TAIWANESE JOURNAL OF MATHEMATICS Vol. 13, No. 5, pp. 1609-1622, October 2009 This paper is available online at http://www.tjm.nsysu.edu.tw/

AN INTERPOLATION THEOREM RELATED TO THE HARDY SPACE WITH NON-DOUBLING MEASURE

Guoen Hu¹, Jiali Lian and Huoxiong Wu^{2,*}

Abstract. Let μ be a nonnegative Radon measure satisfying the growth condition that $\mu(B(x, r)) \leq Cr^n$ for any $x \in \mathbb{R}^d$ and r > 0 and some fixed positive constants C and n with $0 < n \leq d$. Let $H^{1,\infty}_{\mathrm{atb}}(\mu)$ be the Hardy space associated with μ which was introduced by Tolsa. In this paper, a new interpolation theorems related to $H^{1,\infty}_{\mathrm{atb}}(\mu)$ is established and the interpolation theorem of Tolsa is improved.

1. INTRODUCTION

During the last decade, considerable attention has been paid to the study of function spaces and boundedness of operators on these space (see [1-9]). Let μ be a nonnegative Radon measure on \mathbb{R}^d which only satisfies the following growth condition: there exist constants $C_0 > 0$ and $n \in (0, d]$ such that for all $x \in \mathbb{R}^d$ and r > 0,

(1.1)
$$\mu(B(x,r)) \le C_0 r^n$$

where B(x,r) is the open ball centered at some point $x \in \mathbb{R}^d$ and having radius r. The measure μ in (1.1) is not assumed to satisfy the doubling condition which is a key assumption in the analysis on spaces of homogeneous type. We recall that μ is said to satisfy the doubling condition if there exists some constant C > 0 such that $\mu(B(x,2r)) \leq C\mu(B(x,r))$ for all $x \in \mathbb{R}^d$ and r > 0. Some important non-doubling measures as in (1.1) and the motivation for developing the analysis related to such measures can be found in [9], see also [4]. We only point out

Communicated by Yongsheng Han.

Received November 3, 2007, accepted January 23, 2008.

²⁰⁰⁰ Mathematics Subject Classification: 42B25, 42B30.

Key words and phrases: Interpolation, Hardy space, Non-doubling measure, Maximal function.

¹ Partially supported by the NNSF of China (No. 10671210).

² Corresponding author, partially supported by the NNSF of China (No. 10571122, 10771054).

^{*}Corresponding author.

that the analysis with non-doubling measures plays an essential role in solving the long-standing open Painlevé's problem by Tolsa in [8].

In his remarkable work [6], Tolsa found a suitable substitute for the classical BMO space when the underlying measure satisfies (1.1), RBMO(μ). The space RBMO(μ) enjoys the properties which are parallel to those of the space BMO(\mathbb{R}^d), for example, RBMO(μ) is big enough so that a $L^2(\mu)$ bounded Calderón-Zygmund operator is also bounded from $L^{\infty}(\mu)$ to RBMO(μ), and small enough to satisfy the properties (such as John-Nirenberg inequality) of the classical BMO space. Also, Tolsa established the following interpolation theorem (see [6, p. 131]).

Theorem 1. Let T be a linear operator which is bounded from $H_{atb}^{1,\infty}(\mu)$ to $L^1(\mu)$, and bounded from $L^{\infty}(\mu)$ to RBMO(μ). Then for any $p \in (1, \infty)$, T extends boundedly to $L^p(\mu)$, where $H_{atb}^{1,\infty}(\mu)$ is the atomic Hardy space with the measure μ in (1.1), see Definition 1 below.

The main purpose of this paper is to establish a new interpolation theorem related to $H_{\rm atb}^{1,\infty}(\mu)$ which improves Tolsa's interpolation theorem above. To states our main results, we first give some definitions and notation.

By a cube $Q \subset \mathbb{R}^d$ we mean a closed cube with sides parallel to the axes and centered at some point of $\operatorname{supp} \mu$. We denote its side length by l(Q). Given $\alpha > 1$ and $\beta > \alpha^n$, we say that Q is (α, β) -doubling if $\mu(\alpha Q) \leq \beta \mu(Q)$, where αQ is the cube concentric with Q with side length $\alpha l(Q)$. It was pointed by Tolsa in [5] that there are a lot of "big" doubling cubes. To be precise, given any point $x \in \operatorname{supp}(\mu)$ and c > 0, there exists some (α, β) -doubling cube Q centered at x with $l(Q) \geq c$ due to the growth condition (1.1). On the other hand, if $\beta > \alpha^d$, then for $\mu - a. e. x \in \mathbb{R}^d$, there exists a sequence of (α, β) -doubling cubes $\{Q_i\}_{i \in \mathbb{N}}$ centered at x with $l(Q_i) \to 0$ as $i \to \infty$. In what follows, for definiteness, if α and β are not specified, by a doubling cube we mean $(2, 2^{d+1})$ -doubling cube. Given two cubes $Q_1 \subset Q_2$, set

$$K_{Q_1,Q_2} = 1 + \sum_{k=1}^{N_{Q_1,Q_2}} \frac{\mu(2^k Q_1)}{[l(2^k Q_1)]^n},$$

where N_{Q_1,Q_2} is the first positive integer k such that $l(2^kQ_1) \ge l(Q_2)$; see [6] for some basic properties of K_{Q_1,Q_2} .

