SOME NEW ITERATIVE ALGORITHMS FOR GENERALIZED MIXED EQUILIBRIUM PROBLEMS WITH STRICT PSEUDO-CONTRACTIONS AND MONOTONE MAPPINGS

Jian-Wen Peng ${ }^{1}$ and Jen-Chih Yao ${ }^{2} *$
Dedicated to Professor Wataru Takahashi on the occasion of his $65^{\text {th }}$ birthday.

Abstract

In this paper, we propose some parallel and cyclic algorithms based on the extragradient method (nonextragradient method) for finding a common element of the set of solutions of a generalized mixed equilibrium problem, the set of fixed points of a finite family of strict pseudo-contractions and the set of the variational inequality for a monotone, Lipschitz continuous mapping (an inverse strongly monotone mapping). We obtain some weak and strong convergence theorems for the sequences generated by these processes in Hilbert spaces. The results in this paper generalize, improve and unify some well-known results in the literature.

1. Introduction

Let H be a real Hilbert space with inner product $\langle.,$.$\rangle and induced norm \|$. and let C be a nonempty closed convex subset of H. let $B: C \rightarrow H$ be a nonlinear mapping and let $\varphi: C \rightarrow R \cup\{+\infty\}$ be a function and F be a bifunction from $C \times C$ to R, where R is the set of real numbers. Peng and Yao [1] considered the following generalized mixed equilibrium problem:
(1.1) Finding $x \in C$ such that $F(x, y)+\varphi(y)+\langle B x, y-x\rangle \geq \varphi(x), \forall y \in C$.

[^0]The set of solutions of (1.1) is denoted by $\operatorname{GMEP}(F, \varphi, B)$. It is easy to see that $x \in \operatorname{GMEP}(F, \varphi, B)$ implies that $x \in \operatorname{dom} \varphi=\{x \in C \mid \varphi(x)<+\infty\}$.

If $B=0$, then the generalized mixed equilibrium problem (1.1) becomes the following mixed equilibrium problem:

Find $x \in C$ such that $F(x, y)+\varphi(y) \geq \varphi(x), \forall y \in C$.
Problem (1.2) was studied by Ceng and Yao [2] and Bigi, Castellani and Kassay [3]. The set of solutions of (1.2) is denoted by $\operatorname{MEP}(F, \varphi)$.

If $\varphi=0$, then the generalized mixed equilibrium problem (1.1) becomes the following generalized equilibrium problem:

$$
\begin{equation*}
\text { Finding } x \in C \text { such that } F(x, y)+\langle B x, y-x\rangle \geq 0, \forall y \in C \tag{1.3}
\end{equation*}
$$

Problem (1.2) was studied by Takahashi and Takahashi [4]. The set of solutions of (1.3) is denoted by $\operatorname{GEP}(F, B)$.

If $\varphi=0$ and $B=0$, then the generalized mixed equilibrium problem (1.1) becomes the following equilibrium problem:

$$
\begin{equation*}
\text { Finding } x \in C \text { such that } F(x, y) \geq 0, \forall y \in C \text {. } \tag{1.4}
\end{equation*}
$$

The set of solutions of (1.4) is denoted by $E P(F)$.
If $F(x, y)=0$ for all $x, y \in C$, the generalized mixed equilibrium problem (1.1) becomes the following generalized variational inequality problem:

$$
\begin{equation*}
\text { Finding } x \in C \text { such that } \varphi(y)+\langle B x, y-x\rangle \geq \varphi(x), \forall y \in C \tag{1.5}
\end{equation*}
$$

The set of solutions of (1.5) is denoted by $\operatorname{GVI}(C, B, \varphi)$.
If $\varphi=0$ and $F(x, y)=0$ for all $x, y \in C$, the generalized mixed equilibrium problem (1.1) becomes the following variational inequality problem:

Finding $x \in C$ such that $\langle B x, y-x\rangle \geq 0, \forall y \in C$.
The set of solutions of (1.6) is denoted by $V I(C, B)$.
If $B=0$ and $F(x, y)=0$ for all $x, y \in C$, the generalized mixed equilibrium problem (1.1) becomes the following minimize problem:

$$
\begin{equation*}
\text { Finding } x \in C \text { such that } \varphi(y) \geq \varphi(x), \forall y \in C \tag{1.7}
\end{equation*}
$$

The set of solutions of (1.7) is denoted by $\operatorname{Argmin}(\varphi)$.
The problem (1.1) is very general in the sense that it includes, as special cases, optimization problems, variational inequalities, minimax problems, Nash equilibrium problem in noncooperative games and others; see for instance, [1-6].

Recall that a mapping $T: C \rightarrow C$ is said to be a κ-strict pseudo-contraction [7] if there exists $0 \leq \kappa<1$ such that

$$
\|T x-T y\|^{2} \leq\|x-y\|^{2}+\kappa\|(I-T) x-(I-T) y\|^{2}, \forall x, y \in C,
$$

where I denotes the identity operator on C. When $\kappa=0, T$ is said to be nonexpansive [8], and it is said to be a pseudo-contraction if $\kappa=1$. Clearly, the class of κ-strict pseudo-contractions falls into the one between classes of nonexpansive mappings and pseudo-contractions. It is easy to see that T is a pseudo-contraction if and only if

$$
\langle T x-T y, x-y\rangle \leq\|x-y\|^{2}, \forall x, y \in C .
$$

We denote the set of fixed points of T by $F i x(T)$.
Peng and Yao [1] introduced an iterative scheme for finding a common element of the set of solution of problem (1.1), the set of fixed points of a nonexpansive mapping and the set of the variational inequality for a monotone, Lipschitz continuous mapping and obtain a strong convergence theorem. Ceng and Yao [2] introduced an iterative scheme for finding a common element of the set of solution of problem (1.2) and the set of common fixed points of a family of finitely nonexpansive mappings in a Hilbert space and obtained a strong convergence theorem. Takahashi and Takahashi [4] introduced an iterative scheme for finding a common element of the set of solution of problem (1.3) and the set of fixed points of a nonexpansive mapping in a Hilbert space and proved a strong convergence theorem. Some methods have been proposed to solve the problem (1.4); see, for instance, [5, 6, 9-16, 27-29] and the references therein. Recently, Combettes and Hirstoaga [9] introduced an iterative scheme of finding the best approximation to the initial data when $E P(F)$ is nonempty and proved a strong convergence theorem. Takahashi and Takahashi [10] introduced an iterative scheme by the viscosity approximation method for finding a common element of the set of solution of problem (1.4) and the set of fixed points of a nonexpansive mapping and proved a strong convergence theorem in a Hilbert space. Peng and Yao [11] introduced a hybrid iterative scheme for finding the common element of the set of fixed points of a family of infinitely nonexpansive mappings, the set of an equilibrium problem and the set of solutions of variational inequality problem for an α-inverse strongly monotone mapping. Tada and Takahashi [12] introduced some iterative schemes for finding a common element of the set of solution of problem (1.4) and the set of fixed points of a nonexpansive mapping in a Hilbert space and obtained both strong convergence theorem and weak convergence theorem. Ceng, AI-Homidan, Ansari and Yao [14] introduced an iterative algorithm for finding a common element of the set of solution of problem (1.4) and the set of fixed points of a strict pseudo-contraction mapping. Plubtieng and Punpaeng [15] introduced an iterative process based on the extragradient method for finding the common element of the set of fixed points of nonexpansive mappings, the set of an equilibrium problem and the set of solutions of variational inequality problem for α inverse strongly monotone mappings. Chang, Joseph Lee and Chan [16] introduced some iterative processes based on the extragradient method for finding the common element of the set of fixed points of a family of infinitely nonexpansive mappings,
the set of an equilibrium problem and the set of solutions of variational inequality problem for an α-inverse strongly monotone mapping. Yao, Liou and Yao [27] and Ceng and Yao [28] introduced some iterative viscosity approximation schemes for finding a common element of the set of an equilibrium problem and the set of fixed points of infinitely nonexpansive mappings in a Hilbert space.

On the other hand, Marino and Xu [17] and Zhou [18] introduced and researched an iterative scheme for finding a fixed point of a strict pseudo-contraction mapping. Acedoa and Xu [19] introduced the following parallel algorithm for finding a common fixed point of a family of finite strict pseudo-contraction mappings $\left\{T_{j}\right\}_{j=1}^{N}$:

$$
\begin{equation*}
x_{n+1}=\alpha_{n} x_{n}+\left(1-\alpha_{n}\right) \sum_{j=1}^{N} \zeta_{j}^{(n)} T_{j} x_{n} \tag{1.8}
\end{equation*}
$$

Acedoa and Xu [19] also introduced the following cyclic algorithm for finding a common fixed point of a family of finite strict pseudo-contraction mappings $\left\{T_{j}\right\}_{j=0}^{N-1}$:

$$
\left\{\begin{aligned}
x_{0}= & x \in C \\
x_{1}= & \lambda_{0} x_{0}+\left(1-\lambda_{0}\right) T_{0} x_{0} \\
x_{2}= & \lambda_{1} x_{1}+\left(1-\lambda_{1}\right) T_{1} x_{1} \\
& \vdots \\
x_{N}= & \lambda_{N-1} x_{N-1}+\left(1-\lambda_{N-1}\right) T_{N-1} x_{N-1} \\
x_{N+1}= & \lambda_{N} x_{N}+\left(1-\lambda_{N}\right) T_{0} x_{N}
\end{aligned}\right.
$$

In a more compact form, x_{n+1} can be written as

$$
\begin{equation*}
x_{n+1}=\lambda_{n} x_{n}+\left(1-\lambda_{n}\right) T_{[n]} x_{n} \tag{1.9}
\end{equation*}
$$

where $T_{[n]}=T_{i}$, with $i=n(\bmod N), 0 \leq i \leq N-1$.
Acedoa and Xu obtained weak convergence theorems for the sequences generated by the algorithms (1.8) and (1.9). Furthermore, Acedoa and Xu [19] proposed the modifications for the algorithms (1.8) and (1.9), respectively, as follows:

$$
\left\{\begin{align*}
x_{1} & =x \in C, \tag{1.10}\\
z_{n} & =\alpha_{n} x_{n}+\left(1-\alpha_{n}\right) W_{n} x_{n}, \\
C_{n} & =\left\{z \in C:\left\|z_{n}-z\right\|^{2}\right. \\
& \left.\leq\left\|x_{n}-z\right\|^{2}-\left(1-\alpha_{n}\right)\left(\alpha_{n}-\varepsilon\right)\left\|x_{n}-W_{n} x_{n}\right\|^{2}\right\}, \\
Q_{n} & =\left\{z \in H:\left\langle x_{n}-z, x-x_{n}\right\rangle \geq 0\right\}, \\
x_{n+1} & =P_{C_{n} \cap Q_{n}} x
\end{align*}\right.
$$

for every $n=1,2, \ldots$, where $W_{n}=\sum_{j=1}^{N} \zeta_{j}^{(n)} T_{j}$.
And

$$
\left\{\begin{align*}
x_{0} & =x \in C \tag{1.11}\\
y_{n} & =\lambda_{n} x_{n}+\left(1-\lambda_{n}\right) T_{[n]} x_{n} \\
C_{n} & =\left\{z \in C:\left\|y_{n}-z\right\|^{2}\right. \\
& \left.\leq\left\|x_{n}-z\right\|^{2}-\left(1-\alpha_{n}\right)\left(\alpha_{n}-\varepsilon\right)\left\|x_{n}-T_{[n]} x_{n}\right\|^{2}\right\} \\
Q_{n} & =\left\{z \in H:\left\langle x_{n}-z, x-x_{n}\right\rangle \geq 0\right\} \\
x_{n+1} & =P_{C_{n} \cap Q_{n}}(x)
\end{align*}\right.
$$

They proved the strong convergence theorems of the algorithms (1.10) and (1.11). Ceng, Petrusel and Yao [27] introduced some parallel algorithms and cyclic algorithms based on extragradient method for finding a common fixed point of a family of finite strict pseudo-contraction mappings and a monotone and lipschitz continuous mapping and obtained some weak convergence theorems and strong convergence theorems.

In the present paper, inspired and motivated by the above ideas, we introduce some parallel and cyclic algorithms based on the extragradient method (nonextragradient method) for finding a common element of the set of solutions of a generalized mixed equilibrium problem, the set of fixed points of a finite family of strict pseudocontractions and the set of the variational inequality for a monotone, Lipschitz continuous mapping (an inverse strongly monotone mapping). We obtain some weak convergence theorems and strong convergence theorems for the sequences generated by these processes. The results in this paper generalize, improve and unify some well-known results in the literature.

2. Preliminaries

Let H be a real Hilbert space with inner product $\langle\cdot, \cdot\rangle$ and norm $\|\cdot\|$. Let C be a nonempty closed convex subset of H. Let symbols \rightarrow and \rightharpoonup denote strong and weak convergence, respectively. In a real Hilbert space H, it is well known that

$$
\|\lambda x+(1-\lambda) y\|^{2}=\lambda\|x\|^{2}+(1-\lambda)\|y\|^{2}-\lambda(1-\lambda)\|x-y\|^{2}
$$

for all $x, y \in H$ and $\lambda \in[0,1]$.
For any $x \in H$, there exists a unique nearest point in C, denoted by $P_{C}(x)$, such that $\left\|x-P_{C}(x)\right\| \leq\|x-y\|$ for all $y \in C$. The mapping P_{C} is called the metric projection of H onto C. We know that P_{C} is a nonexpansive mapping from H onto C. It is known that $P_{C}(x) \in C$ and

$$
\begin{equation*}
\left\langle x-P_{C}(x), P_{C}(x)-y\right\rangle \geq 0 \tag{2.1}
\end{equation*}
$$

for all $x \in H$ and $y \in C$.
It is easy to see that (2.1) is equivalent to

$$
\begin{equation*}
\|x-y\|^{2} \geq\left\|x-P_{C}(x)\right\|^{2}+\left\|y-P_{C}(x)\right\|^{2} \tag{2.2}
\end{equation*}
$$

for all $x \in H$ and $y \in C$. It is also known that

$$
\begin{equation*}
\left\langle x-y, P_{C} x-P_{C} y\right\rangle \geq\left\|P_{C} x-P_{C} y\right\|^{2} \tag{2.3}
\end{equation*}
$$

A mapping A of C into H is called monotone if

$$
\langle A x-A y, x-y\rangle \geq 0
$$

for all $x, y \in C$. A mapping A of C into H is called α-inverse strongly monotone if there exists a positive real number α such that

$$
\langle x-y, A x-A y\rangle \geq \alpha\|A x-A y\|^{2}
$$

for all $x, y \in C$. A mapping $A: C \rightarrow H$ is called k-Lipschitz continuous if there exists a positive real number k such that

$$
\|A x-A y\| \leq k\|x-y\|
$$

for all $x, y \in C$. If A is α-inverse-strongly monotone of C into H, then it is obvious that A is $\frac{1}{\alpha}$-Lipschitz continuous. We also have that for all $x, y \in C$ and $\lambda>0$,

$$
\begin{align*}
& \|(I-\lambda A) x-(I-\lambda A) y\|^{2} \\
= & \|x-y-\lambda(A x-A y)\|^{2} \\
= & \|x-y\|^{2}-2 \lambda\langle x-y, A x-A y\rangle+\lambda^{2}\|A x-A y\|^{2} \tag{2.4}\\
\leq & \|x-y\|^{2}+\lambda(\lambda-2 \alpha)\|A x-A y\|^{2} .
\end{align*}
$$

So, if $\lambda \leq 2 \alpha$, then $I-\lambda A$ is a nonexpansive mapping of C into H. It is easy to see that if A is an α-inverse strongly monotone mapping, then A is monotone and Lipschitz continuous. The converse is not true in general. The class of α-inverse strongly monotone mappings does not contain some important classes of mappings even in a finite-dimensional case. For example, if the matrix in the corresponding linear complementarity problem is positively semidefinite, but not positively definite, then the mapping A will be monotone and Lipschitz continuous, but not α-inverse strongly monotone.

Let A be a monotone mapping of C into H. In the context of the variational inequality problem the characterization of projection (2.1) implies the following:

$$
u \in V I(C, A) \Rightarrow u=P_{C}(u-\lambda A u), \lambda>0
$$

and

$$
u=P_{C}(u-\lambda A u) \text { for some } \lambda>0 \Rightarrow u \in V I(C, A)
$$

It is also known that H satisfies the Opial's condition [21], i.e., for any sequence $\left\{x_{n}\right\} \subset H$ with $x_{n} \rightharpoonup x$, the inequality

$$
\liminf _{n \rightarrow \infty}\left\|x_{n}-x\right\|<\liminf _{n \rightarrow \infty}\left\|x_{n}-y\right\|
$$

holds for every $y \in H$ with $x \neq y$.
A set-valued mapping $T: H \rightarrow 2^{H}$ is called monotone if for all $x, y \in H$, $f \in T x$ and $g \in T y$ imply $\langle x-y, f-g\rangle \geq 0$. A monotone mapping $T: H \rightarrow 2^{H}$ is maximal if its graph $G(T)$ of T is not properly contained in the graph of any other monotone mapping. It is known that a monotone mapping T is maximal if and only if for $(x, f) \in H \times H,\langle x-y, f-g\rangle \geq 0$ for every $(y, g) \in G(T)$ implies $f \in T x$. Let A be a monotone, k-Lipschitz continuous mapping of C into H and let $N_{C} v$ be normal cone to C at $v \in C$, i.e, $N_{C} v=\{w \in H:\langle v-u, w\rangle \geq 0, \forall u \in C\}$. Define

$$
T v=\left\{\begin{aligned}
A v+N_{C} v & \text { if } v \in C \\
\emptyset & \text { if } v \notin C
\end{aligned}\right.
$$

Then T is maximal monotone and $0 \in T v$ if and only if $v \in V I(C, A)$ (see [21]).
We shall use the following results in the sequel.
Lemma 2.1. [22] Let H be a real Hilbert space, let D be a nonempty closed convex subset of H. Let $\left\{x_{n}\right\}$ be a sequence in H. Suppose that, for all $u \in D$,

$$
\left\|x_{n+1}-u\right\| \leq\left\|x_{n}-u\right\|
$$

for every $n=0,1,2, \ldots$ Then, the sequence $\left\{P_{D} x_{n}\right\}$ converges strongly to some $z \in D$.

Lemma 2.2. [17, 19] Assume C is a closed convex subset of a Hilbert space H.
(i) If $T: C \rightarrow C$ is a κ-strict pseudo-contraction, then T satisfies the Lipschitz condition

$$
\|T x-T y\| \leq \frac{1+\kappa}{1-\kappa}\|x-y\|, \forall x, y \in C
$$

(ii) If $T: C \rightarrow C$ is a κ-strict pseudo-contraction, then the mapping $I-T$ is demiclosed (at 0). That is, if $\left\{x_{n}\right\}$ is a sequence in C such that $x_{n} \rightharpoonup \bar{x}$ and $(I-T) x_{n} \rightarrow 0$, then $(I-T) \bar{x}=0$.
(iii) If $T: C \rightarrow C$ is a κ-strict pseudo-contraction, then the fixed point set $F i x(T)$ of T is closed and convex so that the projection $P_{F i x(T)}$ is well defined.
(iv) Given an integer $N \geq 1$, assume, for each $1 \leq i \leq N, T_{i}: C \rightarrow C$ is a κ_{i}-strict pseudo-contraction for some $0<\kappa_{i}<1$. Assume $\left\{\zeta_{i}\right\}_{i=1}^{N}$ is a positive sequence such that $\sum_{i=1}^{N} \zeta_{i}=1$. Then $\sum_{i=1}^{N} \zeta_{i} T_{i}$ is a κ-strict pseudo-contraction, with $\kappa=\max \left\{\kappa_{i}: 1 \leq i \leq N\right\}$.
(v) Let $\left\{T_{i}\right\}_{i=1}^{N}$ and $\left\{\zeta_{i}\right\}_{i=1}^{N}$ be given as in (iv) above. Suppose that $\left\{T_{i}\right\}_{i=1}^{N}$ has a common fixed point. Then $\operatorname{Fix}\left(\sum_{i=1}^{N} \zeta_{i} T_{i}\right)=\bigcap_{i=1}^{N} \operatorname{Fix}\left(T_{i}\right)$.

For solving the generalized mixed equilibrium problem, let us give the following assumptions for the bifunction F, φ and the set C :
(A1) $F(x, x)=0$ for all $x \in C$;
(A2) F is monotone, i.e. $F(x, y)+F(y, x) \leq 0$ for any $x, y \in C$;
(A3) for each $y \in C, x \mapsto F(x, y)$ is weakly upper semicontinuous;
(A4) for each $x \in C, y \mapsto F(x, y)$ is convex;
(A5) for each $x \in C, y \mapsto F(x, y)$ is lower semicontinuous;
(B1) For each $x \in H$ and $r>0$, there exist a bounded subset $D_{x} \subseteq C$ and $y_{x} \in C$ such that for any $z \in C \backslash D_{x}$,

$$
F\left(z, y_{x}\right)+\varphi\left(y_{x}\right)+\frac{1}{r}\left\langle y_{x}-z, z-x\right\rangle<\varphi(z)
$$

(B2) C is a bounded set;
(B3) For each $x \in H$ and $r>0$, there exist a bounded subset $D_{x} \subseteq C$ and $y_{x} \in C$ such that for any $z \in C \backslash D_{x}$,

$$
F\left(z, y_{x}\right)+\frac{1}{r}\left\langle y_{x}-z, z-x\right\rangle<0
$$

(B4) For each $x \in H$ and $r>0$, there exists a bounded subset $D_{x} \subseteq C$ and $y_{x} \in C$ such that for any $z \in C \backslash D_{x}$,

$$
\varphi\left(y_{x}\right)+\frac{1}{r}\left\langle y_{x}-z, z-x\right\rangle<\varphi(z)
$$

3. Strong Convergence Theorems

We first derive two strong convergence theorems of some parallel and cyclic algorithms based on both hybrid method and extragradient method which solves the problem of finding a common element of the set of solutions of a generalized mixed equilibrium problem, the set of fixed points of a finite family of strict pseudocontractions and the set of the variational inequality for a monotone, Lipschitz continuous mapping in a Hilbert space.

