))

+
∑

{u(x̄(t), x̄(t + 1)) : t is an integer such that

pq ≤ t ≤ T − 1})− p−1Û(0, p)

= T−1
∑

{u(x̄(t), x̄(t + 1)) : t is an integer such that

pq ≤ t ≤ T − 1}

+(T−1pq)(pq)−1
q−1∑
i=0

(i+1)p−1∑
t=ip

u(x̄(t), x̄(t + 1))− p−1Û(0, p)

= (T−1pq)(pq)−1[
q−1∑
i=0

(
(i+1)p−1∑

t=ip

u(x̄(t), x̄(t + 1))

−Û (0, p)) + qÛ(0, p)]− p−1Û(0, p)

+T−1{
∑

u(x̄(t), x̄(t + 1)) : t is an integer such that

pq ≤ t ≤ T − 1}.
By (8.1), (8.2), (8.4) and (8.5),

|T−1
T−1∑
t=0

u(x̄(t), x̄(t + 1))− p−1Û(0, p)|

≤ T−1p∆ + (pq)−1qM + Û(0, p)|q/T − 1/p|
≤ T−1p∆ + M/p + Û(0, p)s(pT )−1 → M/p as T → ∞.

Since p is any natural number we conclude that T−1
∑T−1

t=0 u(x̄(t), x̄(t + 1))}∞T=1

is a Cauchy sequence. Clearly, there exists limT→∞ T−1
∑T−1

t=0 u(x̄(t), x̄(t + 1))
and that for each natural number p,

(8.6) |p−1Û(0, p)− lim
T→∞

T−1
T−1∑
t=0

u(x̄(t), x̄(t + 1))| ≤ 2M/p.

Since (8.6) is true for any natural number p we obtain that

(8.7) lim
T→∞

T−1
T−1∑
t=0

u(x̄(t), x̄(t + 1)) = lim
p→∞ Û(0, p)/p.
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Set

(8.8) µ = lim
p→∞ Û(0, p)/p.

By (8.6)-(8.8), for all natural numbers p, |p−1Û(0, p)− µ| ≤ 2M/p. Theorem 1.3
is proved.
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