Given a cube $Q \subset \mathbb{R}^d$, let Q be the smallest doubling cube in the sequence $\{2^k Q\}_{k>0}$, and by $m_Q(f)$ the mean value of f on Q, namely,

$$m_Q(f) = \frac{1}{\mu(Q)} \int_Q f(x) \, d\mu(x).$$

The sharp maximal operator associated with the measure μ in (1.1) is defined by

An Interpolation Theorem

$$M^{\sharp}f(x) = \sup_{Q \ni x} \frac{1}{\mu(\frac{3}{2}Q)} \int_{Q} |f(y) - m_{\widetilde{Q}}f| d\mu(y) + \sup_{\substack{R \supset Q \ni x \\ Q, R \text{ doubling}}} \frac{|m_{Q}f - m_{R}f|}{K_{Q,R}}.$$

Definition 1. Let $\rho > 1$ and $1 . A function <math>b \in L^1_{loc}(\mu)$ is called a *p*-atomic block if

- (1) there exists some cube R such that supp $b \subset R$,
- (2) $\int_{\mathbb{R}^d} b(x) \, d\mu(x) = 0,$
- (3) for j = 1, 2, there are functions a_j supported on cubes $Q_j \subset R$ and numbers $\lambda_j \in \mathbb{R}$ such that $b = \lambda_1 a_1 + \lambda_2 a_2$, and

$$||a_j||_{L^p(\mu)} \le \left[\mu(\rho Q_j)^{1-1/p} K_{Q_j,R}\right]^{-1}.$$

Then we define

$$|b|_{H^{1,p}_{atb}(\mu)} = |\lambda_1| + |\lambda_2|.$$

We say that $f \in H^{1,p}_{atb}(\mu)$ if there are *p*-atomic blocks $\{b_i\}_{i \in \mathbb{N}}$ such that

$$f = \sum_{i=1}^{\infty} b_i$$

with $\sum_{i=1}^{\infty} |b_i|_{H^{1,p}_{atb}(\mu)} < \infty$. The $H^{1,p}_{atb}(\mu)$ norm of f is defined by

$$\|f\|_{H^{1,p}_{atb}(\mu)} = \inf\left\{\sum_{i} |b_i|_{H^{1,p}_{atb}(\mu)}\right\},\$$

where the infimum is taken over all the possible decompositions of f in atomic blocks.

The space $H_{\rm atb}^{1,\infty}(\mu)$ was introduced by Tolsa in [6], and further considered by Tolsa in [7]. Moreover, it was proved by Tolsa in [6, 7] that the definition of $H_{atb}^{1,p}(\mu)$ is independent of the chosen constant $\rho > 1$. Moreover, for any $p \in$ $(1, \infty)$,

$$H^{1,p}_{\rm atb}(\mu) = H^{1,\infty}_{\rm atb}(\mu)$$

with equivalent norms.

Our main result can be stated as follows.

Theorem 2. Let T be an operator which satisfies that

(i) $|Tf_1 - Tf_2| \le |T(f_1 - f_2)|;$

(ii) there is another operator T_1 , which is bounded from $L^{p_0}(\mu)$ to $L^{q_0,\infty}(\mu)$ for some p_0 , q_0 with $p_0 \leq q_0$ and p_0 , $q_0 \in (1, \infty]$ such that for any bounded function f with compact support,

$$M^{\sharp}(Tf)(x) \le CT_1f(x);$$

(iii) for some $q_1 \in [1, \infty)$, T is bounded from $H^{1,\infty}_{atb}(\mu)$ to $L^{q_1,\infty}(\mu)$, that is, there is a constant C > 0, such that for any $\lambda > 0$ and any $f \in H^{1,\infty}_{atb}(\mu)$,

$$\mu(\{x \in \mathbb{R}^d : |Tf(x)| > \lambda\}) \le C\left(\lambda^{-1} \|f\|_{H^{1,\infty}_{\mathrm{atb}}(\mu)}\right)^{q_1}.$$

Then for any $p, q \in (1, \infty)$ with

$$\frac{1}{p} = t + \frac{1-t}{p_0}, \ \frac{1}{q} = \frac{t}{q_1} + \frac{1-t}{q_0}, \ t \in (0, 1),$$

T is bounded from $L^p(\mu)$ to $L^q(\mu)$.