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let F be a bifunction from $C \times C$ to R satisfying (Al)-(A5) and φ : $C \rightarrow R \cup\{+\infty\}$ be a proper lower semicontinuous and convex function. Let A be a monotone and k-Lipschitz continuous mapping of C into H and B be a β inverse strongly monotone mapping of C into H. Let $N \geq 1$ be an integer. For each $1 \leq j \leq N$, let $T_{j}: C \rightarrow C$ be an ε_{j}-strict pseudo-contractionfor some $0 \leq \varepsilon_{j}<1$ such that $\Gamma_{1}=\cap_{j=1}^{N} \operatorname{Fix}\left(T_{j}\right) \cap \operatorname{VI}(C, A) \cap \operatorname{GMEP}(F, \varphi, B) \neq \emptyset$. Assume for each n, $\left\{\zeta_{j}^{(n)}\right\}_{j=1}^{N}$ is a finite sequence of positive numbers such that $\sum_{j=1}^{N} \zeta_{j}^{(n)}=1$ for all n and $\inf _{n \geq 1} \zeta_{j}^{(n)}>0$ for all $0 \leq j \leq N$. Let $\varepsilon=\max \left\{\varepsilon_{j}: 1 \leq j \leq N\right\}$. Assume also that either (B1) or (B2) holds. Let the mapping W_{n} be defined by

$$
W_{n} x=\sum_{j=1}^{N} \zeta_{j}^{(n)} T_{j} x, \forall x \in C
$$

Let $\left\{x_{n}\right\},\left\{u_{n}\right\},\left\{y_{n}\right\},\left\{t_{n}\right\}$ and $\left\{z_{n}\right\}$ be sequences generated by

$$
\left\{\begin{aligned}
x_{1}= & x \in C, F\left(u_{n}, y\right)+\varphi(y)-\varphi\left(u_{n}\right) \\
& +\left\langle B x_{n}, y-u_{n}\right\rangle+\frac{1}{r_{n}}\left\langle y-u_{n}, u_{n}-x_{n}\right\rangle \geq 0, \quad \forall y \in C \\
y_{n}= & P_{C}\left(u_{n}-\lambda_{n} A u_{n}\right) \\
t_{n}= & P_{C}\left(u_{n}-\lambda_{n} A y_{n}\right) \\
z_{n}= & \alpha_{n} t_{n}+\left(1-\alpha_{n}\right) W_{n} t_{n} \\
C_{n}= & \left\{z \in C:\left\|z_{n}-z\right\|^{2} \leq\left\|x_{n}-z\right\|^{2}-\left(1-\alpha_{n}\right)\left(\alpha_{n}-\varepsilon\right)\left\|t_{n}-W_{n} t_{n}\right\|^{2}\right\} \\
Q_{n}= & \left\{z \in H:\left\langle x_{n}-z, x-x_{n}\right\rangle \geq 0\right\} \\
x_{n+1}= & P_{C_{n} \cap Q_{n}} x
\end{aligned}\right.
$$

for every $n=1,2, \ldots$ If $\left\{\lambda_{n}\right\} \subset[a, b]$ for some $a, b \in\left(0, \frac{1}{k}\right),\left\{\alpha_{n}\right\} \subset[c, d]$ for some $c, d \in(\varepsilon, 1)$ and $\left\{r_{n}\right\} \subset[\gamma, \tau]$ for some $\gamma, \tau \in(0,2 \alpha)$. Then, $\left\{x_{n}\right\},\left\{u_{n}\right\}$, $\left\{y_{n}\right\},\left\{t_{n}\right\}$ and $\left\{z_{n}\right\}$ converge strongly to $w=P_{\Gamma_{1}}(x)$.

Proof. From observe that C_{n} is closed and convex by Lemma 1.3 in [23] and Q_{n} is closed and convex for every $n=1,2, \ldots$. It is easy to see that $\left\langle x_{n}-z, x-x_{n}\right\rangle \geq 0$ for all $z \in Q_{n}$ and by (2.1), $x_{n}=P_{Q_{n}}(x)$. Let $u \in \Gamma_{1}$ and let $\left\{T_{r_{n}}\right\}$ be a sequence of mappings defined as in Lemma 2.1 in [31]. Then $u=P_{C}\left(u-\lambda_{n} A u\right)=$ $T_{r_{n}}\left(u-r_{n} B u\right)$. From $u_{n}=T_{r_{n}}\left(x_{n}-r_{n} B x_{n}\right) \in C$ and the β-inverse-strongly monotonicity of B and (2.4), we have

$$
\begin{align*}
\left\|u_{n}-u\right\|^{2} & =\left\|T_{r_{n}}\left(x_{n}-r_{n} B x_{n}\right)-T_{r_{n}}\left(u-r_{n} B u\right)\right\|^{2} \\
& \leq\left\|x_{n}-r_{n} B x_{n}-\left(u-r_{n} B u\right)\right\|^{2} \tag{3.1}\\
& \leq\left\|x_{n}-u\right\|^{2}+r_{n}\left(r_{n}-2 \beta\right)\left\|B x_{n}-B u\right\|^{2} \\
& \leq\left\|x_{n}-u\right\|^{2} .
\end{align*}
$$

From (2.2), the monotonicity of A, and $u \in V I(C, A)$, we have

$$
\begin{aligned}
& \left\|t_{n}-u\right\|^{2} \leq\left\|u_{n}-\lambda_{n} A y_{n}-u\right\|^{2}-\left\|u_{n}-\lambda_{n} A y_{n}-t_{n}\right\|^{2} \\
= & \left\|u_{n}-u\right\|^{2}-\left\|u_{n}-t_{n}\right\|^{2}+2 \lambda_{n}\left\langle A y_{n}, u-t_{n}\right\rangle \\
= & \left\|u_{n}-u\right\|^{2}-\left\|u_{n}-t_{n}\right\|^{2}+2 \lambda_{n}\left(\left\langle A y_{n}-A u, u-y_{n}\right\rangle\right. \\
& \left.+\left\langle A u, u-y_{n}\right\rangle+\left\langle A y_{n}, y_{n}-t_{n}\right\rangle\right) \\
\leq & \left\|u_{n}-u\right\|^{2}-\left\|u_{n}-t_{n}\right\|^{2}+2 \lambda_{n}\left\langle A y_{n}, y_{n}-t_{n}\right\rangle \\
\leq & \left\|u_{n}-u\right\|^{2}-\left\|u_{n}-y_{n}\right\|^{2}-2\left\langle u_{n}-y_{n}, y_{n}-t_{n}\right\rangle \\
& -\left\|y_{n}-t_{n}\right\|^{2}+2 \lambda_{n}\left\langle A y_{n}, y_{n}-t_{n}\right\rangle \\
= & \left\|u_{n}-u\right\|^{2}-\left\|u_{n}-y_{n}\right\|^{2}-\left\|y_{n}-t_{n}\right\|^{2}+2\left\langle u_{n}-\lambda_{n} A y_{n}-y_{n}, t_{n}-y_{n}\right\rangle .
\end{aligned}
$$

Further, Since $y_{n}=P_{C}\left(u_{n}-\lambda_{n} A u_{n}\right)$ and A is k-Lipschitz continuous, we have

$$
\begin{aligned}
& \left\langle u_{n}-\lambda_{n} A y_{n}-y_{n}, t_{n}-y_{n}\right\rangle \\
= & \left\langle u_{n}-\lambda_{n} A u_{n}-y_{n}, t_{n}-y_{n}\right\rangle+\left\langle\lambda_{n} A u_{n}-\lambda_{n} A y_{n}, t_{n}-y_{n}\right\rangle \\
\leq & \left\langle\lambda_{n} A u_{n}-\lambda_{n} A y_{n}, t_{n}-y_{n}\right\rangle \\
\leq & \lambda_{n} k\left\|u_{n}-y_{n}\right\|\left\|t_{n}-y_{n}\right\| .
\end{aligned}
$$

So, we have

$$
\begin{align*}
& \left\|t_{n}-u\right\|^{2} \leq\left\|u_{n}-u\right\|^{2}-\left\|u_{n}-y_{n}\right\|^{2} \\
& -\left\|y_{n}-t_{n}\right\|^{2}+2 \lambda_{n} k\left\|u_{n}-y_{n}\right\|\left\|t_{n}-y_{n}\right\| \\
\leq & \left\|u_{n}-u\right\|^{2}-\left\|u_{n}-y_{n}\right\|^{2}-\left\|y_{n}-t_{n}\right\|^{2} \\
& +\lambda_{n}{ }^{2} k^{2}\left\|u_{n}-y_{n}\right\|^{2}+\left\|t_{n}-y_{n}\right\|^{2} \tag{3.2}\\
= & \left\|u_{n}-u\right\|^{2}+\left(\lambda_{n}{ }^{2} k^{2}-1\right)\left\|u_{n}-y_{n}\right\|^{2} . \\
\leq & \left\|u_{n}-u\right\|^{2} .
\end{align*}
$$

By Lemma 2.2, we know that W_{n} is an ε-strict pseudo-contraction and $F\left(W_{n}\right)=$ $\cap_{j=1}^{N} F i x\left(T_{j}\right)$. It follows from (3.1), (3.2), $z_{n}=\alpha_{n} t_{n}+\left(1-\alpha_{n}\right) W_{n} t_{n}$ and $u=W_{n} u$
that

$$
\begin{aligned}
& \left\|z_{n}-u\right\|^{2}=\alpha_{n}\left\|t_{n}-u\right\|^{2}+\left(1-\alpha_{n}\right)\left\|W_{n} t_{n}-u\right\|^{2} \\
& -\alpha_{n}\left(1-\alpha_{n}\right)\left\|t_{n}-W_{n} t_{n}\right\|^{2} \\
\leq & \alpha_{n}\left\|t_{n}-u\right\|^{2}+\left(1-\alpha_{n}\right)\left[\left\|t_{n}-u\right\|^{2}+\varepsilon\left\|t_{n}-W_{n} t_{n}\right\|^{2}\right] \\
& -\alpha_{n}\left(1-\alpha_{n}\right)\left\|t_{n}-W_{n} t_{n}\right\|^{2} \\
= & \left\|t_{n}-u\right\|^{2}+\left(1-\alpha_{n}\right)\left(\varepsilon-\alpha_{n}\right)\left\|t_{n}-W_{n} t_{n}\right\|^{2} \\
\leq & \left\|u_{n}-u\right\|^{2}+\left(\lambda_{n}{ }^{2} k^{2}-1\right)\left\|u_{n}-y_{n}\right\|^{2}+\left(1-\alpha_{n}\right)\left(\varepsilon-\alpha_{n}\right)\left\|t_{n}-W_{n} t_{n}\right\|^{2} \\
\leq & \left\|u_{n}-u\right\|^{2}+\left(\lambda_{n}{ }^{2} k^{2}-1\right)\left\|u_{n}-y_{n}\right\|^{2} \\
\leq & \left\|x_{n}-u\right\|^{2}+\left(\lambda_{n}{ }^{2} k^{2}-1\right)\left\|u_{n}-y_{n}\right\|^{2} \\
\leq & \left\|x_{n}-u\right\|^{2},
\end{aligned}
$$

for every $n=1,2, \ldots$.
From (3.3) and (3.1), we know that

$$
\begin{equation*}
\left\|z_{n}-u\right\|^{2} \leq\left\|x_{n}-u\right\|^{2}+\left(1-\alpha_{n}\right)\left(\varepsilon-\alpha_{n}\right)\left\|t_{n}-W_{n} t_{n}\right\|^{2}, \tag{3.4}
\end{equation*}
$$

for every $n=1,2, \ldots$, and hence $u \in C_{n}$. So, $\Gamma_{1} \subset C_{n}$ for every $n=1,2, \ldots$. Next, let us show by mathematical induction that $\left\{x_{n}\right\}$ is well defined and $\Gamma_{1} \subset C_{n} \cap Q_{n}$ for every $n=1,2, \ldots$. For $n=1$ we have $x_{1}=x \in H$ and $Q_{1}=H$. Hence we obtain $\Gamma_{1} \subset C_{1} \cap Q_{1}$. Suppose that x_{k} is given and $\Gamma_{1} \subset C_{k} \cap Q_{k}$ for some positive integer k. Since Γ_{1} is nonempty, $C_{k} \cap Q_{k}$ is a nonempty closed convex subset of H. So, there exists a unique element $x_{k+1} \in C_{k} \cap Q_{k}$ such that $x_{k+1}=P_{C_{k} \cap Q_{k}}(x)$. It is also obvious that there holds $\left\langle x_{k+1}-z, x-x_{k+1}\right\rangle \geq 0$ for every $z \in C_{k} \cap Q_{k}$. Since $\Gamma_{1} \subset C_{k} \cap Q_{k}$, we have $\left\langle x_{k+1}-z, x-x_{k+1}\right\rangle \geq 0$ for every $z \in \Gamma_{1}$ and hence $\Gamma_{1} \subset Q_{k+1}$. Therefore, we obtain $\Gamma_{1} \subset C_{k+1} \cap Q_{k+1}$.

Let $l_{0}=P_{\Gamma_{1}} x$. From $x_{n+1}=P_{C_{n} \cap Q_{n}} x$ and $l_{0} \in \Gamma_{1} \subset C_{n} \cap Q_{n}$, we have

$$
\begin{equation*}
\left\|x_{n+1}-x\right\| \leq\left\|l_{0}-x\right\| \tag{3.5}
\end{equation*}
$$

for every $n=1,2, \ldots$. Therefore, $\left\{x_{n}\right\}$ is bounded. From (3.1)-(3.3), we also obtain that $\left\{t_{n}\right\},\left\{z_{n}\right\}$ and $\left\{u_{n}\right\}$ are bounded. Since $x_{n+1} \in C_{n} \cap Q_{n} \subset Q_{n}$ and $x_{n}=P_{Q_{n}}(x)$, we have

$$
\left\|x_{n}-x\right\| \leq\left\|x_{n+1}-x\right\|
$$

for every $n=1,2, \ldots$. Therefore, $\lim _{n \rightarrow \infty}\left\|x_{n}-x\right\|$ exists.
Since $x_{n}=P_{Q_{n}}(x)$ and $x_{n+1} \in Q_{n}$, using (2.2), we have

$$
\left\|x_{n+1}-x_{n}\right\|^{2} \leq\left\|x_{n+1}-x\right\|^{2}-\left\|x_{n}-x\right\|^{2}
$$

for every $n=1,2, \ldots$. This implies that

$$
\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0
$$

Since $x_{n+1} \in C_{n}$, we have
$\left\|z_{n}-x_{n+1}\right\|^{2} \leq\left\|x_{n}-x_{n+1}\right\|^{2}-\left(1-\alpha_{n}\right)\left(\alpha_{n}-\varepsilon\right)\left\|t_{n}-W_{n} t_{n}\right\|^{2} \leq\left\|x_{n}-x_{n+1}\right\|^{2}$
and hence

$$
\left\|x_{n}-z_{n}\right\| \leq\left\|x_{n}-x_{n+1}\right\|+\left\|x_{n+1}-z_{n}\right\| \leq 2\left\|x_{n}-x_{n+1}\right\|
$$

for every $n=1,2, \ldots$. From $\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0$, we have $\left\|x_{n}-z_{n}\right\| \rightarrow 0$.
For $u \in \Gamma_{1}$, from (3.3) we obtain

$$
\left\|z_{n}-u\right\|^{2} \leq\left\|x_{n}-u\right\|^{2}+\left(\lambda_{n}{ }^{2} k^{2}-1\right)\left\|u_{n}-y_{n}\right\|^{2} .
$$

Thus, we have

$$
\begin{aligned}
& \left\|u_{n}-y_{n}\right\|^{2} \leq \frac{1}{\left(1-\lambda_{n}^{2} k^{2}\right)}\left(\left\|x_{n}-u\right\|^{2}-\left\|z_{n}-u\right\|^{2}\right) \\
\leq & \frac{1}{\left(1-b^{2} k^{2}\right)}\left(\left\|x_{n}-u\right\|+\left\|z_{n}-u\right\|\right)\left\|x_{n}-z_{n}\right\| .
\end{aligned}
$$

It follows from $\left\|x_{n}-z_{n}\right\| \rightarrow 0,\left\{x_{n}\right\}$ and $\left\{z_{n}\right\}$ are bounded that $\left\|u_{n}-y_{n}\right\| \rightarrow 0$. From the the definition of t_{n} and y_{n}, we have

$$
\begin{aligned}
& \left\|t_{n}-y_{n}\right\|=\left\|P_{C}\left(u_{n}-\lambda_{n} A y_{n}\right)-P_{C}\left(u_{n}-\lambda_{n} A u_{n}\right)\right\| \\
\leq & \left\|\left(u_{n}-\lambda_{n} A y_{n}\right)-\left(u_{n}-\lambda_{n} A u_{n}\right)\right\| \leq \lambda_{n} k\left\|y_{n}-u_{n}\right\|,
\end{aligned}
$$

which implies that $\lim _{n \rightarrow \infty}\left\|t_{n}-y_{n}\right\|=0$. From $\left\|u_{n}-t_{n}\right\| \leq\left\|u_{n}-y_{n}\right\|+\left\|y_{n}-t_{n}\right\|$ we also have $\left\|u_{n}-t_{n}\right\| \rightarrow 0$. As A is k-Lipschitz continuous, we have $\| A y_{n}-$ $A t_{n} \| \rightarrow 0$.

From $\varepsilon<c \leq \alpha_{n} \leq d<1$ and (3.4), we have

$$
\begin{aligned}
& (1-d)(c-\varepsilon)\left\|t_{n}-W_{n} t_{n}\right\|^{2} \leq\left(1-\alpha_{n}\right)\left(\alpha_{n}-\varepsilon\right)\left\|t_{n}-W_{n} t_{n}\right\|^{2} \\
\leq & \left\|x_{n}-u\right\|^{2}-\left\|z_{n}-u\right\|^{2} \leq\left(\left\|x_{n}-u\right\|+\left\|z_{n}-u\right\|\right)\left\|x_{n}-z_{n}\right\| .
\end{aligned}
$$

This implies that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|t_{n}-W_{n} t_{n}\right\|=0 \tag{3.6}
\end{equation*}
$$

Also by (3.3) and (3.1), we have

$$
\left\|z_{n}-u\right\|^{2} \leq\left\|u_{n}-u\right\|^{2} \leq\left\|x_{n}-u\right\|^{2}+r_{n}\left(r_{n}-2 \beta\right)\left\|B x_{n}-B u\right\|^{2} .
$$

Thus, we have

$$
\begin{aligned}
& \gamma(2 \beta-\tau)\left\|B x_{n}-B u\right\|^{2} \leq r_{n}\left(2 \beta-r_{n}\right)\left\|B x_{n}-B u\right\|^{2} \\
\leq & \left\|x_{n}-u\right\|^{2}-\left\|z_{n}-u\right\|^{2} \leq\left(\left\|x_{n}-u\right\|+\left\|z_{n}-u\right\|\right)\left\|x_{n}-z_{n}\right\| .
\end{aligned}
$$

It follows from $\left\|x_{n}-z_{n}\right\| \rightarrow 0,\left\{x_{n}\right\}$ and $\left\{z_{n}\right\}$ are bounded that $\left\|B x_{n}-B u\right\| \rightarrow 0$.
For $u \in \Gamma_{1}$, we have, from Lemma 2.1 in [31],

$$
\begin{aligned}
& \left\|u_{n}-u\right\|^{2}=\left\|T_{r_{n}}\left(x_{n}-r_{n} B x_{n}\right)-T_{r_{n}}\left(u-r_{n} B u\right)\right\|^{2} \\
\leq & \left\langle T_{r_{n}}\left(x_{n}-r_{n} B x_{n}\right)-T_{r_{n}}\left(u-r_{n} B u\right), x_{n}-r_{n} B x_{n}-\left(u-r_{n} B u\right)\right\rangle \\
= & \frac{1}{2}\left\{\left\|u_{n}-u\right\|^{2}+\left\|x_{n}-r_{n} B x_{n}-\left(u-r_{n} B u\right)\right\|^{2}\right. \\
& \left.-\left\|x_{n}-r_{n} B x_{n}-\left(u-r_{n} B u\right)-\left(u_{n}-u\right)\right\|^{2}\right\} \\
\leq & \frac{1}{2}\left\{\left\|u_{n}-u\right\|^{2}+\left\|x_{n}-u\right\|^{2}-\left\|x_{n}-r_{n} B x_{n}-\left(u-r_{n} B u\right)-\left(u_{n}-u\right)\right\|^{2}\right\} \\
= & \frac{1}{2}\left\{\left\|u_{n}-u\right\|^{2}+\left\|x_{n}-u\right\|^{2}-\left\|x_{n}-u_{n}\right\|^{2}\right. \\
& +2 r_{n}\left\langle B x_{n}-B u, x_{n}-u_{n}\right\rangle-r_{n}^{2}\left\|B x_{n}-B u\right\|^{2} .
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\left\|u_{n}-u\right\|^{2} \leq\left\|x_{n}-u\right\|^{2}-\left\|x_{n}-u_{n}\right\|^{2}+2 r_{n}\left\langle B x_{n}-B u, x_{n}-u_{n}\right\rangle \tag{3.7}
\end{equation*}
$$

It follows from (3.3) and (3.7) that

$$
\left\|z_{n}-u\right\|^{2} \leq\left\|u_{n}-u\right\|^{2} \leq\left\|x_{n}-u\right\|^{2}-\left\|x_{n}-u_{n}\right\|^{2}+2 r_{n}\left\langle B x_{n}-B u, x_{n}-u_{n}\right\rangle
$$

Hence,

$$
\begin{aligned}
& \left\|x_{n}-u_{n}\right\|^{2} \leq\left\|x_{n}-u\right\|^{2}-\left\|z_{n}-u\right\|^{2}+2 r_{n}\left\|B x_{n}-B u\right\|\left\|x_{n}-u_{n}\right\| \\
\leq & \left(\left\|x_{n}-u\right\|+\left\|z_{n}-u\right\|\right)\left\|x_{n}-z_{n}\right\|+2 r_{n}\left\|B x_{n}-B u\right\|\left\|x_{n}-u_{n}\right\|
\end{aligned}
$$

Since $\left\|B x_{n}-B u\right\| \rightarrow 0,\left\|x_{n}-z_{n}\right\| \rightarrow 0,\left\{x_{n}\right\},\left\{u_{n}\right\}$ and $\left\{z_{n}\right\}$ are bounded, we obtain $\left\|x_{n}-u_{n}\right\| \rightarrow 0$. From $\left\|t_{n}-x_{n}\right\| \leq\left\|t_{n}-u_{n}\right\|+\left\|x_{n}-u_{n}\right\|$ we also have $\left\|t_{n}-x_{n}\right\| \rightarrow 0$.

As $\left\{x_{n}\right\}$ is bounded, there exists a subsequence $\left\{x_{n_{i}}\right\}$ of $\left\{x_{n}\right\}$ such that $x_{n i} \rightharpoonup$ w. From $\left\|x_{n}-u_{n}\right\| \rightarrow 0$ and $\left\|t_{n}-x_{n}\right\| \rightarrow 0$, we obtain that $u_{n i} \rightharpoonup w$ and $t_{n i} \rightharpoonup w$. Since $\left\{u_{n i}\right\} \subset C$ and C is closed and convex, we obtain $w \in C$.

In order to show that $w \in \Gamma_{1}$, we first show that $w \in \cap_{k=1}^{N} F i x\left(T_{k}\right)$. To see this, we observe that we may assume (by passing to a further subsequence if necessary)
$\zeta_{k}^{\left(n_{i}\right)} \rightarrow \zeta_{k}($ as $i \rightarrow \infty)$ for $k=1,2, \ldots, N$. It is easy to see that $\zeta_{k}>0$ and $\sum_{k=1}^{N} \zeta_{k}=1$. We also have

$$
W_{n_{i}} x \rightarrow W x(\text { as } i \rightarrow \infty) \text { for all } x \in C
$$

where $W=\sum_{k=1}^{N} \zeta_{k} T_{k}$. Note that by Lemma 2.2, W is an ε-strict pseudocontraction and Fix $(W)=\cap_{i=1}^{N} F i x\left(T_{i}\right)$. Since

$$
\begin{aligned}
& \left\|t_{n_{i}}-W t_{n_{i}}\right\| \leq\left\|t_{n_{i}}-W_{n_{i}} t_{n_{i}}\right\|+\left\|W_{n_{i}} t_{n_{i}}-W t_{n_{i}}\right\| \\
\leq & \left\|t_{n_{i}}-W_{n_{i}} t_{n_{i}}\right\|+\sum_{k=1}^{N}\left|\zeta_{k}^{\left(n_{i}\right)}-\zeta_{k}\right|\left\|T_{k} t_{n_{i}}\right\|
\end{aligned}
$$

It follows from (3.6) and $\zeta_{k}^{\left(n_{i}\right)} \rightarrow \zeta_{k}$ that

$$
\left\|t_{n_{i}}-W t_{n_{i}}\right\| \rightarrow 0
$$

So by the demiclosedness principle (Lemma 2.2(ii)), it follows that $w \in \operatorname{Fix}(W)=$ $\cap_{i=1}^{N} \operatorname{Fix}\left(T_{i}\right)$.

By the similar argument as in the proof of Theorem 3.1 in [1], we can show $w \in G M E P(F, \varphi, B)$ and $w \in V I(C, A)$, which implies $w \in \Gamma_{1}$.

From $l_{0}=P_{\Gamma_{1}}(x), w \in \Gamma_{1}$ and (3.5), we have

$$
\left\|l_{0}-x\right\| \leq\|w-x\| \leq \liminf _{i \rightarrow \infty}\left\|x_{n_{i}}-x\right\| \leq \limsup _{i \rightarrow \infty}\left\|x_{n_{i}}-x\right\| \leq\left\|l_{0}-x\right\|
$$

So, we obtain

$$
\lim _{i \rightarrow \infty}\left\|x_{n_{i}}-x\right\|=\|w-x\|
$$

From $x_{n_{i}}-x \rightharpoonup w-x$ we have $x_{n_{i}}-x \rightarrow w-x$ and hence $x_{n_{i}} \rightarrow w$. Since $x_{n}=P_{Q_{n}}(x)$ and $l_{0} \in \Gamma_{1} \subset C_{n} \cap Q_{n} \subset Q_{n}$, we have

$$
-\left\|l_{0}-x_{n_{i}}\right\|^{2}=\left\langle l_{0}-x_{n_{i}}, x_{n_{i}}-x\right\rangle+\left\langle l_{0}-x_{n_{i}}, x-l_{0}\right\rangle \geq\left\langle l_{0}-x_{n_{i}}, x-l_{0}\right\rangle
$$

As $i \rightarrow \infty$, we obtain $-\left\|l_{0}-w\right\|^{2} \geq\left\langle l_{0}-w, x-l_{0}\right\rangle \geq 0$ by $l_{0}=P_{\Gamma_{1}}(x)$ and $w \in \Gamma_{1}$. Hence we have $w=l_{0}$. This implies that $x_{n} \rightarrow l_{0}$. It is easy to see $u_{n} \rightarrow l_{0}, y_{n} \rightarrow l_{0}, t_{n} \rightarrow l_{0}$, and $z_{n} \rightarrow l_{0}$. The proof is now complete.

Theorem 3.2. Let C be a nonempty closed convex subset of a real Hilbert space H. Let F be a bifunction from $C \times C$ to R satisfying (A1)-(A5) and $\varphi: C \rightarrow$ $R \cup\{+\infty\}$ be a proper lower semicontinuous and convex function. Let A be a monotone and k-Lipschitz continuous mapping of C into H and B be a β-inverse strongly monotone mapping of C into H. Let $N \geq 1$ be an integer. For each $0 \leq j \leq N-1$, let $T_{j}: C \rightarrow C$ be an ε_{j}-strict pseudo-contraction for some
$0 \leq \varepsilon_{j}<1$ such that $\Gamma_{2}=\cap_{j=0}^{N-1} F i x\left(T_{j}\right) \cap \operatorname{VI}(C, A) \cap \operatorname{GMEP}(F, \varphi, B) \neq \emptyset$. Let $\varepsilon=\max \left\{\varepsilon_{j}: 0 \leq j \leq N-1\right\}$. Assume that either (B1) or (B2) holds. Let $\left\{x_{n}\right\},\left\{u_{n}\right\},\left\{y_{n}\right\},\left\{t_{n}\right\}$ and $\left\{z_{n}\right\}$ be sequences generated by

$$
\left\{\begin{aligned}
x_{0}= & x \in C \\
& F\left(u_{n}, y\right)+\varphi(y)-\varphi\left(u_{n}\right)+\left\langle B x_{n}, y-u_{n}\right\rangle \\
& +\frac{1}{r_{n}}\left\langle y-u_{n}, u_{n}-x_{n}\right\rangle \geq 0, \quad \forall y \in C \\
y_{n}= & P_{C}\left(u_{n}-\lambda_{n} A u_{n}\right) \\
t_{n}= & P_{C}\left(u_{n}-\lambda_{n} A y_{n}\right) \\
z_{n}= & \alpha_{n} t_{n}+\left(1-\alpha_{n}\right) T_{[n]} t_{n} \\
C_{n}= & \left\{z \in C:\left\|z_{n}-z\right\|^{2} \leq\left\|x_{n}-z\right\|^{2}-\left(1-\alpha_{n}\right)\left(\alpha_{n}-\varepsilon\right)\left\|t_{n}-T_{[n]} t_{n}\right\|^{2}\right\} \\
Q_{n}= & \left\{z \in H:\left\langle x_{n}-z, x-x_{n}\right\rangle \geq 0\right\} \\
x_{n+1}= & P_{C_{n} \cap Q_{n}}(x)
\end{aligned}\right.
$$

for every $n=0,1,2, \ldots$. If $\left\{\lambda_{n}\right\} \subset[a, b]$ for some $a, b \in\left(0, \frac{1}{k}\right),\left\{\alpha_{n}\right\} \subset[c, d]$ for some $c, d \in(\varepsilon, 1)$ and $\left\{r_{n}\right\} \subset[\gamma, \tau]$ for some $\gamma, \tau \in(0,2 \beta)$. Then, $\left\{x_{n}\right\},\left\{u_{n}\right\}$, $\left\{y_{n}\right\},\left\{t_{n}\right\}$ and $\left\{z_{n}\right\}$ converge strongly to $w=P_{\Gamma_{2}}(x)$.

Proof. From the proof of Theorem 3.1, we know that both C_{n} and Q_{n} are closed and convex for every $n=0,1,2, \ldots, x_{n}=P_{Q_{n}}(x)$ and for $u \in \Gamma_{2}$, the following formula hold

$$
\begin{gather*}
\left\|u_{n}-u\right\|^{2} \leq\left\|x_{n}-u\right\|^{2}+r_{n}\left(r_{n}-2 \beta\right)\left\|B x_{n}-B u\right\|^{2} \leq\left\|x_{n}-u\right\|^{2} \tag{3.1}\\
\left\|t_{n}-u\right\|^{2} \leq\left\|u_{n}-u\right\|^{2}+\left(\lambda_{n}^{2} k^{2}-1\right)\left\|u_{n}-y_{n}\right\|^{2} \leq\left\|u_{n}-u\right\|^{2} \\
\left\|u_{n}-u\right\|^{2} \leq\left\|x_{n}-u\right\|^{2}-\left\|x_{n}-u_{n}\right\|^{2}+2 r_{n}\left\langle B x_{n}-B u, x_{n}-u_{n}\right\rangle
\end{gather*}
$$

And

$$
\begin{equation*}
\left\|t_{n}-y_{n}\right\| \leq \lambda_{n} k\left\|y_{n}-u_{n}\right\| \tag{3.8}
\end{equation*}
$$

Since for each $j=0,1, \ldots, N-1, T_{j}$ is ε_{j}-strictly pseudocontractive and $\varepsilon=$ $\max \left\{\varepsilon_{j}: 0 \leq j \leq N-1\right\} \in[0,1)$, we have

$$
\begin{equation*}
\left\|T_{[n]} x-T_{[n]} y\right\|^{2} \leq\|x-y\|^{2}+\varepsilon\left\|x-T_{[n]} x-\left(y-T_{[n]} y\right)\right\|^{2}, \forall x, y \in C \tag{3.9}
\end{equation*}
$$

It follows from (3.1), (3.2) and (3.9), $z_{n}=\alpha_{n} t_{n}+\left(1-\alpha_{n}\right) T_{[n]} t_{n}$ and $u=T_{[n]} u$ that

$$
\begin{aligned}
& \left\|z_{n}-u\right\|^{2} \\
= & \alpha_{n}\left\|t_{n}-u\right\|^{2}+\left(1-\alpha_{n}\right)\left\|T_{[n]} t_{n}-u\right\|^{2}-\alpha_{n}\left(1-\alpha_{n}\right)\left\|t_{n}-T_{[n]} t_{n}\right\|^{2} \\
\leq & \alpha_{n}\left\|t_{n}-u\right\|^{2}+\left(1-\alpha_{n}\right)\left[\left\|t_{n}-u\right\|^{2}\right. \\
& \left.+\varepsilon\left\|t_{n}-T_{[n]} t_{n}\right\|^{2}\right]-\alpha_{n}\left(1-\alpha_{n}\right)\left\|t_{n}-T_{[n]} t_{n}\right\|^{2} \\
= & \left\|t_{n}-u\right\|^{2}+\left(1-\alpha_{n}\right)\left(\varepsilon-\alpha_{n}\right)\left\|t_{n}-T_{[n]} t_{n}\right\|^{2} \\
\leq & \left\|u_{n}-u\right\|^{2}+\left(\lambda_{n}{ }^{2} k^{2}-1\right)\left\|u_{n}-y_{n}\right\|^{2}+\left(1-\alpha_{n}\right)\left(\varepsilon-\alpha_{n}\right)\left\|t_{n}-T_{[n]} t_{n}\right\|^{2} \\
\leq & \left\|x_{n}-u\right\|^{2}+\left(\lambda_{n}{ }^{2} k^{2}-1\right)\left\|u_{n}-y_{n}\right\|^{2} \\
\leq & \left\|x_{n}-u\right\|^{2},
\end{aligned}
$$

for every $n=0,1,2, \ldots$.
From (3.10) and (3.1), we can obtain that

$$
\begin{equation*}
\left\|z_{n}-u\right\|^{2} \leq\left\|x_{n}-u\right\|^{2}+\left(1-\alpha_{n}\right)\left(\varepsilon-\alpha_{n}\right)\left\|t_{n}-T_{[n]} t_{n}\right\|^{2}, \tag{3.11}
\end{equation*}
$$

for every $n=0,1,2, \ldots$, and hence $u \in C_{n}$. So, $\Gamma_{2} \subset C_{n}$ for every $n=0,1,2, \ldots$. Next, let us show by mathematical induction that $\left\{x_{n}\right\}$ is well defined and $\Gamma_{2} \subset$ $C_{n} \cap Q_{n}$ for every $n=0,1,2, \ldots$. For $n=0$ we have $x_{0}=x \in H$ and $Q_{0}=H$. Hence we obtain $\Gamma_{2} \subset C_{0} \cap Q_{0}$. Suppose that x_{k} is given and $\Gamma_{2} \subset C_{k} \cap Q_{k}$ for some integer $k \geq 0$. Since Γ_{2} is nonempty, $C_{k} \cap Q_{k}$ is a nonempty closed convex subset of H. So, there exists a unique element $x_{k+1} \in C_{k} \cap Q_{k}$ such that $x_{k+1}=P_{C_{k} \cap Q_{k}}(x)$. It is also obvious that there holds $\left\langle x_{k+1}-z, x-x_{k+1}\right\rangle \geq 0$ for every $z \in C_{k} \cap Q_{k}$. Since $\Gamma_{2} \subset C_{k} \cap Q_{k}$, we have $\left\langle x_{k+1}-z, x-x_{k+1}\right\rangle \geq 0$ for every $z \in \Gamma_{2}$ and hence $\Gamma_{2} \subset Q_{k+1}$. Therefore, we obtain $\Gamma_{2} \subset C_{k+1} \cap Q_{k+1}$.

Let $l_{0}=P_{\Gamma_{2}}(x)$. From $x_{n+1}=P_{C_{n} \cap Q_{n}} x$ and $l_{0} \in \Gamma_{2} \subset C_{n} \cap Q_{n}$, we have

$$
\begin{equation*}
\left\|x_{n+1}-x\right\| \leq\left\|l_{0}-x\right\| \tag{3.12}
\end{equation*}
$$

for every $n=0,1,2, \ldots$. Therefore, $\left\{x_{n}\right\}$ is bounded. From (3.1), (3.2) and (3.10), we also obtain that $\left\{t_{n}\right\},\left\{z_{n}\right\}$ and $\left\{u_{n}\right\}$ are bounded. Since $x_{n+1} \in C_{n} \cap Q_{n} \subset Q_{n}$ and $x_{n}=P_{Q_{n}}(x)$, we have

$$
\left\|x_{n}-x\right\| \leq\left\|x_{n+1}-x\right\|
$$

for every $n=0,1,2, \ldots$. Therefore, $\lim _{n \rightarrow \infty}\left\|x_{n}-x\right\|$ exists.
Since $x_{n}=P_{Q_{n}}(x)$ and $x_{n+1} \in Q_{n}$, using (2.2), we have

$$
\left\|x_{n+1}-x_{n}\right\|^{2} \leq\left\|x_{n+1}-x\right\|^{2}-\left\|x_{n}-x\right\|^{2}
$$

for every $n=0,1,2, \ldots$. This implies that

$$
\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0
$$

It follows that for all $j=0,1, \ldots, N-1$,

$$
\lim _{n \rightarrow \infty}\left\|x_{n+j}-x_{n}\right\|=0
$$

Since $x_{n+1} \in C_{n}$, we have

$$
\left\|z_{n}-x_{n+1}\right\|^{2} \leq\left\|x_{n}-x_{n+1}\right\|^{2}-\left(1-\alpha_{n}\right)\left(\alpha_{n}-\varepsilon\right)\left\|t_{n}-T_{[n]} t_{n}\right\|^{2} \leq\left\|x_{n}-x_{n+1}\right\|^{2}
$$

and hence

$$
\left\|x_{n}-z_{n}\right\| \leq\left\|x_{n}-x_{n+1}\right\|+\left\|x_{n+1}-z_{n}\right\| \leq 2\left\|x_{n}-x_{n+1}\right\|
$$

for every $n=0,1,2, \ldots$. From $\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0$, we have $\left\|x_{n}-z_{n}\right\| \rightarrow 0$.
For $u \in \Gamma_{2}$, from (3.10) we obtain

$$
\left\|z_{n}-u\right\|^{2} \leq\left\|x_{n}-u\right\|^{2}+\left(\lambda_{n}{ }^{2} k^{2}-1\right)\left\|u_{n}-y_{n}\right\|^{2} .
$$

Thus, we have

$$
\begin{aligned}
& \left\|u_{n}-y_{n}\right\|^{2} \leq \frac{1}{\left(1-\lambda_{n}^{2} k^{2}\right)}\left(\left\|x_{n}-u\right\|^{2}-\left\|z_{n}-u\right\|^{2}\right) \\
\leq & \frac{1}{\left(1-b^{2} k^{2}\right)}\left(\left\|x_{n}-u\right\|+\left\|z_{n}-u\right\|\right)\left\|x_{n}-z_{n}\right\| .
\end{aligned}
$$

It follows from $\left\|x_{n}-z_{n}\right\| \rightarrow 0,\left\{x_{n}\right\}$ and $\left\{z_{n}\right\}$ are bounded that $\left\|u_{n}-y_{n}\right\| \rightarrow 0$.
It follows from (3.8) that $\lim _{n \rightarrow \infty}\left\|t_{n}-y_{n}\right\|=0$. From $\left\|u_{n}-t_{n}\right\| \leq \| u_{n}-$ $y_{n}\|+\| y_{n}-t_{n} \|$ we also have $\left\|u_{n}-t_{n}\right\| \rightarrow 0$. As A is k-Lipschitz continuous, we have $\left\|A y_{n}-A t_{n}\right\| \rightarrow 0$.

From $\varepsilon<c \leq \alpha_{n} \leq d<1$ and (3.11), we have

$$
\begin{aligned}
& (1-d)(c-\varepsilon)\left\|t_{n}-T_{[n]} t_{n}\right\|^{2} \leq\left(1-\alpha_{n}\right)\left(\alpha_{n}-\varepsilon\right)\left\|t_{n}-T_{[n]} t_{n}\right\|^{2} \\
\leq & \left\|x_{n}-u\right\|^{2}-\left\|z_{n}-u\right\|^{2} \leq\left(\left\|x_{n}-u\right\|+\left\|z_{n}-u\right\|\right)\left\|x_{n}-z_{n}\right\| .
\end{aligned}
$$

This implies that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|t_{n}-T_{[n]} t_{n}\right\|=0 \tag{3.13}
\end{equation*}
$$

Let $L_{j}=\frac{1-\varepsilon_{j}}{1+\varepsilon_{j}}$, by Lemma 2.2, we have $\left\|T_{j} x-T_{j} y\right\| \leq L_{j}\|x-y\|, \forall j=$ $0,1, \ldots, N-1$.
If we choose $L=\max _{0 \leq j \leq N-1}\left\{L_{j}\right\}$, then

$$
\begin{equation*}
\left\|T_{j} x-T_{j} y\right\| \leq L\|x-y\|, \forall j=0,1, \ldots, N-1 . \tag{3.14}
\end{equation*}
$$

Also by (3.10) and (3.1), we have

$$
\left\|z_{n}-u\right\|^{2} \leq\left\|u_{n}-u\right\|^{2} \leq\left\|x_{n}-u\right\|^{2}+r_{n}\left(r_{n}-2 \beta\right)\left\|B x_{n}-B u\right\|^{2} .
$$

Thus, we have

$$
\begin{aligned}
& \gamma(2 \beta-\tau)\left\|B x_{n}-B u\right\|^{2} \leq r_{n}\left(2 \beta-r_{n}\right)\left\|B x_{n}-B u\right\|^{2} \\
\leq & \left\|x_{n}-u\right\|^{2}-\left\|z_{n}-u\right\|^{2} \leq\left(\left\|x_{n}-u\right\|+\left\|z_{n}-u\right\|\right)\left\|x_{n}-z_{n}\right\| .
\end{aligned}
$$

It follows from $\left\|x_{n}-z_{n}\right\| \rightarrow 0,\left\{x_{n}\right\}$ and $\left\{z_{n}\right\}$ are bounded that $\left\|B x_{n}-B u\right\| \rightarrow 0$.
It follows from (3.10) and (3.7) that

$$
\left\|z_{n}-u\right\|^{2} \leq\left\|u_{n}-u\right\|^{2} \leq\left\|x_{n}-u\right\|^{2}-\left\|x_{n}-u_{n}\right\|^{2}+2 r_{n}\left\langle B x_{n}-B u, x_{n}-u_{n}\right\rangle .
$$

Hence,

$$
\left\|x_{n}-u_{n}\right\|^{2} \leq\left(\left\|x_{n}-u\right\|+\left\|z_{n}-u\right\|\right)\left\|x_{n}-z_{n}\right\|+2 r_{n}\left\|B x_{n}-B u\right\|\left\|x_{n}-u_{n}\right\|
$$

Since $\left\|B x_{n}-B u\right\| \rightarrow 0,\left\|x_{n}-z_{n}\right\| \rightarrow 0,\left\{x_{n}\right\},\left\{u_{n}\right\}$ and $\left\{z_{n}\right\}$ are bounded, we obtain $\left\|x_{n}-u_{n}\right\| \rightarrow 0$. From $\left\|t_{n}-x_{n}\right\| \leq\left\|t_{n}-u_{n}\right\|+\left\|x_{n}-u_{n}\right\|$ we also have $\left\|t_{n}-x_{n}\right\| \rightarrow 0$.