2. Proof of Theorem 2

We begin with the John-Strömberg sharp maximal operator with a measure in (1.1), which was introduced in [1]. For a cube Q with $\mu(Q) \neq 0$, and a real-valued locally integrable function f, $m_f(Q)$, the median value of f on the cube Q, is defined to be one of numbers such that

$$\mu(\{y \in Q : f(y) > m_f(Q)\}) \le \frac{1}{2}\mu(Q)$$

and

$$\mu(\{y \in Q : f(y) < m_f(Q)\}) \le \frac{1}{2}\mu(Q).$$

For the case that $\mu(Q) = 0$, we set $m_f(Q) = 0$ for any real-valued locally integrable function f. If f is complex-valued, the median value of f is defined by $m_f(Q) = m_{\text{Re}(f)}(Q) + im_{\text{Im}(f)}(Q)$, where $i^2 = -1$.

Let $s \in (0, 2^{-d-2})$. For each fixed cube Q and a locally integrable function f, define $m_{0,s;Q}(f)$ by

(2.1)
$$m_{0,s;Q}(f) = \inf \left\{ t > 0 : \mu \left(\{ y \in Q : |f(y)| > t \} \right) < s \mu \left(\frac{3}{2}Q \right) \right\}$$
when $\mu(Q) \neq 0$,

and $m_{0,s;Q}(f) = 0$ when $\mu(Q) = 0$. The John-Strömberg maximal operator $M_{0,s}$, and the doubling John-Strömberg maximal operator $M_{0,s}^d$, associated with measure in (1.1) are defined by

An Interpolation Theorem

(2.2)
$$M_{0,s}f(x) = \sup_{Q \ni x} m_{0,s;Q}(f), \qquad M_{0,s}^d f(x) = \sup_{\substack{Q \ni x \\ Q \text{ doubling}}} m_{0,s;Q}(f),$$

and the John-Strömberg sharp maximal operator $M^{\sharp}_{0,\,s}$ is defined by

(2.3)
$$M_{0,s}^{\sharp}f(x) = \sup_{Q \ni x} m_{0,s;Q} \left(f - m_f(\widetilde{Q}) \right) + \sup_{\substack{R \supset Q \ni x \\ Q, R \text{ doubling}}} \frac{|m_f(Q) - m_f(R)|}{K_{Q,R}}.$$

We then have

Lemma 1. Let $0 < s < 2^{-d-2}$. Then for any locally integrable function f and any $\lambda > 0$,

(i)
$$\{x \in \mathbb{R}^d : |f(x)| > \lambda\} \subset \{x \in \mathbb{R}^d : M_{0,s}^d f(x) \ge \lambda\} \cup \Theta \text{ with } \mu(\Theta) = 0;$$

(ii)
$$\mu(\{x \in \mathbb{R}^d : M_{0,s}f(x) > \lambda\}) \le Cs^{-1}\mu(\{x \in \mathbb{R}^d : |f(x)| > \lambda\}),$$

where C > 0 is a constant depending on d.

Proof. This lemma was essentially proved in [1]. For the sake of self-contained, we present the proof here. Let M^d be the maximal operator defined by

$$M^{d}f(x) = \sup_{\substack{Q \ni x \\ Q \text{ doubling}}} \frac{1}{\mu(Q)} \int_{Q} |f(y)| \, d\mu(y).$$

By the Lebesgue differential lemma, we know that for μ almost $x \in \mathbb{R}^d$,

$$|f(x)| \le M^d f(x)$$

and so

$$\{ x \in \mathbb{R}^d : |f(x)| > \lambda \} = \{ x \in \mathbb{R}^d : \chi_{\{y \in \mathbb{R}^d : |f(y)| > \lambda \}}(x) = 1 \}$$

$$\subset \left\{ x \in \mathbb{R}^d : M^d \left(\chi_{\{y \in \mathbb{R}^d : |f(y)| > \lambda \}} \right)(x) > s2^{d+1} \right\} \cup \Theta .$$

On the other hand, a straightforward computation leads to that

$$\{x \in \mathbb{R}^d : M^d \left(\chi_{\{y \in \mathbb{R}^d : |f(y)| > \lambda\}} \right)(x) > s2^{d+1} \} \subset \{x \in \mathbb{R}^d : M^d_{0,s} f(x) \ge \lambda\}.$$

The conclusion (i) then follows directly.