By (3.14), we have

$$
\begin{align*}
\left\|x_{n}-T_{[n]} x_{n}\right\| & \leq\left\|x_{n}-t_{n}\right\|+\left\|t_{n}-T_{[n]} t_{n}\right\|+\left\|T_{[n]} t_{n}-T_{[n]} x_{n}\right\| \tag{3.15}\\
& \leq(1+L)\left\|x_{n}-t_{n}\right\|+\left\|t_{n}-T_{[n]} t_{n}\right\| .
\end{align*}
$$

It follows from (3.13), (3.15) and $\left\|t_{n}-x_{n}\right\| \rightarrow 0$ that $\left\|x_{n}-T_{[n]} x_{n}\right\| \rightarrow 0$.
We observe that for each $j=0,1, \ldots, N-1$,

$$
\begin{align*}
\left\|x_{n}-T_{[n+j]} x_{n}\right\| \leq & \left\|x_{n}-x_{n+j}\right\|+\left\|x_{n+j}-T_{[n+j]} x_{n+j}\right\| \\
& +\left\|T_{[n+j]} x_{n+j}-T_{[n+j]} x_{n}\right\| \tag{3.16}\\
\leq & (1+L)\left\|x_{n}-x_{n+j}\right\|+\left\|x_{n+j}-T_{[n+j]} x_{n+j}\right\| .
\end{align*}
$$

Thus, we get for each $j=0,1, \ldots, N-1$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-T_{[n+j]} x_{n}\right\|=0 \tag{3.17}
\end{equation*}
$$

As $\left\{x_{n}\right\}$ is bounded, there exists a subsequence $\left\{x_{n_{i}}\right\}$ of $\left\{x_{n}\right\}$ such that $x_{n i} \rightharpoonup$ w. From $\left\|x_{n}-u_{n}\right\| \rightarrow 0$ and $\left\|t_{n}-x_{n}\right\| \rightarrow 0$, we obtain that $u_{n i} \rightharpoonup w$ and $t_{n i} \rightharpoonup w$. Since $\left\{u_{n i}\right\} \subset C$ and C is closed and convex, we obtain $w \in C$.

In order to show that $w \in \Gamma_{2}$, we first show that $w \in \cap_{j=0}^{N-1} \operatorname{Fix}\left(T_{j}\right)$. In fact, it follows from (3.17) that for each $l=0,1, \ldots, N-1$

$$
\left\|x_{n_{i}}-T_{l} x_{n_{i}}\right\| \rightarrow 0
$$

So by the demiclosedness principle, it follows that $w \in \operatorname{Fix}\left(T_{l}\right)$. Since l is an arbitrary element in the finite set $\{0,1, \ldots, N-1\}$, we get $w \in \cap_{j=0}^{N-1} F i x\left(T_{j}\right)$. The rest of the proof is similar with that of Theorem 3.1. The proof is now complete.

Now we derive a strong convergence theorem of a cyclic algorithm based on hybrid method but not extragradient method which solves the problem of finding a common element of the set of solutions of a generalized mixed equilibrium problem, the set of fixed points of a finite family of strict pseudo-contractions and the set of the variational inequality for an inverse strongly monotone mapping in a Hilbert space.

Theorem 3.3. Let C be a nonempty closed convex subset of a real Hilbert space H. Let F be a bifunction from $C \times C$ to R satisfying (A1)-(A5) and φ : $C \rightarrow R \cup\{+\infty\}$ be a proper lower semicontinuous and convex function. Let $A: C \rightarrow H$ and $B: C \rightarrow H$ be α-inverse strongly monotone and β-inverse strongly monotone, respectively. Let $N \geq 1$ be an integer. For each $0 \leq j \leq N-1$, let $T_{j}: C \rightarrow C$ be an ε_{j}-strict pseudo-contraction for some $0 \leq \varepsilon_{j}<1$ such that $\Gamma_{2}=\cap_{j=0}^{N-1} \operatorname{Fix}\left(T_{j}\right) \cap V I(C, A) \cap \operatorname{GMEP}(F, \varphi, B) \neq \emptyset$. Let $\varepsilon=\max \left\{\varepsilon_{j}: 0 \leq\right.$ $j \leq N-1\}$. Assume also that either (B1) or (B2) holds. Let $\left\{x_{n}\right\},\left\{u_{n}\right\},\left\{y_{n}\right\}$ and $\left\{z_{n}\right\}$ be sequences generated by

$$
\left\{\begin{aligned}
x_{0}= & x \in C, \\
& F\left(u_{n}, y\right)+\varphi(y)-\varphi\left(u_{n}\right)+\left\langle B x_{n}, y-u_{n}\right\rangle \\
& +\frac{1}{r_{n}}\left\langle y-u_{n}, u_{n}-x_{n}\right\rangle \geq 0, \quad \forall y \in C, \\
y_{n}= & P_{C}\left(u_{n}-\lambda_{n} A u_{n}\right), \\
z_{n}= & \alpha_{n} y_{n}+\left(1-\alpha_{n}\right) T_{[n]} y_{n}, \\
C_{n}= & \left\{z \in C:\left\|z_{n}-z\right\|^{2} \leq\left\|x_{n}-z\right\|^{2}-\left(1-\alpha_{n}\right)\left(\alpha_{n}-\varepsilon\right)\left\|y_{n}-T_{[n]} y_{n}\right\|^{2}\right\}, \\
Q_{n}= & \left\{z \in H:\left\langle x_{n}-z, x-x_{n}\right\rangle \geq 0\right\}, \\
x_{n+1}= & P_{C_{n} \cap Q_{n}} x
\end{aligned}\right.
$$

for every $n=0,1,2, \ldots$. If $\left\{\lambda_{n}\right\} \subset[a, b]$ for some $a, b \in(0,2 \alpha),\left\{\alpha_{n}\right\} \subset$ $[c, d]$ for some $c, d \in(\varepsilon, 1)$ and $\left\{r_{n}\right\} \subset[\gamma, \tau]$ for some $\gamma, \tau \in(0,2 \beta)$. Then, $\left\{x_{n}\right\},\left\{u_{n}\right\},\left\{y_{n}\right\}$ and $\left\{z_{n}\right\}$ converge strongly to $w=P_{\Gamma_{2}}(x)$.

Proof. From the proof of Theorem 3.1 and 3.2, we know that both C_{n} and Q_{n} are closed and convex for every $n=0,1,2, \ldots, x_{n}=P_{Q_{n}}(x)$ and for $u \in \Gamma_{2}$, the following formula hold

$$
\begin{equation*}
\left\|u_{n}-u\right\|^{2} \leq\left\|x_{n}-u\right\|^{2}+r_{n}\left(r_{n}-2 \beta\right)\left\|B x_{n}-B u\right\|^{2} \leq\left\|x_{n}-u\right\|^{2} . \tag{3.1}
\end{equation*}
$$

$$
\begin{gather*}
\left\|u_{n}-u\right\|^{2} \leq\left\|x_{n}-u\right\|^{2}-\left\|x_{n}-u_{n}\right\|^{2}+2 r_{n}\left\langle B x_{n}-B u, x_{n}-u_{n}\right\rangle . \tag{3.7}\\
\left\|T_{[n]} x-T_{[n]}\right\|\left\|^{2} \leq\right\| x-y\left\|^{2}+\varepsilon\right\| x-T_{[n]} x-\left(y-T_{[n]} y\right) \|^{2}, \forall x, y \in C . \\
\left\|T_{j} x-T_{j} y\right\| \leq L\|x-y\|, \forall j=0,1, \ldots, N-1,
\end{gather*}
$$

where $L=\max _{0 \leq j \leq N-1}\left\{\frac{1-\varepsilon_{j}}{1+\varepsilon_{j}}\right\}$. And

$$
\begin{equation*}
\left\|x_{n}-T_{[n+j]} x_{n}\right\| \leq(1+L)\left\|x_{n}-x_{n+j}\right\|+\left\|x_{n+j}-T_{[n+j]} x_{n+j}\right\| . \tag{3.16}
\end{equation*}
$$

Since A is an α-inverse strongly monotone mapping, from (2.4), we have

$$
\begin{align*}
\left\|y_{n}-u\right\|^{2} & =\left\|P_{C}\left(u_{n}-\lambda_{n} A u_{n}\right)-P_{C}\left(u-\lambda_{n} A u\right)\right\|^{2} \\
& \leq\left\|u_{n}-\lambda_{n} A u_{n}-\left(u-\lambda_{n} A u\right)\right\|^{2} \\
& \leq\left\|u_{n}-u\right\|^{2}+\lambda_{n}\left(\lambda_{n}-2 \alpha\right)\left\|A u_{n}-A u\right\|^{2} \tag{3.18}\\
& \leq\left\|u_{n}-u\right\| .
\end{align*}
$$

It follows from (3.1) and (3.18), $z_{n}=\alpha_{n} y_{n}+\left(1-\alpha_{n}\right) T_{[n]} y_{n}$ and $u=T_{[n]} u$ that

$$
\begin{align*}
\left\|z_{n}-u\right\|^{2}= & \alpha_{n}\left\|y_{n}-u\right\|^{2}+\left(1-\alpha_{n}\right)\left\|T_{[n]} y_{n}-u\right\|^{2} \\
& -\alpha_{n}\left(1-\alpha_{n}\right)\left\|y_{n}-T_{[n]} y_{n}\right\|^{2} \\
\leq & \alpha_{n}\left\|y_{n}-u\right\|^{2}+\left(1-\alpha_{n}\right)\left[\left\|y_{n}-u\right\|^{2}+\varepsilon\left\|y_{n}-T_{[n]} y_{n}\right\|^{2}\right] \\
& -\alpha_{n}\left(1-\alpha_{n}\right)\left\|y_{n}-T_{[n]} y_{n}\right\|^{2} \\
= & \left\|y_{n}-u\right\|^{2}+\left(1-\alpha_{n}\right)\left(\varepsilon-\alpha_{n}\right)\left\|y_{n}-T_{[n]} y_{n}\right\|^{2} \tag{3.19}\\
\leq & \left\|u_{n}-u\right\|^{2}+\lambda_{n}\left(\lambda_{n}-2 \alpha\right)\left\|A u_{n}-A u\right\|^{2} \\
& +\left(1-\alpha_{n}\right)\left(\varepsilon-\alpha_{n}\right)\left\|y_{n}-T_{[n]} y_{n}\right\|^{2} \\
\leq & \left\|x_{n}-u\right\|^{2}+\lambda_{n}\left(\lambda_{n}-2 \alpha\right)\left\|A u_{n}-A u\right\|^{2} \\
\leq & \left\|x_{n}-u\right\|^{2},
\end{align*}
$$

for every $n=0,1,2, \ldots$.
From (3.19) and (3.1), we know that

$$
\begin{equation*}
\left\|z_{n}-u\right\|^{2} \leq\left\|x_{n}-u\right\|^{2}+\left(1-\alpha_{n}\right)\left(\varepsilon-\alpha_{n}\right)\left\|y_{n}-T_{[n]} y_{n}\right\|^{2}, \tag{3.20}
\end{equation*}
$$

for every $n=0,1,2, \ldots$, and hence $u \in C_{n}$. So, $\Gamma_{2} \subset C_{n}$ for every $n=0,1,2, \ldots$. By the similar argument in the proof of Theorem 3.2, we can show by mathematical induction that $\left\{x_{n}\right\}$ is well defined and $\Gamma_{2} \subset C_{n} \cap Q_{n}$ for every $n=0,1,2, \ldots,\left\{x_{n}\right\}$,
$\left\{y_{n}\right\},\left\{z_{n}\right\}$ and $\left\{u_{n}\right\}$ are bounded, $\lim _{n \rightarrow \infty}\left\|x_{n}-x\right\|$ exists, $\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=$ $0,\left\|x_{n}-z_{n}\right\| \rightarrow 0$ and for each $j=0,1, \ldots, N-1, \lim _{n \rightarrow \infty}\left\|x_{n+j}-x_{n}\right\|=0$.

From $\varepsilon<c \leq \alpha_{n} \leq d<1$ and (3.20), we have

$$
\begin{aligned}
& (1-d)(c-\varepsilon)\left\|y_{n}-T_{[n]} y_{n}\right\|^{2} \leq\left(1-\alpha_{n}\right)\left(\alpha_{n}-\varepsilon\right)\left\|y_{n}-T_{[n]} y_{n}\right\|^{2} \\
\leq & \left\|x_{n}-u\right\|^{2}-\left\|z_{n}-u\right\|^{2} \leq\left(\left\|x_{n}-u\right\|+\left\|z_{n}-u\right\|\right)\left\|x_{n}-z_{n}\right\|
\end{aligned}
$$

This implies that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|y_{n}-T_{[n]} y_{n}\right\|=0 \tag{3.21}
\end{equation*}
$$

By similar argument with that in the proof of Theorem 3.2, we know that $\left\|B x_{n}-B u\right\| \rightarrow 0$ and $\left\|x_{n}-u_{n}\right\| \rightarrow 0$. From (2.3) and (2.4), we have

$$
\begin{aligned}
\left\|y_{n}-u\right\|^{2}= & \left\|P_{C}\left(u_{n}-\lambda_{n} A u_{n}\right)-P_{C}\left(u-\lambda_{n} A u\right)\right\|^{2} \\
\leq & \left\langle\left(u_{n}-\lambda_{n} A u_{n}\right)-\left(u-\lambda_{n} A u\right), y_{n}-u\right\rangle \\
= & \frac{1}{2}\left\{\left\|\left(u_{n}-\lambda_{n} A u_{n}\right)-\left(u-\lambda_{n} A u\right)\right\|^{2}+\left\|y_{n}-u\right\|^{2}\right. \\
& \left.-\left\|\left[\left(u_{n}-\lambda_{n} A u_{n}\right)-\left(u-\lambda_{n} A u\right)\right]-\left(y_{n}-u\right)\right\|^{2}\right\} \\
\leq & \frac{1}{2}\left\{\left\|u_{n}-u\right\|^{2}+\left\|y_{n}-u\right\|^{2}-\left\|\left(u_{n}-y_{n}\right)-\lambda_{n}\left(A u_{n}-A u\right)\right\|^{2}\right\} \\
= & \frac{1}{2}\left\{\left\|u_{n}-u\right\|^{2}+\left\|y_{n}-u\right\|^{2}-\left\|u_{n}-y_{n}\right\|^{2}\right. \\
+ & \left.2 \lambda_{n}\left\langle u_{n}-y_{n}, A u_{n}-A u\right\rangle-\lambda_{n}^{2}\left\|A u_{n}-A u\right\|^{2}\right\}
\end{aligned}
$$

Hence,

$$
\begin{gather*}
\left\|y_{n}-u\right\|^{2} \leq\left\|u_{n}-u\right\|^{2}-\left\|u_{n}-y_{n}\right\|^{2} \\
+2 \lambda_{n}\left\langle u_{n}-y_{n}, A u_{n}-A u\right\rangle-\lambda_{n}^{2}\left\|A u_{n}-A u\right\|^{2} . \tag{3.22}
\end{gather*}
$$

From (3.19), (3.1) and (3.22), we have

$$
\begin{aligned}
& \left\|z_{n}-u\right\|^{2} \leq\left\|y_{n}-u\right\|^{2} \leq\left\|x_{n}-u\right\|^{2}-\left\|u_{n}-y_{n}\right\|^{2} \\
& +2 \lambda_{n}\left\langle u_{n}-y_{n}, A u_{n}-A u\right\rangle-\lambda_{n}^{2}\left\|A u_{n}-A u\right\|^{2} .
\end{aligned}
$$

And hence

$$
\begin{aligned}
& \left\|u_{n}-y_{n}\right\|^{2} \leq\left\|x_{n}-u\right\|^{2}-\left\|z_{n}-u\right\|^{2}+2 \lambda_{n}\left\langle u_{n}-y_{n}, A u_{n}-A u\right\rangle-\lambda_{n}^{2}\left\|A u_{n}-A u\right\|^{2} \\
& \leq\left(\left\|x_{n}-u\right\|+\left\|z_{n}-u\right\|\right)\left\|x_{n}-z_{n}\right\|+2 \lambda_{n}\left\langle u_{n}-y_{n}, A u_{n}-A u\right\rangle-\lambda_{n}^{2}\left\|A u_{n}-A u\right\|^{2} . \\
& \quad \text { Since }\left\|x_{n}-z_{n}\right\| \rightarrow 0 \text { and }\left\|A u_{n}-A u\right\| \rightarrow 0 \text {, we obtain }\left\|u_{n}-y_{n}\right\| \rightarrow 0 \text {. } \\
& \text { It follows from the Lipschitz-continuity of } A \text { that }\left\|A u_{n}-A y_{n}\right\| \rightarrow 0 \text {. From } \\
& \left\|y_{n}-x_{n}\right\| \leq\left\|y_{n}-u_{n}\right\|+\left\|x_{n}-u_{n}\right\| \text { we also have }\left\|y_{n}-x_{n}\right\| \rightarrow 0 \text {. }
\end{aligned}
$$

By (3.14), we have

$$
\begin{aligned}
\left\|x_{n}-T_{[n]} x_{n}\right\| & \leq\left\|x_{n}-y_{n}\right\|+\left\|y_{n}-T_{[n]} y_{n}\right\|+\left\|T_{[n]} y_{n}-T_{[n]} x_{n}\right\| \\
& \leq(1+L)\left\|x_{n}-y_{n}\right\|+\left\|y_{n}-T_{[n]} y_{n}\right\|
\end{aligned}
$$

It follows from (3.21) and $\left\|y_{n}-x_{n}\right\| \rightarrow 0$ that $\left\|x_{n}-T_{[n]} x_{n}\right\| \rightarrow 0$.
It follows from (3.16) that for each $j=0,1, \ldots, N-1$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-T_{[n+j]} x_{n}\right\|=0 \tag{3.23}
\end{equation*}
$$

As $\left\{x_{n}\right\}$ is bounded, there exists a subsequence $\left\{x_{n_{i}}\right\}$ of $\left\{x_{n}\right\}$ such that $x_{n i} \rightharpoonup$ w. From $\left\|x_{n}-u_{n}\right\| \rightarrow 0$ and $\left\|y_{n}-x_{n}\right\| \rightarrow 0$, we obtain that $u_{n i} \rightharpoonup w$ and $y_{n_{i}} \rightharpoonup w$. Since $\left\{u_{n i}\right\} \subset C$ and C is closed and convex, we obtain $w \in C$. The rest of the proof is similar with that of Theorem 3.2. The proof is now complete.

Let $A=0$, by Theorem 3.1 and 3.2, respectively, we obtain the following results:

Theorem 3.4. Let C be a nonempty closed convex subset of a real Hilbert space H. Let F be a bifunction from $C \times C$ to R satisfying (Al)-(A5) and φ : $C \rightarrow R \cup\{+\infty\}$ be a proper lower semicontinuous and convex function. Let B be a β-inverse strongly monotone mapping of C into H. Let $N \geq 1$ be an integer. For each $1 \leq j \leq N$, let $T_{j}: C \rightarrow C$ be an ε_{j}-strict pseudo-contraction for some $0 \leq \varepsilon_{j}<1$ such that $\Delta_{1}=\cap_{j=1}^{N} \operatorname{Fix}\left(T_{j}\right) \cap \operatorname{GMEP}(F, \varphi, B) \neq \emptyset$. Assume for each n, $\left\{\zeta_{j}^{(n)}\right\}_{j=1}^{N}$ is a finite sequence of positive numbers such that $\sum_{j=1}^{N} \zeta_{j}^{(n)}=1$ for all n and $\inf _{n \geq 1} \zeta_{j}^{(n)}>0$ for all $0 \leq j \leq N$. Let $\varepsilon=\max \left\{\varepsilon_{j}: 1 \leq j \leq N\right\}$. Assume also that either (B1) or (B2) holds. Let the mapping W_{n} be defined by

$$
W_{n} x=\sum_{j=1}^{N} \zeta_{j}^{(n)} T_{j} x, \forall x \in C
$$

Let $\left\{x_{n}\right\},\left\{u_{n}\right\}$ and $\left\{z_{n}\right\}$ be sequences generated by

$$
\left\{\begin{aligned}
x_{1}= & x \in C, \\
& F\left(u_{n}, y\right)+\varphi(y)-\varphi\left(u_{n}\right)+\left\langle B x_{n}, y-u_{n}\right\rangle \\
& +\frac{1}{r_{n}}\left\langle y-u_{n}, u_{n}-x_{n}\right\rangle \geq 0, \quad \forall y \in C, \\
z_{n}= & \alpha_{n} u_{n}+\left(1-\alpha_{n}\right) W_{n} u_{n}, \\
C_{n}= & \left\{z \in C:\left\|z_{n}-z\right\|^{2} \leq\left\|x_{n}-z\right\|^{2}-\left(1-\alpha_{n}\right)\left(\alpha_{n}-\varepsilon\right)\left\|u_{n}-W_{n} u_{n}\right\|^{2}\right\}, \\
Q_{n}= & \left\{z \in H:\left\langle x_{n}-z, x-x_{n}\right\rangle \geq 0\right\}, \\
x_{n+1}= & P_{C_{n} \cap Q_{n}} x
\end{aligned}\right.
$$

for every $n=1,2, \ldots$. If $\left\{\alpha_{n}\right\} \subset[c, d]$ for some $c, d \in(\varepsilon, 1)$ and $\left\{r_{n}\right\} \subset[\gamma, \tau]$ for some $\gamma, \tau \in(0,2 \beta)$. Then, $\left\{x_{n}\right\},\left\{u_{n}\right\}$ and $\left\{z_{n}\right\}$ converge strongly to $w=P_{\Delta_{1}}(x)$.

Theorem 3.5. Let C be a nonempty closed convex subset of a real Hilbert space H. Let F be a bifunction from $C \times C$ to R satisfying (A1)-(A5) and $\varphi: C \rightarrow$ $R \cup\{+\infty\}$ be a proper lower semicontinuous and convex function. Let B be a β-inverse strongly monotone mapping of C into H. Let $N \geq 1$ be an integer. For each $0 \leq j \leq N-1$, let $T_{j}: C \rightarrow C$ be an ε_{j}-strict pseudo-contraction for some $0 \leq \varepsilon_{j}<1$ such that $\Delta_{2}=\cap_{j=0}^{N-1} \operatorname{Fix}\left(T_{j}\right) \cap \operatorname{VI}(C, A) \cap \operatorname{GMEP}(F, \varphi, B) \neq \emptyset$. Let $\varepsilon=\max \left\{\varepsilon_{j}: 0 \leq j \leq N-1\right\}$. Assume that either (B1) or (B2) holds. Let $\left\{x_{n}\right\},\left\{u_{n}\right\}$ and $\left\{z_{n}\right\}$ be sequences generated by

$$
\left\{\begin{aligned}
x_{0}= & x \in C, \\
& F\left(u_{n}, y\right)+\varphi(y)-\varphi\left(u_{n}\right)+\left\langle B x_{n}, y-u_{n}\right\rangle \\
+ & \frac{1}{r_{n}}\left\langle y-u_{n}, u_{n}-x_{n}\right\rangle \geq 0, \quad \forall y \in C \\
z_{n}= & \alpha_{n} u_{n}+\left(1-\alpha_{n}\right) T_{[n]} u_{n} \\
C_{n}= & \left\{z \in C:\left\|z_{n}-z\right\|^{2} \leq\left\|x_{n}-z\right\|^{2}-\left(1-\alpha_{n}\right)\left(\alpha_{n}-\varepsilon\right)\left\|t_{n}-T_{[n]} t_{n}\right\|^{2}\right\} \\
Q_{n}= & \left\{z \in H:\left\langle x_{n}-z, x-x_{n}\right\rangle \geq 0\right\} \\
x_{n+1}= & P_{C_{n} \cap Q_{n}} x
\end{aligned}\right.
$$

for every $n=0,1,2, \ldots$ If $\left\{\alpha_{n}\right\} \subset[c, d]$ for some $c, d \in(\varepsilon, 1)$ and $\left\{r_{n}\right\} \subset[\gamma, \tau]$ for some $\gamma, \tau \in(0,2 \beta)$. Then, $\left\{x_{n}\right\},\left\{u_{n}\right\}$ and $\left\{z_{n}\right\}$ converge strongly to $w=$ $P_{\Delta_{2}}(x)$.

Theorem 3.6. Let C be a nonempty closed convex subset of a real Hilbert space H. Let F be a bifunction from $C \times C$ to R satisfying (Al)-(A5) and φ : $C \rightarrow R \cup\{+\infty\}$ be a proper lower semicontinuous and convex function. Let S be a pseudo-contraction and m-Lipschitz-continuous mapping of C into itself and B be a β-inverse strongly monotone mapping of C into H. Let $N \geq 1$ be an integer. For each $1 \leq j \leq N$, let $T_{j}: C \rightarrow C$ be an ε_{j}-strict pseudo-contraction for some $0 \leq \varepsilon_{j}<1$ such that $\Omega_{1}=\cap_{j=1}^{N} \operatorname{Fix}\left(T_{j}\right) \cap \operatorname{Fix}(S) \cap \operatorname{GMEP}(F, \varphi, B) \neq \emptyset$. Assume for each $n,\left\{\zeta_{j}^{(n)}\right\}_{j=1}^{N}$ is a finite sequence of positive numbers such that $\sum_{j=1}^{N} \zeta_{j}^{(n)}=1$ for all n and $\inf _{n \geq 1} \zeta_{j}^{(n)}>0$ for all $0 \leq j \leq N$. Let $\varepsilon=\max \left\{\varepsilon_{j}\right.$: $1 \leq j \leq N\}$. Assume also that either (B1) or (B2) holds. Let the mapping W_{n} be defined by

$$
W_{n} x=\sum_{j=1}^{N} \zeta_{j}^{(n)} T_{j} x, \forall x \in C
$$

Let $\left\{x_{n}\right\},\left\{u_{n}\right\},\left\{y_{n}\right\},\left\{t_{n}\right\}$ and $\left\{z_{n}\right\}$ be sequences generated by

$$
\left\{\begin{aligned}
x_{1}= & x \in C, \\
& F\left(u_{n}, y\right)+\varphi(y)-\varphi\left(u_{n}\right)+\left\langle B x_{n}, y-u_{n}\right\rangle \\
& +\frac{1}{r_{n}}\left\langle y-u_{n}, u_{n}-x_{n}\right\rangle \geq 0, \quad \forall y \in C, \\
y_{n}= & u_{n}-\lambda_{n}\left(u_{n}-S u_{n}\right), \\
t_{n}= & P_{C}\left(u_{n}-\lambda_{n}\left(y_{n}-S y_{n}\right)\right), \\
z_{n}= & \alpha_{n} t_{n}+\left(1-\alpha_{n}\right) W_{n} t_{n}, \\
C_{n}= & \left\{z \in C:\left\|z_{n}-z\right\|^{2} \leq\left\|x_{n}-z\right\|^{2}-\left(1-\alpha_{n}\right)\left(\alpha_{n}-\varepsilon\right)\left\|t_{n}-W_{n} t_{n}\right\|^{2}\right\}, \\
Q_{n}= & \left\{z \in H:\left\langle x_{n}-z, x-x_{n}\right\rangle \geq 0\right\}, \\
x_{n+1}= & P_{C_{n} \cap Q_{n} x}
\end{aligned}\right.
$$

for every $n=1,2, \ldots$. If $\left\{\lambda_{n}\right\} \subset[a, b]$ for some $a, b \in\left(0, \frac{1}{m+1}\right),\left\{\alpha_{n}\right\} \subset[c, d]$ for some $c, d \in(\varepsilon, 1)$ and $\left\{r_{n}\right\} \subset[\gamma, \tau]$ for some $\gamma, \tau \in(0,2 \alpha)$. Then, $\left\{x_{n}\right\},\left\{u_{n}\right\}$, $\left\{y_{n}\right\},\left\{t_{n}\right\}$ and $\left\{z_{n}\right\}$ converge strongly to $w=P_{\Omega_{1}}(x)$.

Proof. Let $A=I-S$. From the proof of Theorem 4.5 in [26], we know that the mapping A is monotone and $(m+1)$-Lipschitz-continuous and $\operatorname{Fix}(S)=V I(C, A)$. By Theorem 3.1 we obtain the desired result.

Theorem 3.7. Let C be a nonempty closed convex subset of a real Hilbert space H. Let F be a bifunction from $C \times C$ to R satisfying (A1)-(A5) and φ : $C \rightarrow R \cup\{+\infty\}$ be a proper lower semicontinuous and convex function. Let S be a pseudo-contraction and m-Lipschitz-continuous mapping of C into itself and B be a β-inverse strongly monotone mapping of C into H. Let $N \geq 1$ be an integer. For each $0 \leq j \leq N-1$, let $T_{j}: C \rightarrow C$ be an ε_{j}-strict pseudo-contraction for some $0 \leq \varepsilon_{j}<1$ such that $\Omega_{2}=\cap_{j=0}^{N-1} \operatorname{Fix}\left(T_{j}\right) \cap \operatorname{Fix}(S) \cap \operatorname{GMEP}(F, \varphi, B) \neq \emptyset$. Let $\varepsilon=\max \left\{\varepsilon_{j}: 0 \leq j \leq N-1\right\}$. Assume that either (B1) or (B2) holds. Let $\left\{x_{n}\right\},\left\{u_{n}\right\},\left\{y_{n}\right\},\left\{t_{n}\right\}$ and $\left\{z_{n}\right\}$ be sequences generated by

$$
\left\{\begin{aligned}
x_{0}= & x \in C, \\
& F\left(u_{n}, y\right)+\varphi(y)-\varphi\left(u_{n}\right)+\left\langle B x_{n}, y-u_{n}\right\rangle \\
& +\frac{1}{r_{n}}\left\langle y-u_{n}, u_{n}-x_{n}\right\rangle \geq 0, \quad \forall y \in C, \\
y_{n}= & u_{n}-\lambda_{n}\left(u_{n}-S u_{n}\right), \\
t_{n}= & P_{C}\left(u_{n}-\lambda_{n}\left(y_{n}-S y_{n}\right)\right), \\
z_{n}= & \alpha_{n} t_{n}+\left(1-\alpha_{n}\right) T_{[n]} t_{n}, \\
C_{n}= & \left\{z \in C:\left\|z_{n}-z\right\|^{2} \leq\left\|x_{n}-z\right\|^{2}-\left(1-\alpha_{n}\right)\left(\alpha_{n}-\varepsilon\right)\left\|t_{n}-T_{[n]} t_{n}\right\|^{2}\right\}, \\
Q_{n}= & \left\{z \in H:\left\langle x_{n}-z, x-x_{n}\right\rangle \geq 0\right\}, \\
x_{n+1}= & P_{C_{n} \cap Q_{n}}(x)
\end{aligned}\right.
$$

for every $n=0,1,2, \ldots$. If $\left\{\lambda_{n}\right\} \subset[a, b]$ for some $a, b \in\left(0, \frac{1}{m+1}\right),\left\{\alpha_{n}\right\} \subset$ $[c, d]$ for some $c, d \in(\varepsilon, 1)$ and $\left\{r_{n}\right\} \subset[\gamma, \tau]$ for some $\gamma, \tau \in(0,2 \beta)$. Then, $\left\{x_{n}\right\},\left\{u_{n}\right\},\left\{y_{n}\right\},\left\{t_{n}\right\}$ and $\left\{z_{n}\right\}$ converge strongly to $w=P_{\Omega_{2}}(x)$.

Proof. By Theorem 3.2 and the proof of Theorem 3.6, we know that the conclusion holds.

Remark 3.1.

(i) Let $A=0$ in Theorem 3.3, we can also recover Theorem 3.5.
(ii) In Theorems 3.1-3.7, if we let part of the mappings F, B, φ be zero mappings, we can obtain many new and interesting strong convergence theorems for some algorithms for the special case of problem (1.1) (i.e., problems (1.2)-(1.7)). Now we only give five examples as follows:

Corollary 3.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let F be a bifunction from $C \times C$ to R satisfying (A1)-(A5) and φ : $C \rightarrow R \cup\{+\infty\}$ be a proper lower semicontinuous and convex function. Let A be a monotone and k-Lipschitz continuous mapping of C into H. Let $N \geq 1$ be an integer. For each $1 \leq j \leq N$, let $T_{j}: C \rightarrow C$ be an ε_{j}-strict pseudo-contraction for some $0 \leq \varepsilon_{j}<1$ such that $\Lambda=\cap_{j=1}^{N} \operatorname{Fix}\left(T_{j}\right) \cap V I(C, A) \cap M E P(F, \varphi) \neq \emptyset$. Assume for each n, $\left\{\zeta_{j}^{(n)}\right\}_{j=1}^{N}$ is a finite sequence of positive numbers such that $\sum_{j=1}^{N} \zeta_{j}^{(n)}=1$ for all n and $\inf _{n \geq 1} \zeta_{j}^{(n)}>0$ for all $0 \leq j \leq N$. Let $\varepsilon=\max \left\{\varepsilon_{j}\right.$: $1 \leq j \leq N\}$. Assume also that either (B1) or (B2) holds. Let the mapping W_{n} be defined by

$$
W_{n} x=\sum_{j=1}^{N} \zeta_{j}^{(n)} T_{j} x, \forall x \in C
$$

Let $\left\{x_{n}\right\},\left\{u_{n}\right\},\left\{y_{n}\right\},\left\{t_{n}\right\}$ and $\left\{z_{n}\right\}$ be sequences generated by

$$
\left\{\begin{aligned}
x_{1}= & x \in C, \\
& F\left(u_{n}, y\right)+\varphi(y)-\varphi\left(u_{n}\right)+\frac{1}{r_{n}}\left\langle y-u_{n}, u_{n}-x_{n}\right\rangle \geq 0, \quad \forall y \in C, \\
y_{n}= & P_{C}\left(u_{n}-\lambda_{n} A u_{n}\right), \\
t_{n}= & P_{C}\left(u_{n}-\lambda_{n} A y_{n}\right), \\
z_{n}= & \alpha_{n} t_{n}+\left(1-\alpha_{n}\right) W_{n} t_{n}, \\
C_{n}= & \left\{z \in C:\left\|z_{n}-z\right\|^{2} \leq\left\|x_{n}-z\right\|^{2}-\left(1-\alpha_{n}\right)\left(\alpha_{n}-\varepsilon\right)\left\|t_{n}-W_{n} t_{n}\right\|^{2}\right\}, \\
Q_{n}= & \left\{z \in H:\left\langle x_{n}-z, x-x_{n}\right\rangle \geq 0\right\}, \\
x_{n+1}= & P_{C_{n} \cap Q_{n}} x
\end{aligned}\right.
$$

for every $n=1,2, \ldots$. If $\left\{\lambda_{n}\right\} \subset[a, b]$ for some $a, b \in\left(0, \frac{1}{k}\right),\left\{\alpha_{n}\right\} \subset[c, d]$ for some $c, d \in(\varepsilon, 1)$ and $\left\{r_{n}\right\} \subset[\gamma,+\infty)$ for some $\gamma>0$. Then, $\left\{x_{n}\right\},\left\{u_{n}\right\},\left\{y_{n}\right\}$, $\left\{t_{n}\right\}$ and $\left\{z_{n}\right\}$ converge strongly to $w=P_{\Lambda}(x)$.

Proof. Putting $B=0$, by Theorem 3.1 we obtain the desired result.
Corollary 3.2. Let C be a nonempty closed convex subset of a real Hilbert space H. Let F be a bifunction from $C \times C$ to R satisfying (A1)-(A5). Let A be a monotone and k-Lipschitz continuous mapping of C into H. Let $N \geq 1$ be an integer. For each $0 \leq j \leq N-1$, let $T_{j}: C \rightarrow C$ be an ε_{j}-strict pseudo-contraction for some $0 \leq \varepsilon_{j}<1$ such that $\Sigma=\cap_{j=0}^{N-1} F i x\left(T_{j}\right) \cap \operatorname{VI}(C, A) \cap E P(F) \neq \emptyset$. Let $\varepsilon=\max \left\{\varepsilon_{j}: 0 \leq j \leq N-1\right\}$. Assume that either (B3) or (B2) holds. Let $\left\{x_{n}\right\}$, $\left\{u_{n}\right\},\left\{y_{n}\right\},\left\{t_{n}\right\}$ and $\left\{z_{n}\right\}$ be sequences generated by

$$
\left\{\begin{aligned}
x_{0}= & x \in C \\
& F\left(u_{n}, y\right)+\frac{1}{r_{n}}\left\langle y-u_{n}, u_{n}-x_{n}\right\rangle \geq 0, \quad \forall y \in C \\
y_{n}= & P_{C}\left(u_{n}-\lambda_{n} A u_{n}\right) \\
t_{n}= & P_{C}\left(u_{n}-\lambda_{n} A y_{n}\right) \\
z_{n}= & \alpha_{n} t_{n}+\left(1-\alpha_{n}\right) T_{[n]} t_{n} \\
C_{n}= & \left\{z \in C:\left\|z_{n}-z\right\|^{2} \leq\left\|x_{n}-z\right\|^{2}-\left(1-\alpha_{n}\right)\left(\alpha_{n}-\varepsilon\right)\left\|t_{n}-T_{[n]} t_{n}\right\|^{2}\right\} \\
Q_{n}= & \left\{z \in H:\left\langle x_{n}-z, x-x_{n}\right\rangle \geq 0\right\} \\
x_{n+1}= & P_{C_{n} \cap Q_{n}}(x)
\end{aligned}\right.
$$

for every $n=0,1,2, \ldots$ If $\left\{\lambda_{n}\right\} \subset[a, b]$ for some $a, b \in\left(0, \frac{1}{k}\right),\left\{\alpha_{n}\right\} \subset[c, d]$ for some $c, d \in(\varepsilon, 1)$ and $\left\{r_{n}\right\} \subset[\gamma,+\infty)$ for some $\gamma>0$. Then, $\left\{x_{n}\right\},\left\{u_{n}\right\},\left\{y_{n}\right\}$, $\left\{t_{n}\right\}$ and $\left\{z_{n}\right\}$ converge strongly to $w=P_{\Sigma}(x)$.

Proof. Putting $F=0$ and $\varphi=0$. By Theorem 3.2 we obtain the desired result.
Corollary 3.3. Let C be a nonempty closed convex subset of a real Hilbert space H. Let A be a monotone and k-Lipschitz continuous mapping of C into H and B be a β-inverse strongly monotone mapping of C into H. Let $N \geq 1$ be an integer. For each $1 \leq j \leq N$, let $T_{j}: C \rightarrow C$ be an ε_{j}-strict pseudo-contraction for some $0 \leq \varepsilon_{j}<1$ such that $\Theta_{1}=\cap_{j=1}^{N} \operatorname{Fix}\left(T_{j}\right) \cap V I(C, A) \cap \cap V I(C, B) \neq \emptyset$. Assume for each $n,\left\{\zeta_{j}^{(n)}\right\}_{j=1}^{N}$ is a finite sequence of positive numbers such that $\sum_{j=1}^{N} \zeta_{j}^{(n)}=1$ for all n and $\inf _{n \geq 1} \zeta_{j}^{(n)}>0$ for all $0 \leq j \leq N$. Let $\varepsilon=\max \left\{\varepsilon_{j}\right.$: $1 \leq j \leq N\}$. Let the mapping W_{n} be defined by

$$
W_{n} x=\sum_{j=1}^{N} \zeta_{j}^{(n)} T_{j} x, \forall x \in C
$$

Let $\left\{x_{n}\right\},\left\{u_{n}\right\},\left\{y_{n}\right\},\left\{t_{n}\right\}$ and $\left\{z_{n}\right\}$ be sequences generated by

$$
\left\{\begin{aligned}
x_{1}= & x \in C \\
& u_{n}=P_{C}\left(x_{n}-r_{n} B x_{n}\right) \\
y_{n}= & P_{C}\left(u_{n}-\lambda_{n} A u_{n}\right) \\
t_{n}= & P_{C}\left(u_{n}-\lambda_{n} A y_{n}\right) \\
z_{n}= & \alpha_{n} t_{n}+\left(1-\alpha_{n}\right) W_{n} t_{n} \\
C_{n}= & \left\{z \in C:\left\|z_{n}-z\right\|^{2} \leq\left\|x_{n}-z\right\|^{2}-\left(1-\alpha_{n}\right)\left(\alpha_{n}-\varepsilon\right)\left\|t_{n}-W_{n} t_{n}\right\|^{2}\right\} \\
Q_{n}= & \left\{z \in H:\left\langle x_{n}-z, x-x_{n}\right\rangle \geq 0\right\} \\
x_{n+1}= & P_{C_{n} \cap Q_{n}} x
\end{aligned}\right.
$$

for every $n=1,2, \ldots$ If $\left\{\lambda_{n}\right\} \subset[a, b]$ for some $a, b \in\left(0, \frac{1}{k}\right),\left\{\alpha_{n}\right\} \subset[c, d]$ for some $c, d \in(\varepsilon, 1)$ and $\left\{r_{n}\right\} \subset[\gamma, \tau]$ for some $\gamma, \tau \in(0,2 \beta)$. Then, $\left\{x_{n}\right\},\left\{u_{n}\right\}$, $\left\{y_{n}\right\},\left\{t_{n}\right\}$ and $\left\{z_{n}\right\}$ converge strongly to $w=P_{\Theta_{1}}(x)$.

Proof. In Theorem 3.1, put $F=0$ and $\varphi=0$. Then, we obtain that

$$
\left\langle B x_{n}, y-u_{n}\right\rangle+\frac{1}{r_{n}}\left\langle y-u_{n}, u_{n}-x_{n}\right\rangle \geq 0, \quad \forall y \in C, \forall n \geq 1
$$

This implies that

$$
\left\langle y-u_{n}, u_{n}-\left(x_{n}-r_{n} B x_{n}\right)\right\rangle \geq 0, \quad \forall y \in C, \forall n \geq 1
$$

So, we get that $u_{n}=P_{C}\left(x_{n}-r_{n} B x_{n}\right)$ for all $n \geq 1$. Then we obtain the desired result from Theorem 3.1.

Corollary 3.4. Let C be a nonempty closed convex subset of a real Hilbert space H. Let A be a monotone and k-Lipschitz continuous mapping of C into H and B be a β-inverse strongly monotone mapping of C into H. Let $N \geq 1$ be an integer. For each $0 \leq j \leq N-1$, let $T_{j}: C \rightarrow C$ be an ε_{j}-strict pseudo-contraction for some $0 \leq \varepsilon_{j}<1$ such that $\Theta_{2}=\cap_{j=0}^{N-1} \operatorname{Fix}\left(T_{j}\right) \cap V I(C, A) \cap V I(C, B) \neq \emptyset$. Let $\varepsilon=\max \left\{\varepsilon_{j}: 0 \leq j \leq N-1\right\}$. Let $\left\{x_{n}\right\},\left\{u_{n}\right\},\left\{y_{n}\right\},\left\{t_{n}\right\}$ and $\left\{z_{n}\right\}$ be sequences generated by

$$
\left\{\begin{aligned}
x_{0} & =x \in C \\
u_{n} & =P_{C}\left(x_{n}-r_{n} B x_{n}\right), \\
y_{n} & =P_{C}\left(u_{n}-\lambda_{n} A u_{n}\right), \\
t_{n} & =P_{C}\left(u_{n}-\lambda_{n} A y_{n}\right), \\
z_{n} & =\alpha_{n} t_{n}+\left(1-\alpha_{n}\right) T_{[n]} t_{n}, \\
C_{n} & =\left\{z \in C:\left\|z_{n}-z\right\|^{2} \leq\left\|x_{n}-z\right\|^{2}-\left(1-\alpha_{n}\right)\left(\alpha_{n}-\varepsilon\right)\left\|t_{n}-T_{[n]} t_{n}\right\|^{2}\right\}, \\
Q_{n} & =\left\{z \in H:\left\langle x_{n}-z, x-x_{n}\right\rangle \geq 0\right\}, \\
x_{n+1} & =P_{C_{n} \cap Q_{n}} x
\end{aligned}\right.
$$

for every $n=0,1,2, \ldots$ If $\left\{\lambda_{n}\right\} \subset[a, b]$ for some $a, b \in\left(0, \frac{1}{k}\right),\left\{\alpha_{n}\right\} \subset[c, d]$ for some $c, d \in(\varepsilon, 1)$ and $\left\{r_{n}\right\} \subset[\gamma, \tau]$ for some $\gamma, \tau \in(0,2 \beta)$. Then, $\left\{x_{n}\right\}$, $\left\{u_{n}\right\}$, $\left\{y_{n}\right\},\left\{t_{n}\right\}$ and $\left\{z_{n}\right\}$ converge strongly to $w=P_{\Theta_{2}}(x)$.

Proof. Putting $F=0$ and $\varphi=0$, by Theorem 3.2 and the proof of Corollary 3.4, we obtain the desired result.