To prove (ii), for each fixed $\lambda > 0$ and r > 0, set

$$M_{0,s}^{r}f(x) = \sup_{Q \ni x, l(Q) < r} m_{0,s;Q}(f)$$

and

1614

$$E_{r,\lambda} = \{ x \in \mathbb{R}^d : M_{0,s}^r f(x) > \lambda \}.$$

For any fixed $x \in E_{r,\lambda}$, there is a cube Q_x containing x and $l(Q_x) < r$, such that

$$\mu(\{y \in Q_x : |f(y)| > \lambda\}) \ge s\mu(\frac{3}{2}Q_x).$$

Applying the Besicovitch covering lemma, we can select N family of cubes $\{Q_j^k\}_{1 \le j \le N, k \in \Lambda_j}$ from $\{Q_x\}_{x \in E_{r,\lambda}}$, such that

(a)

$$E_{r,\lambda} \subset \bigcup_{j=1}^N \bigcup_{k \in \Lambda_j} \frac{3}{2} Q_j^k;$$

(b) there is a constant C > 0 such that for any fixed $j, 1 \le j \le k$,

$$\sum_{k \in \Lambda_j} \chi_{Q_j^k} \le C,$$

where N is the Besicovitch constant. It then follows that

$$\mu(E_{r,\lambda}) \leq \sum_{j=1}^{N} \sum_{k \in \Lambda_j} \mu(\frac{3}{2}Q_j^k)$$

$$\leq s^{-1} \sum_{j=1}^{N} \sum_{k \in \Lambda_j} \mu(\{y \in Q_j^k : |f(y)| > \lambda\})$$

$$\leq Cs^{-1} \mu(\{y \in \mathbb{R}^d : |f(y)| > \lambda\}).$$

Letting $r \to \infty$ then leads to our desired conclusion.

To prove Theorem 2, we also need some preliminary lemmas.

Lemma 2. Let $s \in (0, 2^{-d-2})$ and T be an operator which satisfies that

$$|Tf_1(x) - Tf_2(x)| \le |T(f_1 - f_2)(x)|.$$

There is a constant C > 0 such that for any f_1 and f_2 ,

(2.4)
$$M_{0,s}^{\sharp}[T(f_1+f_2)](x) \le CM^{\sharp}(Tf_1)(x) + CM_{0,s/2}(Tf_2)(x).$$

Proof. For any cube Q, a straightforward computation yields

$$\begin{split} m_{0,s;Q}\left(T(f_{1}+f_{2})-m_{T(f_{1}+f_{2})}(\widetilde{Q})\right) &\leq m_{0,s/2;Q}\left(Tf_{1}-m_{Tf_{1}}(\widetilde{Q})\right) \\ &+m_{0,s/2;Q}\left(T(f_{1}+f_{2})-Tf_{1}\right) \\ &+\left|m_{T(f_{1}+f_{2})}(\widetilde{Q})-m_{Tf_{1}}(\widetilde{Q})\right|. \end{split}$$

Note that for any cube I, locally integrable function h and constant c, $m_h(I) - c$ is a median value of h - c on I, namely,

$$m_h(I) - c = m_{h-c}(I).$$

Thus,

$$\begin{aligned} \left| m_{T(f_1+f_2)}(\widetilde{Q}) - m_{Tf_1}(\widetilde{Q}) \right| &\leq \left| m_{T(f_1+f_2) - m_{Tf_1}(\widetilde{Q})}(\widetilde{Q}) \right| \\ &\leq 2m_{0,s;\,\widetilde{Q}} \left(T(f_1 + f_2) - m_{Tf_1}(\widetilde{Q}) \right) \\ &\leq 2m_{0,s/2;\,\widetilde{Q}} \left(Tf_1 - m_{Tf_1}(\widetilde{Q}) \right) \\ &+ 2m_{0,s/2;\,\widetilde{Q}} \left(T(f_1 + f_2) - Tf_1 \right), \end{aligned}$$

where the second inequality follows from the fact that for any doubling cube I, locally integrable function h and $s \in (0, 2^{-d-2})$,

$$|m_h(I)| \le 2m_{0,s;I}(h),$$

see [1, Lemma 2.5]. This in turn leads to that

$$m_{0,s;Q}\left(T(f_1+f_2)-m_{T(f_1+f_2)}(\widetilde{Q})\right) \le 3\inf_{x\in Q} M_{0,s/2}^{\sharp}(Tf_1)(x) +3\inf_{x\in Q} M_{0,s/2}(Tf_2)(x).$$

On the other hand, we can verify that for any two doubling cubes $Q \subset R$,

$$\begin{aligned} \left| m_{T(f_1+f_2)}(Q) - m_{T(f_1+f_2)}(R) \right| &\leq \left| m_{T(f_1+f_2)}(Q) - m_{Tf_1}(Q) \right| \\ &+ \left| m_{T(f_1+f_2)}(R) - m_{Tf_1}(R) \right| \\ &+ \left| m_{Tf_1}(Q) - m_{Tf_1}(R) \right| \\ &\leq 2m_{0,s/2;Q} \Big(Tf_1 - m_{Tf_1}(Q) \Big) \\ &+ 2m_{0,s/2;Q} \Big(T(f_1 + f_2) - Tf_1 \Big) \end{aligned}$$

$$+2m_{0,s/2;R} \Big(Tf_1 - m_{Tf_1}(R) \Big) +2m_{0,s/2;R} \Big(T(f_1 + f_2) - Tf_1 \Big) +|m_{Tf_1}(Q) - m_{Tf_1}(R)| \leq 4 \inf_{x \in Q} M_{0,s/2}^{\sharp}(Tf_1)(x) + 4 \inf_{x \in Q} M_{0,s/2}(Tf_2)(x) +|m_{Tf_1}(Q) - m_{Tf_1}(R)|.$$