Corollary 3.5. Let C be a nonempty closed convex subset of a real Hilbert space H. Let $\varphi: C \rightarrow R \cup\{+\infty\}$ be a proper lower semicontinuous and convex function. Let A be a monotone and k-Lipschitz continuous mapping of C into H. Let $N \geq 1$ be an integer. For each $1 \leq j \leq N$, let $T_{j}: C \rightarrow C$ be an ε_{j}-strict pseudo-contraction for some $0 \leq \varepsilon_{j}<1$ such that $\Xi=\cap_{j=1}^{N} \operatorname{Fix}\left(T_{j}\right) \cap \operatorname{VI}(C, A) \cap$ $\operatorname{Argmin}(\varphi) \neq \emptyset$. Assume for each $n,\left\{\zeta_{j}^{(n)}\right\}_{j=1}^{N}$ is a finite sequence of positive numbers such that $\sum_{j=1}^{N} \zeta_{j}^{(n)}=1$ for all n and $\inf _{n \geq 1} \zeta_{j}^{(n)}>0$ for all $0 \leq j \leq N$. Let $\varepsilon=\max \left\{\varepsilon_{j}: 1 \leq j \leq N\right\}$. Assume also that either (B4) or (B2) holds. Let the mapping W_{n} be defined by

$$
W_{n} x=\sum_{j=1}^{N} \zeta_{j}^{(n)} T_{j} x, \forall x \in C
$$

Let $\left\{x_{n}\right\},\left\{u_{n}\right\},\left\{y_{n}\right\},\left\{t_{n}\right\}$ and $\left\{z_{n}\right\}$ be sequences generated by

$$
\left\{\begin{aligned}
x_{1}= & x \in C, \\
& \varphi(y)-\varphi\left(u_{n}\right)+\frac{1}{r_{n}}\left\langle y-u_{n}, u_{n}-x_{n}\right\rangle \geq 0, \quad \forall y \in C, \\
y_{n}= & P_{C}\left(u_{n}-\lambda_{n} A u_{n}\right), \\
t_{n}= & P_{C}\left(u_{n}-\lambda_{n} A y_{n}\right), \\
z_{n}= & \alpha_{n} t_{n}+\left(1-\alpha_{n}\right) W_{n} t_{n}, \\
C_{n}= & \left\{z \in C:\left\|z_{n}-z\right\|^{2} \leq\left\|x_{n}-z\right\|^{2}-\left(1-\alpha_{n}\right)\left(\alpha_{n}-\varepsilon\right)\left\|t_{n}-W_{n} t_{n}\right\|^{2}\right\}, \\
Q_{n}= & \left\{z \in H:\left\langle x_{n}-z, x-x_{n}\right\rangle \geq 0\right\}, \\
x_{n+1}= & P_{C_{n} \cap Q_{n}} x
\end{aligned}\right.
$$

for every $n=1,2, \ldots$. If $\left\{\lambda_{n}\right\} \subset[a, b]$ for some $a, b \in\left(0, \frac{1}{k}\right),\left\{\alpha_{n}\right\} \subset[c, d]$ for some $c, d \in(\varepsilon, 1)$ and $\left\{r_{n}\right\} \subset[\gamma,+\infty)$ for some $\gamma>0$. Then, $\left\{x_{n}\right\},\left\{u_{n}\right\},\left\{y_{n}\right\}$, $\left\{t_{n}\right\}$ and $\left\{z_{n}\right\}$ converge strongly to $w=P_{\Xi}(x)$.

Proof. Putting $F=0$ and $B=0$, by Theorem 3.1 we obtain the desired result.

Remark 3.2.

(i) Since the nonexpansive mappings has been replaced by the strict pseudo-
contraction mappings, Theorems 3.1-3.7 improve Theorem 3.1 in [1] and Theorem 3.1 in [4]. Theorems 3.1-3.7 extend and improve Theorem 4.1 in [2], Theorem 4.1 in [4], Theorem 3.2 in [10], Theorem 3.1 in [11], Theorem 3.1 in [12]. Corollary 3.3 and 3.4 generalize and improve Theorem 3.1 in [24] and Theorem 3.1 in [25].
(ii) Since the inverse strongly monotonicity of the mapping A has been weakened by the monotonicity of A, Theorem 3.1, 3.2, Corollary 3.1 and 3.2 also extend and improve Theorem 3.1 in [15] and Theorem 3.1 in [16].

4. Weak Convergence Theorems

we first show weak convergence theorems of the parallel and cyclic algorithms based on extragradient method which solves the problem of finding a common element of the set of solutions of a generalized mixed equilibrium problem, the set of fixed points of a finite family of strict pseudo-contractions and the set of the variational inequality for a monotone, Lipschitz continuous mapping in a Hilbert space.

Theorem 4.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let F be a bifunction from $C \times C$ to R satisfying (A1)-(A5) and φ : $C \rightarrow R \cup\{+\infty\}$ be a proper lower semicontinuous and convex function. Let A be a monotone and k-Lipschitz continuous mapping of C into H and B be a β inverse strongly monotone mapping of C into H. Let $N \geq 1$ be an integer. For each $1 \leq j \leq N$, let $T_{j}: C \rightarrow C$ be an ε_{j}-strict pseudo-contractionfor some $0 \leq \varepsilon_{j}<1$ such that $\Gamma_{1}=\cap_{j=1}^{N} \operatorname{Fix}\left(T_{j}\right) \cap V I(C, A) \cap \operatorname{GMEP}(F, \varphi, B) \neq \emptyset$. Assume for each $n,\left\{\zeta_{j}^{(n)}\right\}_{j=1}^{N}$ is a finite sequence of positive numbers such that $\sum_{j=1}^{N} \zeta_{j}^{(n)}=1$ for all n and $\inf _{n \geq 1} \zeta_{j}^{(n)}>0$ for all $0 \leq j \leq N$. Let $\varepsilon=\max \left\{\varepsilon_{j}: 1 \leq j \leq N\right\}$. Assume also that either (B1) or (B2) holds. Let $\left\{x_{n}\right\},\left\{u_{n}\right\},\left\{t_{n}\right\}$ and $\left\{y_{n}\right\}$ be sequences generated by

$$
\left\{\begin{aligned}
x_{1}= & x \in C, \\
& F\left(u_{n}, y\right)+\varphi(y)-\varphi\left(u_{n}\right)+\left\langle B x_{n}, y-u_{n}\right\rangle \\
& +\frac{1}{r_{n}}\left\langle y-u_{n}, u_{n}-x_{n}\right\rangle \geq 0, \quad \forall y \in C, \\
y_{n}= & P_{C}\left(u_{n}-\lambda_{n} A u_{n}\right), \\
t_{n}= & P_{C}\left(u_{n}-\lambda_{n} A y_{n}\right), \\
x_{n+1}= & \alpha_{n} t_{n}+\left(1-\alpha_{n}\right) \sum_{j=1}^{N} \zeta_{j}^{(n)} T_{j} t_{n},
\end{aligned}\right.
$$

for every $n=1,2, \ldots$. If $\left\{\lambda_{n}\right\} \subset[a, b]$ for some $a, b \in\left(0, \frac{1}{k}\right),\left\{\alpha_{n}\right\} \subset[c, d]$ for some $c, d \in(\varepsilon, 1)$ and $\left\{r_{n}\right\} \subset[\gamma, \tau]$ for some $\gamma, \tau \in(0,2 \beta)$. Then, $\left\{x_{n}\right\},\left\{u_{n}\right\}$, $\left\{t_{n}\right\}$ and $\left\{y_{n}\right\}$ converge weakly to $w \in \Gamma_{1}$, where $w=\lim _{n \rightarrow \infty} P_{\Gamma_{1}} x_{n}$.

Proof. Let $u \in \Gamma_{1}$ and let $\left\{T_{r_{n}}\right\}$ be a sequence of mappings defined as in Lemma 2.1 in [31]. Then $u=P_{C}\left(u-\lambda_{n} A u\right)=T_{r_{n}}\left(u-r_{n} B u\right)$. From the proof of Theorem 3.1, we have

$$
\begin{gather*}
\left\|u_{n}-u\right\|^{2} \leq\left\|x_{n}-u\right\|^{2}+r_{n}\left(r_{n}-2 \beta\right)\left\|B x_{n}-B u\right\|^{2} \leq\left\|x_{n}-u\right\|^{2} \tag{4.1}\\
\left\|t_{n}-u\right\|^{2} \leq\left\|u_{n}-u\right\|^{2}+\left(\lambda_{n}^{2} k^{2}-1\right)\left\|u_{n}-y_{n}\right\|^{2} \leq\left\|u_{n}-u\right\|^{2} \tag{4.2}\\
\left\|u_{n}-u\right\|^{2} \leq\left\|x_{n}-u\right\|^{2}-\left\|x_{n}-u_{n}\right\|^{2}+2 r_{n}\left\langle B x_{n}-B u, x_{n}-u_{n}\right\rangle \tag{4.3}
\end{gather*}
$$

And

$$
\begin{equation*}
\left\|t_{n}-y_{n}\right\| \leq \lambda_{n} k\left\|y_{n}-u_{n}\right\| \tag{4.4}
\end{equation*}
$$

For each $n \geq 1$, let $W_{n}=\sum_{j=1}^{N} \zeta_{j}^{(n)} T_{j}$. By Lemma 2.2, we know that W_{n} is ε strict pseudo-contraction and $F\left(W_{n}\right)=\cap_{j=1}^{N} F i x\left(T_{j}\right)$. It follows from (4.1), (4.2), $x_{n+1}=\alpha_{n} t_{n}+\left(1-\alpha_{n}\right) W_{n} t_{n}$ and $u=W_{n} u$ that

$$
\begin{aligned}
& \left\|x_{n+1}-u\right\|^{2} \\
= & \alpha_{n}\left\|t_{n}-u\right\|^{2}+\left(1-\alpha_{n}\right)\left\|W_{n} t_{n}-u\right\|^{2}-\alpha_{n}\left(1-\alpha_{n}\right)\left\|t_{n}-W_{n} t_{n}\right\|^{2} \\
\leq & \alpha_{n}\left\|t_{n}-u\right\|^{2}+\left(1-\alpha_{n}\right)\left[\left\|t_{n}-u\right\|^{2}\right. \\
& \left.+\varepsilon\left\|t_{n}-W_{n} t_{n}\right\|^{2}\right]-\alpha_{n}\left(1-\alpha_{n}\right)\left\|t_{n}-W_{n} t_{n}\right\|^{2} \\
= & \left\|t_{n}-u\right\|^{2}+\left(1-\alpha_{n}\right)\left(\varepsilon-\alpha_{n}\right)\left\|t_{n}-W_{n} t_{n}\right\|^{2} \\
\leq & \left\|u_{n}-u\right\|^{2} \\
& +\left(\lambda_{n}{ }^{2} k^{2}-1\right)\left\|u_{n}-y_{n}\right\|^{2}+\left(1-\alpha_{n}\right)\left(\varepsilon-\alpha_{n}\right)\left\|t_{n}-W_{n} t_{n}\right\|^{2} \\
\leq & \left\|x_{n}-u\right\|^{2}+\left(\lambda_{n}{ }^{2} k^{2}-1\right)\left\|u_{n}-y_{n}\right\|^{2} \\
\leq & \left\|x_{n}-u\right\|^{2}
\end{aligned}
$$

for every $n=1,2, \ldots$. Therefore, there exists $\theta=\lim _{n \rightarrow \infty}\left\|x_{n}-u\right\|$ and $\left\{x_{n}\right\}$ is bounded. From (4.1) and (4.2), we also obtain that $\left\{t_{n}\right\}$ and $\left\{u_{n}\right\}$ are bounded.

By (4.5), we have

$$
\left\|u_{n}-y_{n}\right\|^{2} \leq \frac{1}{\left(1-\alpha_{n}\right)\left(1-\lambda_{n}^{2} k^{2}\right)}\left(\left\|x_{n}-u\right\|^{2}-\left\|x_{n+1}-u\right\|^{2}\right)
$$

Hence, $\left\|u_{n}-y_{n}\right\| \rightarrow 0$. It follows from (4.4) that $\lim _{n \rightarrow \infty}\left\|t_{n}-y_{n}\right\|=0$. From $\left\|u_{n}-t_{n}\right\| \leq\left\|u_{n}-y_{n}\right\|+\left\|y_{n}-t_{n}\right\|$ we also have $\left\|u_{n}-t_{n}\right\| \rightarrow 0$. As A is k-Lipschitz continuous, we have $\left\|A y_{n}-A t_{n}\right\| \rightarrow 0$.

From (4.5) and (4.1), we also have

$$
\begin{equation*}
\left\|x_{n+1}-u\right\|^{2} \leq\left\|x_{n}-u\right\|^{2}+\left(1-\alpha_{n}\right)\left(\varepsilon-\alpha_{n}\right)\left\|t_{n}-W_{n} t_{n}\right\|^{2}, \tag{4.6}
\end{equation*}
$$

for every $n=1,2, \ldots$.
From $\varepsilon<c \leq \alpha_{n} \leq d<1$ and (4.6), we have

$$
(1-d)(c-\varepsilon)\left\|t_{n}-W_{n} t_{n}\right\|^{2} \leq\left(1-\alpha_{n}\right)\left(\alpha_{n}-\varepsilon\right)\left\|t_{n}-W_{n} t_{n}\right\|^{2} \leq\left\|x_{n}-u\right\|^{2}-\left\|x_{n+1}-u\right\|^{2} .
$$

This implies that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|t_{n}-W_{n} t_{n}\right\|=0 \tag{4.7}
\end{equation*}
$$

Also by (4.5) and (4.1), we have

$$
\left\|x_{n+1}-u\right\|^{2} \leq\left\|u_{n}-u\right\|^{2} \leq\left\|x_{n}-u\right\|^{2}+r_{n}\left(r_{n}-2 \beta\right)\left\|B x_{n}-B u\right\|^{2} .
$$

Thus, we have

$$
\gamma(2 \beta-\tau)\left\|B x_{n}-B u\right\|^{2} \leq r_{n}\left(2 \beta-r_{n}\right)\left\|B x_{n}-B u\right\|^{2} \leq\left\|x_{n}-u\right\|^{2}-\left\|x_{n+1}-u\right\|^{2} .
$$

It follows that $\left\|B x_{n}-B u\right\| \rightarrow 0$.
By (4.5) and (4.3),

$$
\left\|x_{n+1}-u\right\|^{2} \leq\left\|u_{n}-u\right\|^{2} \leq\left\|x_{n}-u\right\|^{2}-\left\|x_{n}-u_{n}\right\|^{2}+2 r_{n}\left\langle B x_{n}-B u, x_{n}-u_{n}\right\rangle .
$$

Hence,

$$
\left\|x_{n}-u_{n}\right\|^{2} \leq\left\|x_{n}-u\right\|^{2}-\left\|x_{n+1}-u\right\|^{2}+2 r_{n}\left\|B x_{n}-B u\right\|\left\|x_{n}-u_{n}\right\| .
$$

Since $\left\|B x_{n}-B u\right\| \rightarrow 0,\left\{x_{n}\right\}$ and $\left\{u_{n}\right\}$ are bounded, we obtain $\left\|x_{n}-u_{n}\right\| \rightarrow 0$. From $\left\|t_{n}-x_{n}\right\| \leq\left\|t_{n}-u_{n}\right\|+\left\|x_{n}-u_{n}\right\|$ we also have $\left\|t_{n}-x_{n}\right\| \rightarrow 0$.

As $\left\{x_{n}\right\}$ is bounded, there exists a subsequence $\left\{x_{n_{i}}\right\}$ of $\left\{x_{n}\right\}$ such that $x_{n i} \rightharpoonup$ w. From $\left\|x_{n}-u_{n}\right\| \rightarrow 0$ and $\left\|t_{n}-x_{n}\right\| \rightarrow 0$, we obtain that $u_{n i} \rightharpoonup w$ and $t_{n i} \rightharpoonup w$. Since $\left\{u_{n i}\right\} \subset C$ and C is closed and convex, we obtain $w \in C$. By the similar argument with that in the proof of Theorem 3.1, we can obtain that $w \in \cap_{k=1}^{N} F i x\left(T_{k}\right)$. And by the similar argument as in the proof of Theorem 3.1 in [1], we can show $w \in \operatorname{GMEP}(F, \varphi, B)$ and $w \in V I(C, A)$, which implies $w \in \Gamma_{1}$.

Let $\left\{x_{n_{j}}\right\}$ be another subsequence of $\left\{x_{n}\right\}$ such that $x_{n_{j}} \rightharpoonup z$. Then $z \in \Gamma_{1}$. Let us show $w=z$. Assume that $w \neq z$. From the Opial condition, we have

$$
\lim _{n \rightarrow \infty}\left\|x_{n}-w\right\|=\liminf _{i \rightarrow \infty}\left\|x_{n_{i}}-w\right\|<\liminf _{i \rightarrow \infty}\left\|x_{n_{i}}-z\right\|
$$

$$
\begin{aligned}
& =\lim _{n \rightarrow \infty}\left\|x_{n}-z\right\|=\liminf _{j \rightarrow \infty}\left\|x_{n_{j}}-z\right\| \\
& <\liminf _{j \rightarrow \infty}\left\|x_{n_{j}}-w\right\|=\lim _{n \rightarrow \infty}\left\|x_{n}-w\right\|
\end{aligned}
$$

This is a contradiction. Thus, we have $w=z$. This implies that $x_{n} \rightharpoonup w \in \Gamma_{1}$. Since $\left\|x_{n}-u_{n}\right\| \rightarrow 0$, we have $u_{n} \rightharpoonup w \in \Gamma_{1}$. Since $\left\|y_{n}-u_{n}\right\| \rightarrow 0$, we have also $y_{n} \rightharpoonup w \in \Gamma_{1}$.

Now put $w_{n}=P_{\Gamma_{1}}\left(x_{n}\right)$. We show that $w=\lim _{n \rightarrow \infty} w_{n}$.
From $w_{n}=P_{\Gamma_{1}}\left(x_{n}\right)$ and $w \in \Gamma_{1}$, we have

$$
\left\langle w-w_{n}, w_{n}-x_{n}\right\rangle \geq 0
$$

From (4.5) and Lemma 2.1, we know that $\left\{w_{n}\right\}$ converges strongly to some $w_{0} \in \Gamma_{1}$. Then, we have

$$
\left\langle w-w_{0}, w_{0}-w\right\rangle \geq 0
$$

and hence $w=w_{0}$. The proof is now complete.
Theorem 4.2. Let C be a nonempty closed convex subset of a real Hilbert space H. Let F be a bifunction from $C \times C$ to R satisfying (A1)-(A5) and $\varphi: C \rightarrow$ $R \cup\{+\infty\}$ be a proper lower semicontinuous and convex function. Let A be a monotone and k-Lipschitz continuous mapping of C into H and B be a β-inverse strongly monotone mapping of C into H. Let $N \geq 1$ be an integer. For each $0 \leq j \leq N-1$, let $T_{j}: C \rightarrow C$ be an ε_{j}-strict pseudo-contraction for some $0 \leq \varepsilon_{j}<1$ such that $\Gamma_{2}=\cap_{j=0}^{N-1} F i x\left(T_{j}\right) \cap \operatorname{VI}(C, A) \cap \operatorname{GMEP}(F, \varphi, B) \neq \emptyset$. Let $\varepsilon=\max \left\{\varepsilon_{j}: 0 \leq j \leq N-1\right\}$. Assume that either (B1) or (B2) holds. Let $\left\{x_{n}\right\},\left\{u_{n}\right\},\left\{t_{n}\right\}$ and $\left\{y_{n}\right\}$ be sequences generated by

$$
\left\{\begin{aligned}
x_{0}= & x \in C, \\
& F\left(u_{n}, y\right)+\varphi(y)-\varphi\left(u_{n}\right)+\left\langle B x_{n}, y-u_{n}\right\rangle \\
& +\frac{1}{r_{n}}\left\langle y-u_{n}, u_{n}-x_{n}\right\rangle \geq 0, \quad \forall y \in C, \\
y_{n}= & P_{C}\left(u_{n}-\lambda_{n} A u_{n}\right), \\
t_{n}= & P_{C}\left(u_{n}-\lambda_{n} A y_{n}\right), \\
x_{n+1}= & \alpha_{n} t_{n}+\left(1-\alpha_{n}\right) T_{[n]} t_{n},
\end{aligned}\right.
$$

for every $n=0,1,2, \ldots$. If $\left\{\lambda_{n}\right\} \subset[a, b]$ for some $a, b \in\left(0, \frac{1}{k}\right),\left\{\alpha_{n}\right\} \subset[c, d]$ for some $c, d \in(\varepsilon, 1)$ and $\left\{r_{n}\right\} \subset[\gamma, \tau]$ for some $\gamma, \tau \in(0,2 \beta)$. Then, $\left\{x_{n}\right\},\left\{u_{n}\right\}$, $\left\{t_{n}\right\}$ and $\left\{y_{n}\right\}$ converge weakly to $w \in \Gamma_{2}$, where $w=\lim _{n \rightarrow \infty} P_{\Gamma_{2}}\left(x_{n}\right)$.

Proof. Let $u \in \Gamma_{2}$ and let $\left\{T_{r_{n}}\right\}$ be a sequence of mappings defined as in Lemma 2.1 in [31]. Then $u=P_{C}\left(u-\lambda_{n} A u\right)=T_{r_{n}}\left(u-r_{n} B u\right)$. From the proof
of Theorem 3.2, we have:

$$
\begin{gather*}
\left\|u_{n}-u\right\|^{2} \leq\left\|x_{n}-u\right\|^{2}+r_{n}\left(r_{n}-2 \beta\right)\left\|B x_{n}-B u\right\|^{2} \leq\left\|x_{n}-u\right\|^{2} . \tag{4.1}\\
\left\|t_{n}-u\right\|^{2} \leq\left\|u_{n}-u\right\|^{2}+\left(\lambda_{n}^{2} k^{2}-1\right)\left\|u_{n}-y_{n}\right\|^{2} \leq\left\|u_{n}-u\right\|^{2} . \tag{4.2}\\
\left\|u_{n}-u\right\|^{2} \leq\left\|x_{n}-u\right\|^{2}-\left\|x_{n}-u_{n}\right\|^{2}+2 r_{n}\left\langle B x_{n}-B u, x_{n}-u_{n}\right\rangle . \tag{4.3}\\
\left\|t_{n}-y_{n}\right\| \leq \lambda_{n} k\left\|y_{n}-u_{n}\right\| . \tag{4.4}\\
\left\|T_{[n]} x-T_{[n]} y\right\|^{2} \leq\|x-y\|^{2}+\varepsilon\left\|x-T_{[n]} x-\left(y-T_{[n]} y\right)\right\|^{2}, \forall x, y \in C \tag{4.8}\\
\left\|x_{n}-T_{[n]} x_{n}\right\| \leq(1+L)\left\|x_{n}-t_{n}\right\|+\left\|t_{n}-T_{[n]} t_{n}\right\|,
\end{gather*}
$$

where $L=\max _{0 \leq j \leq N-1}\left\{\frac{1-\varepsilon_{j}}{1+\varepsilon_{j}}\right\}$. And

$$
\begin{equation*}
\left\|x_{n}-T_{[n+j]} x_{n}\right\| \leq(1+L)\left\|x_{n}-x_{n+j}\right\|+\left\|x_{n+j}-T_{[n+j]} x_{n+j}\right\| . \tag{4.10}
\end{equation*}
$$

It follows from (4.1), (4.2) and (4.8), $x_{n+1}=\alpha_{n} t_{n}+\left(1-\alpha_{n}\right) T_{[n]} t_{n}$ and $u=T_{[n]} u$ that

$$
\begin{align*}
& \left\|x_{n+1}-u\right\|^{2} \\
= & \alpha_{n}\left\|t_{n}-u\right\|^{2}+\left(1-\alpha_{n}\right)\left\|T_{[n]} t_{n}-u\right\|^{2}-\alpha_{n}\left(1-\alpha_{n}\right)\left\|t_{n}-T_{[n]} t_{n}\right\|^{2} \\
\leq & \alpha_{n}\left\|t_{n}-u\right\|^{2}+\left(1-\alpha_{n}\right)\left[\left\|t_{n}-u\right\|^{2}\right. \\
& \left.+\varepsilon\left\|t_{n}-T_{[n]} t_{n}\right\|^{2}\right]-\alpha_{n}\left(1-\alpha_{n}\right)\left\|t_{n}-T_{[n]} t_{n}\right\|^{2} \\
= & \left\|t_{n}-u\right\|^{2}+\left(1-\alpha_{n}\right)\left(\varepsilon-\alpha_{n}\right)\left\|t_{n}-T_{[n]} t_{n}\right\|^{2} \tag{4.11}\\
\leq & \left\|u_{n}-u\right\|^{2}+\left(\lambda_{n}{ }^{2} k^{2}-1\right)\left\|u_{n}-y_{n}\right\|^{2} \\
& +\left(1-\alpha_{n}\right)\left(\varepsilon-\alpha_{n}\right)\left\|t_{n}-T_{[n]} t_{n}\right\|^{2} \\
\leq & \left\|x_{n}-u\right\|^{2}+\left(\lambda_{n}{ }^{2} k^{2}-1\right)\left\|u_{n}-y_{n}\right\|^{2} \\
\leq & \left\|x_{n}-u\right\|^{2},
\end{align*}
$$

for every $n=0,1,2, \ldots$. Therefore, there exists $\theta=\lim _{n \rightarrow \infty}\left\|x_{n}-u\right\|$ and $\left\{x_{n}\right\}$ is bounded. From (4.1) and (4.2), we also obtain that $\left\{t_{n}\right\}$ and $\left\{u_{n}\right\}$ are bounded.

It follows from (4.11) that

$$
\left\|u_{n}-y_{n}\right\|^{2} \leq \frac{1}{\left(1-\alpha_{n}\right)\left(1-\lambda_{n}^{2} k^{2}\right)}\left(\left\|x_{n}-u\right\|^{2}-\left\|x_{n+1}-u\right\|^{2}\right) .
$$

Hence, $\left\|u_{n}-y_{n}\right\| \rightarrow 0$. It follows from (4.4) that $\lim _{n \rightarrow \infty}\left\|t_{n}-y_{n}\right\|=0$. From $\left\|u_{n}-t_{n}\right\| \leq\left\|u_{n}-y_{n}\right\|+\left\|y_{n}-t_{n}\right\|$ we also have $\left\|u_{n}-t_{n}\right\| \rightarrow 0$. As A is k-Lipschitz continuous, we have $\left\|A y_{n}-A t_{n}\right\| \rightarrow 0$.

From (4.10) and (4.1), we also obtain

$$
\begin{equation*}
\left\|x_{n+1}-u\right\|^{2} \leq\left\|x_{n}-u\right\|^{2}+\left(1-\alpha_{n}\right)\left(\varepsilon-\alpha_{n}\right)\left\|t_{n}-T_{[n]} t_{n}\right\|^{2} \tag{4.12}
\end{equation*}
$$

for every $n=0,1,2, \ldots$.
From $\varepsilon<c \leq \alpha_{n} \leq d<1$ and (4.12), we have
$(1-d)(c-\varepsilon)\left\|t_{n}-T_{[n]} t_{n}\right\|^{2} \leq\left(1-\alpha_{n}\right)\left(\alpha_{n}-\varepsilon\right)\left\|t_{n}-T_{[n]} t_{n}\right\|^{2} \leq\left\|x_{n}-u\right\|^{2}-\left\|x_{n+1}-u\right\|^{2}$.
This implies that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|t_{n}-T_{[n]} t_{n}\right\|=0 \tag{4.13}
\end{equation*}
$$

By (4.11) and (4.1), we have

$$
\left\|x_{n+1}-u\right\|^{2} \leq\left\|u_{n}-u\right\|^{2} \leq\left\|x_{n}-u\right\|^{2}+r_{n}\left(r_{n}-2 \beta\right)\left\|B x_{n}-B u\right\|^{2}
$$

Thus, we have

$$
\gamma(2 \beta-\tau)\left\|B x_{n}-B u\right\|^{2} \leq r_{n}\left(2 \beta-r_{n}\right)\left\|B x_{n}-B u\right\|^{2} \leq\left\|x_{n}-u\right\|^{2}-\left\|x_{n+1}-u\right\|^{2}
$$

Thus, we have $\left\|B x_{n}-B u\right\| \rightarrow 0$.
It follows from (4.11) and (4.3) that

$$
\left\|x_{n+1}-u\right\|^{2} \leq\left\|u_{n}-u\right\|^{2} \leq\left\|x_{n}-u\right\|^{2}-\left\|x_{n}-u_{n}\right\|^{2}+2 r_{n}\left\langle B x_{n}-B u, x_{n}-u_{n}\right\rangle
$$

Hence,

$$
\left\|x_{n}-u_{n}\right\|^{2} \leq\left\|x_{n}-u\right\|^{2}-\left\|x_{n+1}-u\right\|^{2}+2 r_{n}\left\|B x_{n}-B u\right\|\left\|x_{n}-u_{n}\right\|
$$

Since $\left\|B x_{n}-B u\right\| \rightarrow 0,\left\{x_{n}\right\}$ and $\left\{u_{n}\right\}$ are bounded, we obtain $\left\|x_{n}-u_{n}\right\| \rightarrow 0$. From $\left\|t_{n}-x_{n}\right\| \leq\left\|t_{n}-u_{n}\right\|+\left\|x_{n}-u_{n}\right\|$ we also have $\left\|t_{n}-x_{n}\right\| \rightarrow 0$. It follows from (4.9) and (4.13) that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-T_{[n]} x_{n}\right\|=0 \tag{4.14}
\end{equation*}
$$

Since $\left\|T_{[n]} t_{n}-x_{n}\right\| \leq\left\|T_{[n]} t_{n}-t_{n}\right\|+\left\|t_{n}-x_{n}\right\|$, it follows from (4.13) that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|T_{[n]} t_{n}-x_{n}\right\|=0 \tag{4.15}
\end{equation*}
$$

We observe that

$$
\left\|x_{n+1}-x_{n}\right\|^{2} \leq \alpha_{n}\left\|t_{n}-x_{n}\right\|^{2}+\left(1-\alpha_{n}\right)\left\|T_{[n]} t_{n}-x_{n}\right\|^{2}
$$

It follows from (4.15) that $\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0$. It is easy to see that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n+j}-x_{n}\right\|=0, \forall j=0,1, \ldots, N-1 \tag{4.16}
\end{equation*}
$$

By (4.10), (4.14) and (4.16), we get

$$
\lim _{n \rightarrow \infty}\left\|x_{n}-T_{[n+j]} x_{n}\right\|=0
$$

As $\left\{x_{n}\right\}$ is bounded, there exists a subsequence $\left\{x_{n_{i}}\right\}$ of $\left\{x_{n}\right\}$ such that $x_{n i} \rightharpoonup w$. From $\left\|x_{n}-u_{n}\right\| \rightarrow 0$ and $\left\|t_{n}-x_{n}\right\| \rightarrow 0$, we obtain that $u_{n i} \rightharpoonup w$ and $t_{n i} \rightharpoonup w$. Since $\left\{u_{n i}\right\} \subset C$ and C is closed and convex, we obtain $w \in C$. By similar argument with that in the proof of Theorem 3.2, we know that $w \in \cap_{j=0}^{N-1} \operatorname{Fix}\left(T_{j}\right)$. The rest of the proof is similar with that in the proof of Theorem 4.1. The proof is now complete.
we now derive a weak convergence theorem of the cyclic algorithm based on nonextragradient method which solves the problem of finding a common element of the set of solutions of a generalized mixed equilibrium problem, the set of fixed points of a finite family of strict pseudo-contractions and the set of the variational inequality for an inverse strongly monotone mapping in a Hilbert space.

Theorem 4.3. Let C be a nonempty closed convex subset of a real Hilbert space H. Let F be a bifunction from $C \times C$ to R satisfying (A1)-(A5) and φ : $C \rightarrow R \cup\{+\infty\}$ be a proper lower semicontinuous and convex function. Let $A: C \rightarrow H$ and $B: C \rightarrow H$ be α-inverse strongly monotone and β-inverse strongly monotone, respectively. Let $N \geq 1$ be an integer. For each $0 \leq j \leq N-1$, let $T_{j}: C \rightarrow C$ be an ε_{j}-strict pseudo-contraction for some $0 \leq \varepsilon_{j}<1$ such that $\Gamma_{2}=\cap_{j=0}^{N-1} F i x\left(T_{j}\right) \cap V I(C, A) \cap \operatorname{GMEP}(F, \varphi, B) \neq \emptyset$. Let $\varepsilon=\max \left\{\varepsilon_{j}: 0 \leq\right.$ $j \leq N-1\}$. Assume also that either (B1) or (B2) holds. Let $\left\{x_{n}\right\},\left\{u_{n}\right\}$ and $\left\{y_{n}\right\}$ be sequences generated by

$$
\left\{\begin{aligned}
x_{0}= & x \in C, \\
& F\left(u_{n}, y\right)+\varphi(y)-\varphi\left(u_{n}\right)+\left\langle B x_{n}, y-u_{n}\right\rangle \\
& +\frac{1}{r_{n}}\left\langle y-u_{n}, u_{n}-x_{n}\right\rangle \geq 0, \quad \forall y \in C, \\
y_{n}= & P_{C}\left(u_{n}-\lambda_{n} A u_{n}\right), \\
x_{n+1}= & \alpha_{n} y_{n}+\left(1-\alpha_{n}\right) T_{[n]} y_{n},
\end{aligned}\right.
$$

for every $n=0,1,2, \ldots$ If $\left\{\lambda_{n}\right\} \subset[a, b]$ for some $a, b \in(0,2 \alpha),\left\{\alpha_{n}\right\} \subset$ $[c, d]$ for some $c, d \in(\varepsilon, 1)$ and $\left\{r_{n}\right\} \subset[\gamma, \tau]$ for some $\gamma, \tau \in(0,2 \beta)$. Then, $\left\{x_{n}\right\},\left\{u_{n}\right\}$ and $\left\{y_{n}\right\}$ converge weakly to $w \in \Gamma_{2}$, where $w=P_{\Gamma_{2}}\left(x_{n}\right)$.

Proof. Let $u \in \Gamma_{2}$ and let $\left\{T_{r_{n}}\right\}$ be a sequence of mappings defined as in Lemma 2.1 in [31]. Then $u=P_{C}\left(u-\lambda_{n} A u\right)=T_{r_{n}}\left(u-r_{n} B u\right)$. From the proof of Theorem 3.3, we have:

$$
\begin{gather*}
\left\|u_{n}-u\right\|^{2} \leq\left\|x_{n}-u\right\|^{2}+r_{n}\left(r_{n}-2 \beta\right)\left\|B x_{n}-B u\right\|^{2} \leq\left\|x_{n}-u\right\|^{2} \tag{4.1}\\
\left\|T_{[n]} x-T_{[n]} y\right\|^{2} \leq\|x-y\|^{2}+\varepsilon\left\|x-T_{[n]} x-\left(y-T_{[n]} y\right)\right\|^{2}, \forall x, y \in C . \\
\left\|x_{n}-T_{[n+j]} x_{n}\right\| \leq(1+L)\left\|x_{n}-x_{n+j}\right\|+\left\|x_{n+j}-T_{[n+j]} x_{n+j}\right\|
\end{gather*}
$$

where $L=\max _{0 \leq j \leq N-1}\left\{\frac{1-\varepsilon_{j}}{1+\varepsilon_{j}}\right\}$.

$$
\begin{equation*}
\left\|x_{n}-T_{[n]} x_{n}\right\| \leq(1+L)\left\|x_{n}-y_{n}\right\|+\left\|y_{n}-T_{[n]} y_{n}\right\| \tag{4.17}
\end{equation*}
$$

$$
\begin{equation*}
\left\|y_{n}-u\right\|^{2} \leq\left\|u_{n}-u\right\|^{2}+\lambda_{n}\left(\lambda_{n}-2 \alpha\right)\left\|A u_{n}-A u\right\|^{2} \leq\left\|u_{n}-u\right\| \tag{4.18}
\end{equation*}
$$

$$
\begin{equation*}
\left\|u_{n}-u\right\|^{2} \leq\left\|x_{n}-u\right\|^{2}-\left\|x_{n}-u_{n}\right\|^{2}+2 r_{n}\left\langle B x_{n}-B u, x_{n}-u_{n}\right\rangle \tag{4.19}
\end{equation*}
$$

And

$$
\begin{align*}
\left\|y_{n}-u\right\|^{2} \leq & \left\|u_{n}-u\right\|^{2}-\left\|u_{n}-y_{n}\right\|^{2} \\
& +2 \lambda_{n}\left\langle u_{n}-y_{n}, A u_{n}-A u\right\rangle-\lambda_{n}^{2}\left\|A u_{n}-A u\right\|^{2} \tag{4.20}
\end{align*}
$$

It follows from (4.1), (4.8), (4.18), $x_{n+1}=\alpha_{n} y_{n}+\left(1-\alpha_{n}\right) T_{[n]} y_{n}$ and $u=T_{[n]} u$ that

$$
\begin{aligned}
& \left\|x_{n+1}-u\right\|^{2} \\
= & \alpha_{n}\left\|y_{n}-u\right\|^{2}+\left(1-\alpha_{n}\right)\left\|T_{[n]} y_{n}-u\right\|^{2}-\alpha_{n}\left(1-\alpha_{n}\right)\left\|y_{n}-T_{[n]} y_{n}\right\|^{2} \\
\leq & \alpha_{n}\left\|y_{n}-u\right\|^{2}+\left(1-\alpha_{n}\right)\left[\left\|y_{n}-u\right\|^{2}\right. \\
& \left.+\varepsilon\left\|y_{n}-T_{[n]} y_{n}\right\|^{2}\right]-\alpha_{n}\left(1-\alpha_{n}\right)\left\|y_{n}-T_{[n]} y_{n}\right\|^{2} \\
= & \left\|y_{n}-u\right\|^{2}+\left(1-\alpha_{n}\right)\left(\varepsilon-\alpha_{n}\right)\left\|y_{n}-T_{[n]} y_{n}\right\|^{2} \\
\leq & \left\|u_{n}-u\right\|^{2}+\lambda_{n}\left(\lambda_{n}-2 \alpha\right)\left\|A u_{n}-A u\right\|^{2} \\
& +\left(1-\alpha_{n}\right)\left(\varepsilon-\alpha_{n}\right)\left\|y_{n}-T_{[n]} y_{n}\right\|^{2} \\
\leq & \left\|x_{n}-u\right\|^{2}+\lambda_{n}\left(\lambda_{n}-2 \alpha\right)\left\|A u_{n}-A u\right\|^{2} \\
\leq & \left\|x_{n}-u\right\|^{2}
\end{aligned}
$$

for every $n=0,1,2, \ldots$. Therefore, there exists $\theta=\lim _{n \rightarrow \infty}\left\|x_{n}-u\right\|$ and $\left\{x_{n}\right\}$ is bounded. From (4.1) and (4.18), we also obtain that $\left\{y_{n}\right\}$ and $\left\{u_{n}\right\}$ are bounded.

It follows from (4.21) that

$$
\begin{aligned}
& \left\|A u_{n}-A u\right\|^{2} \leq \frac{1}{\lambda_{n}\left(2 \alpha-\lambda_{n}\right)}\left(\left\|x_{n}-u\right\|^{2}-\left\|x_{n+1}-u\right\|^{2}\right) \\
\leq & \frac{1}{a(2 \alpha-b)}\left(\left\|x_{n}-u\right\|^{2}-\left\|x_{n+1}-u\right\|^{2}\right) .
\end{aligned}
$$

Hence, $\left\|A u_{n}-A u\right\| \rightarrow 0$.
From (4.21) and (4.1), we also have

$$
\begin{equation*}
\left\|x_{n+1}-u\right\|^{2} \leq\left\|x_{n}-u\right\|^{2}+\left(1-\alpha_{n}\right)\left(\varepsilon-\alpha_{n}\right)\left\|y_{n}-T_{[n]} y_{n}\right\|^{2} \tag{4.22}
\end{equation*}
$$

for every $n=0,1,2, \ldots$. From $\varepsilon<c \leq \alpha_{n} \leq d<1$ and (4.22), we have $(1-d)(c-\varepsilon)\left\|y_{n}-T_{[n]} y_{n}\right\|^{2} \leq\left(1-\alpha_{n}\right)\left(\alpha_{n}-\varepsilon\right)\left\|y_{n}-T_{[n]} y_{n}\right\|^{2} \leq\left\|x_{n}-u\right\|^{2}-\left\|x_{n+1}-u\right\|^{2}$.

This implies that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|y_{n}-T_{[n]} y_{n}\right\|=0 \tag{4.23}
\end{equation*}
$$

Also by (4.21) and (4.1), we have

$$
\left\|x_{n+1}-u\right\|^{2} \leq\left\|u_{n}-u\right\|^{2} \leq\left\|x_{n}-u\right\|^{2}+r_{n}\left(r_{n}-2 \beta\right)\left\|B x_{n}-B u\right\|^{2} .
$$

Thus, we have
$\gamma(2 \beta-\tau)\left\|B x_{n}-B u\right\|^{2} \leq r_{n}\left(2 \beta-r_{n}\right)\left\|B x_{n}-B u\right\|^{2} \leq\left\|x_{n}-u\right\|^{2}-\left\|x_{n+1}-u\right\|^{2}$.
It follows that $\left\|B x_{n}-B u\right\| \rightarrow 0$.
By (4.21) and (4.19), we have

$$
\left\|x_{n+1}-u\right\|^{2} \leq\left\|u_{n}-u\right\|^{2} \leq\left\|x_{n}-u\right\|^{2}-\left\|x_{n}-u_{n}\right\|^{2}+2 r_{n}\left\langle B x_{n}-B u, x_{n}-u_{n}\right\rangle .
$$

Hence,

$$
\left\|x_{n}-u_{n}\right\|^{2} \leq\left\|x_{n}-u\right\|^{2}-\left\|x_{n+1}-u\right\|^{2}+2 r_{n}\left\|B x_{n}-B u\right\|\left\|x_{n}-u_{n}\right\| .
$$

Since $\left\|B x_{n}-B u\right\| \rightarrow 0,\left\{x_{n}\right\}$ and $\left\{u_{n}\right\}$ are bounded, we obtain $\left\|x_{n}-u_{n}\right\| \rightarrow 0$.
From (4.21), (4.1) and (4.20), we have

$$
\left\|x_{n+1}-u\right\|^{2} \leq\left\|y_{n}-u\right\|^{2} \leq\left\|x_{n}-u\right\|^{2}-\left\|u_{n}-y_{n}\right\|^{2}+2 \lambda_{n}\left\|u_{n}-y_{n}\right\|\left\|A u_{n}-A u\right\| .
$$

Thus, we have

$$
\left\|u_{n}-y_{n}\right\|^{2} \leq\left\|x_{n}-u\right\|^{2}-\left\|x_{n+1}-u\right\|^{2}+2 \lambda_{n}\left\|u_{n}-y_{n}\right\|\left\|A u_{n}-A u\right\| .
$$

It follows from $\left\|A u_{n}-A u\right\| \rightarrow 0$ that $\left\|u_{n}-y_{n}\right\| \rightarrow 0$. From $\left\|y_{n}-x_{n}\right\| \leq$ $\left\|y_{n}-u_{n}\right\|+\left\|x_{n}-u_{n}\right\|$ we also have $\left\|y_{n}-x_{n}\right\| \rightarrow 0$. It follows from (4.17) and (4.23) that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-T_{[n]} x_{n}\right\|=0 . \tag{4.24}
\end{equation*}
$$

Since $\left\|T_{[n]} y_{n}-x_{n}\right\| \leq\left\|T_{[n]} y_{n}-y_{n}\right\|+\left\|y_{n}-x_{n}\right\|$, it follows from (4.23) that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|T_{[n]} y_{n}-x_{n}\right\|=0 . \tag{4.25}
\end{equation*}
$$

We observe that

$$
\left\|x_{n+1}-x_{n}\right\|^{2} \leq \alpha_{n}\left\|y_{n}-x_{n}\right\|^{2}+\left(1-\alpha_{n}\right)\left\|T_{[n]} y_{n}-x_{n}\right\|^{2} .
$$

It follows from (4.25) that $\lim _{n \rightarrow \infty}\left\|x_{n+1}-x_{n}\right\|=0$. It is easy to see that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n+j}-x_{n}\right\|=0, \forall j=0,1, \ldots, N-1 \tag{4.26}
\end{equation*}
$$

It follows from (4.10) and (4.26) that for each $j=0,1, \ldots, N-1$

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|x_{n}-T_{[n+j]} x_{n}\right\|=0 \tag{4.27}
\end{equation*}
$$

As $\left\{x_{n}\right\}$ is bounded, there exists a subsequence $\left\{x_{n_{i}}\right\}$ of $\left\{x_{n}\right\}$ such that $x_{n i} \rightarrow$ w. From $\left\|x_{n}-u_{n}\right\| \rightarrow 0$ and $\left\|y_{n}-x_{n}\right\| \rightarrow 0$, we obtain that $u_{n i} \rightharpoonup w$ and $y_{n i} \rightharpoonup w$. Since $\left\{u_{n i}\right\} \subset C$ and C is closed and convex, we obtain $w \in C$. The rest of the proof is similar with that in the proof of Theorem 4.2. The proof is now complete.