We then get that

$$M_{0,s}^{\sharp}[T(f_1+f_2)](x) \le CM_{0,s/2}^{\sharp}(Tf_1)(x) + CM_{0,s/2}(Tf_2)(x).$$

Therefore, the proof of the estimate (2.4) can be reduced to proving that

(2.5)
$$M_{0,s}^{\sharp}h(x) \le CM^{\sharp}h(x).$$

Let M^{\natural} be the sharp maximal operator defined by

$$M^{\natural}f(x) = \sup_{Q \ni x} \frac{1}{\mu(\frac{3}{2}Q)} \int_{Q} |f(y) - m_{f}(\widetilde{Q})| d\mu(y) + \sup_{\substack{R \supset Q \ni x \\ Q, R \text{ doubling}}} \frac{|m_{f}(Q) - m_{f}(R)|}{K_{Q,R}}.$$

Observe that for any cube Q

$$m_{0,s/2;Q}\left(f - m_f(\widetilde{Q})\right) \le \frac{2}{s\mu\left(\frac{3}{2}Q\right)} \int_Q |f(y) - m_f(\widetilde{Q})| d\mu(y).$$

It then follows that

$$M_{0,\,s/2}^\sharp f(x) \leq 2s^{-1} M^\natural f(x).$$

Recall that for any cube *I*,

$$\frac{1}{\mu(I)} \int_{I} |f(y) - m_{f}(I)| \, d\mu(y) \le \frac{1}{\mu(I)} \int_{I} |f(y) - m_{I}(f)| \, d\mu(y)$$

(see [5, p. 115]). It then follows that

$$\begin{split} \frac{1}{\mu(\frac{3}{2}Q)} \int_{Q} |f(y) - m_{f}(\widetilde{Q})| \, d\mu(y) &\leq \frac{1}{\mu(\frac{3}{2}Q)} \int_{Q} |f(y) - m_{\widetilde{Q}}(f)| \, d\mu(y) \\ &+ \frac{1}{\mu(\widetilde{Q})} \int_{\widetilde{Q}} |f(y) - m_{f}(\widetilde{Q})| \, d\mu(y) \\ &\leq C \inf_{x \in Q} M^{\sharp} f(x). \end{split}$$

An Interpolation Theorem

On the other hand, for any two doubling cubes Q and R, with $Q \subset R$,

$$\begin{split} |m_f(Q) - m_f(R)| &\leq |m_Q(f) - m_f(Q)| + |m_R(f) - m_f(R)| + |m_Q(f) - m_R(f)| \\ &\leq \frac{1}{\mu(Q)} \int_Q |f(y) - m_f(Q)| \, d\mu(y) \\ &\quad + \frac{1}{\mu(R)} \int_R |f(y) - m_f(R)| \, d\mu(y) + |m_Q(f) - m_R(f)| \\ &\leq C K_{Q,R} \inf_{x \in Q} M^{\sharp} f(x). \end{split}$$

Combining the last two estimates leads to that

$$M^{\natural}f(x) \le CM^{\sharp}f(x),$$

and

$$M_{0,s}^{\sharp}[T(f_1+f_2)](x) \leq CM_{0,\frac{s}{2}}^{\sharp}(Tf_1)(x) + CM_{0,\frac{s}{2}}(Tf_2)(x)$$

$$\leq 2s^{-1}CM^{\sharp}(Tf_1)(x) + CM_{0,\frac{s}{2}}(Tf_2)(x)$$

$$\leq CM^{\sharp}(Tf_1)(x) + CM_{0,\frac{s}{2}}(Tf_2)(x),$$

then completes the proof of Lemma 2.

Lemma 3. Let T, T_1, T_2 be three operators such that for any $x \in \mathbb{R}^d$,

$$|T(f_1 + f_2)(x)| \le |T_1 f_1(x)| + |T_2 f_2(x)|.$$

Suppose that

- (i) for p_0, q_0 with $p_0 \leq q_0$ and $p_0, q_0 \in (1, \infty]$, T_1 is bounded from $L^{p_0}(\mu)$ to $L^{q_0,\infty}(\mu)$, when $q_0 = \infty$, $L^{q_0,\infty}(\mu)$ should be replaced by $L^{q_0}(\mu)$;
- (ii) for some $q_1 \in [1, \infty)$, T_2 is bounded from $H^{1,\infty}_{atb}(\mu)$ to $L^{q_1,\infty}(\mu)$.

Then for any p, q with

$$\frac{1}{p} = t + \frac{1-t}{p_0}, \ \frac{1}{q} = \frac{t}{q_1} + \frac{1-t}{q_0}, \ t \in (0, 1),$$

T is bounded from $L^p(\mu)$ to $L^{q,\infty}(\mu)$.

Proof. Our goal is to prove that there is a constant C > 0 such that for any $\lambda > 0$, and bounded function f with compact support,

(2.6)
$$\lambda^q \mu(\{x \in \mathbb{R}^d : |Tf(x)| > \lambda\}) \le C \Big(\int_{\mathbb{R}^d} |f(x)|^p \, d\mu(x)\Big)^{q/p}.$$

By homogeneity, we may assume that $||f||_{L^p(\mu)} = 1$. For each fixed $\lambda > 0$ and bounded function f with compact, observe that if $||\mu|| < \infty$ and $\lambda^{q/p} \le ||f||_{L^1(\mu)}/||\mu||$, the inequality (2.6) follows directly, since by the Hölder inequality,

$$\lambda^q \mu(\{x \in \mathbb{R}^d : |Tf(x)| > \lambda\}) \le C ||f||_{L^1(\mu)}^p \le C.$$

Thus, we may assume $\|\mu\| = \infty$, or $\|\mu\| < \infty$ and $\lambda^{q/p} > \|f\|_{L^1(\mu)} / \|\mu\|$. Note that

$$\frac{\frac{1}{q} - \frac{1}{q_0}}{\frac{1}{q_1} - \frac{1}{q_0}} = \frac{\frac{1}{p} - \frac{1}{p_0}}{1 - \frac{1}{p_0}}, \quad \frac{\frac{1}{q_1} - \frac{1}{q}}{\frac{1}{q_1} - \frac{1}{q_0}} = \frac{1 - \frac{1}{p}}{1 - \frac{1}{p_0}}$$
$$\frac{\frac{1}{q_1} - \frac{1}{q_0}}{\frac{1}{q_1} - \frac{1}{q_0}} = \frac{1 - \frac{1}{p_0}}{1 - \frac{1}{p_0}}$$

It then follows that

$$\frac{\frac{1}{q} - \frac{1}{q_0}}{\frac{1}{q_1} - \frac{1}{q}} = \frac{\frac{1}{p} - \frac{1}{p_0}}{1 - \frac{1}{p}}$$

and so

$$\frac{(q_0 - q)p_0}{(p_0 - p)q_0} = \frac{q - q_1}{(p - 1)q_1}$$

Let $\theta = (q - q_1)/(p - 1)q_1$. Applying the Caldeón-Zygmund decomposition to $|f|^p$ at level $\lambda^{\theta p}$ (see [6, p. 131-132]), we know that there exist a sequences of cubes $\{Q_j\}_j$ such that

(a) the cubes $\{Q_j\}_j$ have bounded overlaps, that is, there is a constant C such that $\sum_j \chi_{Q_j}(x) \leq C$;

(b)
$$\frac{1}{\mu(2Q_j)} \int_{Q_j} |f(x)|^p d\mu(x) > \frac{\lambda^{\theta p}}{2^{d+1}};$$

$$(c) \ \ \text{for any} \ \eta > 0, \ \frac{1}{\mu(2\eta Q_j)} \int_{\eta Q_j} |f(x)|^p \, d\mu(x) \leq \frac{\lambda^{\theta p}}{2^{d+1}}$$

- (d) $|f(x)| \leq \lambda^{\theta}$, μ -a. e. $x \in \mathbb{R}^d \setminus \bigcup_j Q_j$;
- (e) for each fixed j, let R_j be the smallest $(6, 6^{n+1})$ -doubling cube of the form $6^k Q_j$ for $k \in \mathbb{N}$. Set $w_j = \chi_{Q_j} / \sum_{k \ge 1} \chi_{Q_k}(x)$. Then there is a function ϕ_j with $\operatorname{supp} \phi_j \subset R_j$ and some positive constant C satisfying

$$\int_{\mathbb{R}^d} \phi_j(x) \, d\mu(x) = \int_{Q_j} f(x) w_j(x) \, d\mu(x), \ \sum_j |\phi_j(x)| \le C\lambda^{\theta},$$

and

$$\left(\int_{R_j} |\phi_j(x)|^p \, d\mu(x)\right)^{1/p} [\mu(R_j)]^{1/p'} \le \frac{C}{\lambda^{\theta(p-1)}} \int_{Q_j} |f(x)|^p \, d\mu(x).$$

We can decompose f as

$$f(x) = g(x) + b(x).$$

where

$$g(x) = f(x)\chi_{\mathbb{R}^d \setminus \cup_j Q_j}(x) + \sum_j \phi_j(x)$$

and

$$b(x) = \sum_{j} \left(f(x)w_j(x) - \phi_j(x) \right).$$

It is easy to verify that

$$\|g\|_{L^{p_0}}^{p_0} \le \|g\|_{L^{\infty}(\mu)}^{p_0-p} \|g\|_{L^p(\mu)}^p \le C\lambda^{\theta(p_0-p)}$$

and

$$\|b\|_{H^{1,p}_{\mathrm{atb}}(\mu)} \le C\lambda^{-\theta(p-1)}.$$

This in turn leads to that

 $\mu(\{x \in \mathbb{R}^d: |T_1g(x)| > \lambda/2\}) \le C\lambda^{-q_0} \|g\|_{L^{p_0}(\mu)}^{q_0} \le C\lambda^{-q_0}\lambda^{\theta(p_0-p)q_0/p_0} \le C\lambda^{-q}.$ and

$$\mu(\{x \in \mathbb{R}^d : |T_2 b(x)| > \lambda/2\}) \le C\lambda^{-q_1} \|b\|_{H^{1,p}_{atb}(\mu)}^{q_1} \le C\lambda^{-q}.$$

then

$$\mu(\{x \in \mathbb{R}^d : |Tf(x)| > \lambda\}) \le C\lambda^{-q}.$$

This completes the proof of Lemma 3.

Lemma 4. (see [1]). Let $s_1 \in (0, 2^{-d-2})$ and $p \in (0, \infty)$. There is a constant $C_1 \in (0, 1)$ depending on s_1 such that for any $s_2 \in (0, C_1 s_1)$,

(i) if $\|\mu\| = \infty$, $f \in L^{p_0,\infty}(\mu)$ with $p_0 \in [1,\infty)$ and

$$\sup_{0<\lambda< R} \lambda^p \mu(\{x \in \mathbb{R}^d : |f(x)| > \lambda\}) < \infty$$

for any R > 0, then

$$\sup_{\lambda>0} \lambda^p \mu(\{x \in \mathbb{R}^d : M_{0,\,s_1}^d f(x) > \lambda\}) \le C \sup_{\lambda>0} \lambda^p \mu(\{x \in \mathbb{R}^d : M_{0,\,s_2}^\sharp f(x) > \lambda\});$$

(ii) if $\|\mu\| < \infty$ and $f \in L^{p_0,\infty}(\mu)$ with $p_0 \in [1,\infty)$, then

$$\sup_{\lambda>0} \lambda^{p} \mu(\{x \in \mathbb{R}^{d} : M_{0,s_{1}}^{d}f(x) > \lambda\})$$

$$\leq C \sup_{\lambda>0} \lambda^{p} \mu(\{x \in \mathbb{R}^{d} : M_{0,s_{2}}^{\sharp}f(x) > \lambda\})$$

$$+ \|\mu\|(s_{1}\|\mu\|))^{-p/p_{0}}\|f\|_{L^{p_{0},\infty}(\mu)}^{p}.$$

Proof of Theorem 2. At first, for any $s \in (0, 2^{-d-2})$, our assumption (ii) along with the estimate (2.5) tells us that the operator $M_{0,s}^{\sharp} \circ T$ is bounded from $L^{p_0}(\mu)$ to $L^{q_0,\infty}(\mu)$. On the other hand, the assumption (iii) in Theorem 2 via Lemma 1 (ii) states that $M_{0,s} \circ T$ is bounded from $H_{atb}^{1,\infty}(\mu)$ to $L^{q_1,\infty}(\mu)$. Therefore, it follows from Lemma 2 and Lemma 3 that $M_{0,s}^{\sharp} \circ T$ is bounded from $L^p(\mu)$ to $L^{q,\infty}(\mu)$, that is, for any fixed $\lambda > 0$ and bounded function f with compact support,

(2.7)
$$\lambda^q \mu(\{x \in \mathbb{R}^d : M_{0,s}^{\sharp} Tf(x) > \lambda\}) \le C \|f\|_{L^p(\mu)}^q$$

provided that p and q satisfies

$$\frac{1}{p} = t + \frac{1-t}{p_0}, \ \frac{1}{q} = \frac{t}{q_1} + \frac{1-t}{q_0}, \ t \in (0, 1).$$

We can now conclude the proof of Theorem 2. Set

$$L_{0,0}^{\infty}(\mu) = \{f: f \text{ is bounded, has compact support, } \int_{\mathbb{R}^d} f(x)d\mu(x) = 0\}.$$

It is well known that $L_{0,0}^{\infty}(\mu)$ is a density subset of $L^{p}(\mu)$ for any $p \in [1, \infty)$. For each fixed $f \in L_{0,0}^{\infty}(\mu)$, which implies $f \in H_{atb}^{1,\infty}(\mu)$, our hypothesis guarantee that $Tf \in L^{q_{1},\infty}(\mu)$ and so for any R > 0, $q > q_{1}$,

$$\sup_{0 < \lambda < R} \lambda^q \mu(\{x \in \mathbb{R}^d : |Tf(x)| > \lambda\}) \leq R^{q-q_1} \sup_{\lambda > 0} \lambda^{q_1} \mu(\{x \in \mathbb{R}^d : |Tf(x)| > \lambda\}) < \infty$$

By the standard density argument, we need only to prove Theorem 2 for $f \in L^{\infty}_{0,0}(\mu)$ in the following two cases:

Case 1. $\|\mu\| = \infty$. By Lemma 1, Lemma 4 (i) and (2.7), we have

$$\begin{split} \sup_{\lambda>0} \lambda^q \mu(\{x \in \mathbb{R}^d : |Tf(x)| > \lambda\}) &\leq \sup_{\lambda>0} \lambda^q \mu(\{x \in \mathbb{R}^d : M_{0,s_1}^d Tf(x) \ge \lambda\}) \\ &\leq C \underset{\lambda>0}{\sup_{\lambda>0}} \lambda^q \mu(\{x \in \mathbb{R}^d : M_{0,s_2}^\sharp Tf(x) \ge \lambda\}) \\ &\leq C ||f||_{L^p(\mu)}^q. \end{split}$$

This implies T is bounded from $L^p(\mu)$ to $L^{q,\infty}(\mu)$. On the other hand, the assumption (i) implies that T is sublinear. Thus, by Marcinkiewicz's interpolation theorem, we know that T is also bounded from $L^p(\mu)$ to $L^q(\mu)$.

Case 2. $\|\mu\| < \infty$. By a trivial computation, we see that for each fixed $p \in (1, \infty)$,

$$\|f\|_{H^{1,p}_{atb}(\mu)} \le C \|\mu\|^{1-1/p} \|f\|_{L^p(\mu)}.$$

$$\begin{split} \sup_{\lambda>0} \lambda^{q} \mu(\{x \in \mathbb{R}^{d} : |Tf(x)| > \lambda\}) \\ &\leq \sup_{\lambda>0} \lambda^{q} \mu(\{x \in \mathbb{R}^{d} : M_{0, s_{1}}^{d} Tf(x) \ge \lambda\}) \\ &\leq C \sup_{\lambda>0} \lambda^{q} \mu(\{x \in \mathbb{R}^{d} : M_{0, s_{2}}^{\sharp} Tf(x) \ge \lambda\}) + \|\mu\|(s_{1}\|\mu\|)^{-\frac{q}{q_{1}}} \|Tf\|_{L^{q_{1}, \infty}(\mu)}^{q} \\ &\leq C \|f\|_{L^{p}(\mu)}^{q} + C s_{1}^{-\frac{q}{q_{1}}} \|\mu\|^{1-\frac{q}{q_{1}}} \|f\|_{H^{1, \infty}_{atb}}^{q}(\mu) \\ &\leq C \|f\|_{L^{p}(\mu)}^{q}, \end{split}$$

which together with the same arguments as in Case 1 implies that T is bounded from $L^p(\mu)$ to $L^q(\mu)$. This completes the proof of Theorem 2.

REFERENCES

- 1. G. Hu and D. Yang, Weighted norm inequalities for maximal singular integral operators with non doubling measures, *Submitted*.
- 2. J. Mateu, P. Mattila, A. Nicolau and J. Orobitg, BMO for nondoubling measures, *Duke Math. J.*, **102** (2000), 533-565.
- 3. F. Nazarov, S. Treil and A. Volberg, Cauchy integral and Calderón-Zygmund operators on nonhomogeneous spaces, *Internat. Math. Res. Notices*, **15** (1997), 703-726.
- F. Nazarov, S. Treil and A. Volberg, Weak type estimates and Cotlar inequalities for Calderón-Zygmund operators on nonhomogeneous spaces, *Internat. Math. Res. Notices*, 9 (1998), 463-487.
- 5. X. Tolsa, A proof of weak (1,1) inequality for singular integrals with non doubling measures based on a Calderón-Zygmund decomposition, *Publ. Mat.*, **45** (2001), 163-174.
- X. Tolsa, BMO, H¹ and Calderón-Zygmund operators for non doubling measures, Math. Ann., **319** (2001), 89-149.
- 7. X. Tolsa, The space H^1 for nondoubling measures in terms of a grand maximal operator, *Trans. Amer. Math. Soc.*, **355** (2003), 315-348.
- X. Tolsa, Painlevé's problem and semiadditivity of analytic capacity, *Acta Math.*, 190 (2003), 105-149.
- J. Verdera, The fall of the doubling condition in Calderón-Zygmund theory, *Publ. Mat.*, Extra (2002), 275-292.

Guoen Hu Department of Applied Mathematics, Zhengzhou Imformation Science and Technology Institute, P. O. Box 1001-747, Zhengzhou 450002, P. R. China E-mail: guoenxx@yahoo.com.cn

Jiali Lian Department of Computer Science and Engineering, Wuyi University, Wuyi, Fujian 354300, P. R. China E-mail: jiali-lian@sina.com

Huoxiong Wu School of Mathematical Sciences, Xiamen University, Xiamen Fujian 361005, P. R. China E-mail: huoxwu@xmu.edu.cn