Let $A=0$, by Theorem 4.1 and 4.2 , respectively, we obtain the following results:
Theorem 4.4. Let C be a nonempty closed convex subset of a real Hilbert space H. Let F be a bifunction from $C \times C$ to R satisfying (A1)-(A5) and φ : $C \rightarrow R \cup\{+\infty\}$ be a proper lower semicontinuous and convex function. Let B be a β-inverse strongly monotone mapping of C into H. Let $N \geq 1$ be an integer. For each $1 \leq j \leq N$, let $T_{j}: C \rightarrow C$ be an ε_{j}-strict pseudo-contraction for some $0 \leq \varepsilon_{j}<1$ such that $\Delta_{1}=\cap_{j=1}^{N} \operatorname{Fix}\left(T_{j}\right) \cap \operatorname{GMEP}(F, \varphi, B) \neq \emptyset$. Assume for each $n,\left\{\zeta_{j}^{(n)}\right\}_{j=1}^{N}$ is a finite sequence of positive numbers such that $\sum_{j=1}^{N} \zeta_{j}^{(n)}=1$ for all n and $\inf _{n \geq 1} \zeta_{j}^{(n)}>0$ for all $0 \leq j \leq N$. Let $\varepsilon=\max \left\{\varepsilon_{j}: 1 \leq j \leq N\right\}$. Assume also that either (B1) or (B2) holds. Let $\left\{x_{n}\right\}$ and $\left\{u_{n}\right\}$ be sequences generated by

$$
\left\{\begin{aligned}
x_{1}= & x \in C, \\
& F\left(u_{n}, y\right)+\varphi(y)-\varphi\left(u_{n}\right)+\left\langle B x_{n}, y-u_{n}\right\rangle \\
+ & \frac{1}{r_{n}}\left\langle y-u_{n}, u_{n}-x_{n}\right\rangle \geq 0, \quad \forall y \in C, \\
x_{n+1}= & \alpha_{n} u_{n}+\left(1-\alpha_{n}\right) \sum_{j=1}^{N} \zeta_{j}^{(n)} T_{j} u_{n},
\end{aligned}\right.
$$

for every $n=1,2, \ldots$. If $\left\{\alpha_{n}\right\} \subset[c, d]$ for some $c, d \in(\varepsilon, 1)$ and $\left\{r_{n}\right\} \subset[\gamma, \tau]$ for some $\gamma, \tau \in(0,2 \beta)$. Then, $\left\{x_{n}\right\}$ and $\left\{u_{n}\right\}$ converge weakly to $w \in \Delta_{1}$, where $w=\lim _{n \rightarrow \infty} P_{\Delta_{1}} x_{n}$.

Theorem 4.5. Let C be a nonempty closed convex subset of a real Hilbert space H. Let F be a bifunction from $C \times C$ to R satisfying (A1)-(A5) and φ : $C \rightarrow R \cup\{+\infty\}$ be a proper lower semicontinuous and convex function. Let B be a β-inverse strongly monotone mapping of C into H. Let $N \geq 1$ be an integer. For each $0 \leq j \leq N-1$, let $T_{j}: C \rightarrow C$ be an ε_{j}-strict pseudo-contraction for some $0 \leq \varepsilon_{j}<1$ such that $\Delta_{2}=\cap_{j=0}^{N-1} \operatorname{Fix}\left(T_{j}\right) \cap \operatorname{GMEP}(F, \varphi, B) \neq \emptyset$. Let $\varepsilon=\max \left\{\varepsilon_{j}: 0 \leq j \leq N-1\right\}$. Assume that either (B1) or (B2) holds. Let $\left\{x_{n}\right\}$ and $\left\{u_{n}\right\}$ be sequences generated by

$$
\left\{\begin{aligned}
x_{0} & =x \in C, \\
& F\left(u_{n}, y\right)+\varphi(y)-\varphi\left(u_{n}\right)+\left\langle B x_{n}, y-u_{n}\right\rangle+\frac{1}{r_{n}}\left\langle y-u_{n}, u_{n}-x_{n}\right\rangle \geq 0, \forall y \in C, \\
x_{n+1} & =\alpha_{n} u_{n}+\left(1-\alpha_{n}\right) T_{[n]} u_{n},
\end{aligned}\right.
$$

for every $n=0,1,2, \ldots$. If $\left\{\alpha_{n}\right\} \subset[c, d]$ for some $c, d \in(\varepsilon, 1)$ and $\left\{r_{n}\right\} \subset[\gamma, \tau]$ for some $\gamma, \tau \in(0,2 \beta)$. Then, $\left\{x_{n}\right\},\left\{u_{n}\right\},\left\{t_{n}\right\}$ and $\left\{y_{n}\right\}$ converge weakly to $w \in \Delta_{2}$, where $w=\lim _{n \rightarrow \infty} P_{\Delta_{2}}\left(x_{n}\right)$.

Theorem 4.6. Let C be a nonempty closed convex subset of a real Hilbert space H. Let F be a bifunction from $C \times C$ to R satisfying (A1)-(A5) and φ : $C \rightarrow R \cup\{+\infty\}$ be a proper lower semicontinuous and convex function. Let S be a pseudo-contraction and m-Lipschitz-continuous mapping of C into itself and B be a β-inverse strongly monotone mapping of C into H. Let $N \geq 1$ be an integer. For each $1 \leq j \leq N$, let $T_{j}: C \rightarrow C$ be an ε_{j}-strict pseudo-contraction for some $0 \leq \varepsilon_{j}<1$ such that $\Omega_{1}=\cap_{j=1}^{N} \operatorname{Fix}\left(T_{j}\right) \cap \operatorname{Fix}(S) \cap \operatorname{GMEP}(F, \varphi, B) \neq \emptyset$. Assume for each $n,\left\{\zeta_{j}^{(n)}\right\}_{j=1}^{N}$ is a finite sequence of positive numbers such that $\sum_{j=1}^{N} \zeta_{j}^{(n)}=1$ for all n and $\inf _{n \geq 1} \zeta_{j}^{(n)}>0$ for all $0 \leq j \leq N$. Let $\varepsilon=\max \left\{\varepsilon_{j}\right.$: $1 \leq j \leq N\}$. Assume also that either (B1) or (B2) holds. Let $\left\{x_{n}\right\}$, $\left\{u_{n}\right\},\left\{t_{n}\right\}$ and $\left\{y_{n}\right\}$ be sequences generated by

$$
\left\{\begin{aligned}
x_{1} & =x \in C, \\
& F\left(u_{n}, y\right)+\varphi(y)-\varphi\left(u_{n}\right)+\left\langle B x_{n}, y-u_{n}\right\rangle+\frac{1}{r_{n}}\left\langle y-u_{n}, u_{n}-x_{n}\right\rangle \geq 0, \forall y \in C, \\
y_{n} & =u_{n}-\lambda_{n}\left(u_{n}-S u_{n}\right), \\
t_{n} & =P_{C}\left(u_{n}-\lambda_{n}\left(y_{n}-S y_{n}\right)\right), \\
x_{n+1} & =\alpha_{n} t_{n}+\left(1-\alpha_{n}\right) \sum_{j=1}^{N} \zeta_{j}^{(n)} T_{j} t_{n},
\end{aligned}\right.
$$

for every $n=1,2, \ldots$. If $\left\{\lambda_{n}\right\} \subset[a, b]$ for some $a, b \in\left(0, \frac{1}{m+1}\right),\left\{\alpha_{n}\right\} \subset[c, d]$ for some $c, d \in(\varepsilon, 1)$ and $\left\{r_{n}\right\} \subset[\gamma, \tau]$ for some $\gamma, \tau \in(0,2 \beta)$. Then, $\left\{x_{n}\right\},\left\{u_{n}\right\}$, $\left\{t_{n}\right\}$ and $\left\{y_{n}\right\}$ converge weakly to $w \in \Omega_{1}$, where $w=\lim _{n \rightarrow \infty} P_{\Omega_{1}} x_{n}$.

Proof. By Theorem 4.1 and the proof of Theorem 3.6, we know the conclusion holds.

Theorem 4.7. Let C be a nonempty closed convex subset of a real Hilbert space H. Let F be a bifunction from $C \times C$ to R satisfying (Al)-(A5) and $\varphi: C \rightarrow$ $R \cup\{+\infty\}$ be a proper lower semicontinuous and convex function. Let Let S be a pseudo-contraction and m-Lipschitz-continuous mapping of C into itself and B be a β-inverse strongly monotone mapping of C into H. Let $N \geq 1$ be an integer. For each $0 \leq j \leq N-1$, let $T_{j}: C \rightarrow C$ be an ε_{j}-strict pseudo-contraction for some $0 \leq \varepsilon_{j}<1$ such that $\Omega_{2}=\cap_{j=0}^{N-1} \operatorname{Fix}\left(T_{j}\right) \cap \operatorname{Fix}(S) \cap \operatorname{GMEP}(F, \varphi, B) \neq \emptyset$. Let $\varepsilon=\max \left\{\varepsilon_{j}: 0 \leq j \leq N-1\right\}$. Assume that either (B1) or (B2) holds. Let $\left\{x_{n}\right\},\left\{u_{n}\right\},\left\{t_{n}\right\}$ and $\left\{y_{n}\right\}$ be sequences generated by

$$
\left\{\begin{aligned}
x_{0}= & x \in C, \\
& F\left(u_{n}, y\right)+\varphi(y)-\varphi\left(u_{n}\right)+\left\langle B x_{n}, y-u_{n}\right\rangle \\
& +\frac{1}{r_{n}}\left\langle y-u_{n}, u_{n}-x_{n}\right\rangle \geq 0, \quad \forall y \in C, \\
y_{n}= & u_{n}-\lambda_{n}\left(u_{n}-S u_{n}\right), \\
t_{n}= & P_{C}\left(u_{n}-\lambda_{n}\left(y_{n}-S y_{n}\right)\right), \\
x_{n+1}= & \alpha_{n} t_{n}+\left(1-\alpha_{n}\right) T_{[n]} t_{n},
\end{aligned}\right.
$$

for every $n=0,1,2, \ldots$. If $\left\{\lambda_{n}\right\} \subset[a, b]$ for some $a, b \in\left(0, \frac{1}{m+1}\right),\left\{\alpha_{n}\right\} \subset$ $[c, d]$ for some $c, d \in(\varepsilon, 1)$ and $\left\{r_{n}\right\} \subset[\gamma, \tau]$ for some $\gamma, \tau \in(0,2 \beta)$. Then, $\left\{x_{n}\right\},\left\{u_{n}\right\},\left\{t_{n}\right\}$ and $\left\{y_{n}\right\}$ converge weakly to $w \in \Omega_{2}$, where $w=\lim _{n \rightarrow \infty}$ $P_{\Omega_{2}}\left(x_{n}\right)$.

Proof. From Theorem 4.2 and the proof of Theorem 4.6, we know that the conclusion holds.

Remark 4.1. In Theorems 4.1-4.7, if we assume some of the mappings F, B, φ equal to zero mappings, we can obtain many new and interesting weak convergence theorems for some algorithms for the special case of problem (1.1) (i.e., Problems (1.2)-(1.7)). Now we only give five examples as follows:

Corollary 4.1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let F be a bifunction from $C \times C$ to R satisfying (A1)-(A5) and φ :
$C \rightarrow R \cup\{+\infty\}$ be a proper lower semicontinuous and convex function. Let A be a monotone and k-Lipschitz continuous mapping of C into H. Let $N \geq 1$ be an integer. For each $1 \leq j \leq N$, let $T_{j}: C \rightarrow C$ be an ε_{j}-strict pseudo-contraction for some $0 \leq \varepsilon_{j}<1$ such that $\Lambda=\cap_{j=1}^{N} \operatorname{Fix}\left(T_{j}\right) \cap V I(C, A) \cap M E P(F, \varphi) \neq \emptyset$. Assume for each $n,\left\{\zeta_{j}^{(n)}\right\}_{j=1}^{N}$ is a finite sequence of positive numbers such that $\sum_{j=1}^{N} \zeta_{j}^{(n)}=1$ for all n and $\inf _{n \geq 1} \zeta_{j}^{(n)}>0$ for all $0 \leq j \leq N$. Let $\varepsilon=\max \left\{\varepsilon_{j}\right.$: $1 \leq j \leq N\}$. Assume also that either (B1) or (B2) holds. Let $\left\{x_{n}\right\}$, $\left\{u_{n}\right\},\left\{t_{n}\right\}$ and $\left\{y_{n}\right\}$ be sequences generated by

$$
\left\{\begin{aligned}
x_{1}= & x \in C, \\
& F\left(u_{n}, y\right)+\varphi(y)-\varphi\left(u_{n}\right)+\frac{1}{r_{n}}\left\langle y-u_{n}, u_{n}-x_{n}\right\rangle \geq 0, \quad \forall y \in C, \\
y_{n}= & P_{C}\left(u_{n}-\lambda_{n} A u_{n}\right), \\
t_{n}= & P_{C}\left(u_{n}-\lambda_{n} A y_{n}\right), \\
x_{n+1}= & \alpha_{n} t_{n}+\left(1-\alpha_{n}\right) \sum_{j=1}^{N} \zeta_{j}^{(n)} T_{j} t_{n},
\end{aligned}\right.
$$

for every $n=1,2, \ldots$. If $\left\{\lambda_{n}\right\} \subset[a, b]$ for some $a, b \in\left(0, \frac{1}{k}\right),\left\{\alpha_{n}\right\} \subset[c, d]$ for somec, $d \in(\varepsilon, 1)$ and $\left\{r_{n}\right\} \subset[\gamma,+\infty)$ for some $\gamma>0$. Then, $\left\{x_{n}\right\},\left\{u_{n}\right\},\left\{t_{n}\right\}$ and $\left\{y_{n}\right\}$ converge weakly to $w \in \Lambda$, where $w=\lim _{n \rightarrow \infty} P_{\Lambda} x_{n}$.

Proof. Putting $B=0$, by Theorem 4.1 we obtain the desired result.
Corollary 4.2. Let C be a nonempty closed convex subset of a real Hilbert space H. Let F be a bifunction from $C \times C$ to R satisfying (A1)-(A5). Let A be a monotone and k-Lipschitz continuous mapping of C into H. Let $N \geq 1$ be an integer. For each $0 \leq j \leq N-1$, let $T_{j}: C \rightarrow C$ be an ε_{j}-strict pseudo-contraction for some $0 \leq \varepsilon_{j}<1$ such that $\Sigma=\cap_{j=0}^{N-1} F i x\left(T_{j}\right) \cap V I(C, A) \cap E P(F) \neq \emptyset$. Let $\varepsilon=\max \left\{\varepsilon_{j}: 0 \leq j \leq N-1\right\}$. Assume that either (B3) or (B2) holds. Let $\left\{x_{n}\right\}$, $\left\{u_{n}\right\},\left\{t_{n}\right\}$ and $\left\{y_{n}\right\}$ be sequences generated by

$$
\left\{\begin{aligned}
x_{0}= & x \in C, \\
& F\left(u_{n}, y\right)+\frac{1}{r_{n}}\left\langle y-u_{n}, u_{n}-x_{n}\right\rangle \geq 0, \quad \forall y \in C, \\
y_{n}= & P_{C}\left(u_{n}-\lambda_{n} A u_{n}\right), \\
t_{n}= & P_{C}\left(u_{n}-\lambda_{n} A y_{n}\right), \\
x_{n+1}= & \alpha_{n} t_{n}+\left(1-\alpha_{n}\right) T_{[n]} t_{n},
\end{aligned}\right.
$$

for every $n=0,1,2, \ldots$. If $\left\{\lambda_{n}\right\} \subset[a, b]$ for some $a, b \in\left(0, \frac{1}{k}\right),\left\{\alpha_{n}\right\} \subset[c, d]$ for some $c, d \in(\varepsilon, 1)$ and $\left\{r_{n}\right\} \subset[\gamma,+\infty)$ for some $\gamma>0$. Then, $\left\{x_{n}\right\},\left\{u_{n}\right\},\left\{t_{n}\right\}$ and $\left\{y_{n}\right\}$ converge weakly to $w \in \Sigma$, where $w=\lim _{n \rightarrow \infty} P_{\Sigma}\left(x_{n}\right)$.

Proof. Putting $B=0$ and $\varphi=0$. By Theorem 4.2 we obtain the desired result.
Corollary 4.3. Let C be a nonempty closed convex subset of a real Hilbert space H. Let A be a monotone and k-Lipschitz continuous mapping of C into H and B be a β-inverse strongly monotone mapping of C into H. Let $N \geq 1$ be an integer. For each $1 \leq j \leq N$, let $T_{j}: C \rightarrow C$ be an ε_{j}-strict pseudo-contraction for some $0 \leq \varepsilon_{j}<1$ such that $\Theta_{1}=\cap_{j=1}^{N} \operatorname{Fix}\left(T_{j}\right) \cap V I(C, A) \cap V I(C, B) \neq \emptyset$. Assume for each $n,\left\{\zeta_{j}^{(n)}\right\}_{j=1}^{N}$ is a finite sequence of positive numbers such that $\sum_{j=1}^{N} \zeta_{j}^{(n)}=1$ for all n and $\inf _{n \geq 1} \zeta_{j}^{(n)}>0$ for all $0 \leq j \leq N$. Let $\varepsilon=\max \left\{\varepsilon_{j}\right.$: $1 \leq j \leq N\}$. Let $\left\{x_{n}\right\},\left\{u_{n}\right\},\left\{t_{n}\right\}$ and $\left\{y_{n}\right\}$ be sequences generated by

$$
\left\{\begin{aligned}
x_{1} & =x \in C, \\
u_{n} & =P_{C}\left(x_{n}-r_{n} B x_{n}\right), \\
y_{n} & =P_{C}\left(u_{n}-\lambda_{n} A u_{n}\right), \\
t_{n} & =P_{C}\left(u_{n}-\lambda_{n} A y_{n}\right) \\
x_{n+1} & =\alpha_{n} t_{n}+\left(1-\alpha_{n}\right) \sum_{j=1}^{N} \zeta_{j}^{(n)} T_{j} t_{n},
\end{aligned}\right.
$$

for every $n=1,2, \ldots$. If $\left\{\lambda_{n}\right\} \subset[a, b]$ for some $a, b \in\left(0, \frac{1}{k}\right),\left\{\alpha_{n}\right\} \subset[c, d]$ for some $c, d \in(\varepsilon, 1)$ and $\left\{r_{n}\right\} \subset[\gamma, \tau]$ for some $\gamma, \tau \in(0,2 \beta)$. Then, $\left\{x_{n}\right\},\left\{u_{n}\right\}$, $\left\{t_{n}\right\}$ and $\left\{y_{n}\right\}$ converge weakly to $w \in \Theta_{1}$, where $w=\lim _{n \rightarrow \infty} P_{\Theta_{1}} x_{n}$.

Proof. Putting $F=0$ and $\varphi=0$, by Theorem 4.1 and the proof of Corollary 3.3, we obtain the desired result.

Corollary 4.4. Let C be a nonempty closed convex subset of a real Hilbert space H. Let A be a monotone and k-Lipschitz continuous mapping of C into H and B be a β-inverse strongly monotone mapping of C into H. Let $N \geq 1$ be an integer. For each $0 \leq j \leq N-1$, let $T_{j}: C \rightarrow C$ be an ε_{j}-strict pseudo-contraction for some $0 \leq \varepsilon_{j}<1$ such that $\Theta_{2}=\cap_{j=0}^{N-1} \operatorname{Fix}\left(T_{j}\right) \cap V I(C, A) \cap V I(C, B) \neq \emptyset$. Let $\varepsilon=\max \left\{\varepsilon_{j}: 0 \leq j \leq N-1\right\}$. Let $\left\{x_{n}\right\},\left\{u_{n}\right\},\left\{t_{n}\right\}$ and $\left\{y_{n}\right\}$ be sequences generated by

$$
\left\{\begin{aligned}
x_{0} & =x \in C, \\
u_{n} & =P_{C}\left(x_{n}-r_{n} B x_{n}\right), \\
y_{n} & =P_{C}\left(u_{n}-\lambda_{n} A u_{n}\right), \\
t_{n} & =P_{C}\left(u_{n}-\lambda_{n} A y_{n}\right), \\
x_{n+1} & =\alpha_{n} t_{n}+\left(1-\alpha_{n}\right) T_{[n]} t_{n},
\end{aligned}\right.
$$

for every $n=0,1,2, \ldots$. If $\left\{\lambda_{n}\right\} \subset[a, b]$ for some $a, b \in\left(0, \frac{1}{k}\right),\left\{\alpha_{n}\right\} \subset[c, d]$ for some $c, d \in(\varepsilon, 1)$ and $\left\{r_{n}\right\} \subset[\gamma, \tau]$ for some $\gamma, \tau \in(0,2 \beta)$. Then, $\left\{x_{n}\right\},\left\{u_{n}\right\}$, $\left\{t_{n}\right\}$ and $\left\{y_{n}\right\}$ converge weakly to $w \in \Theta_{2}$, where $w=\lim _{n \rightarrow \infty} P_{\Theta_{2}}\left(x_{n}\right)$.

Proof. Putting $F=0$ and $\varphi=0$, by Theorem 4.2 and the proof of Corollary 3.3, we obtain the desired result.

Corollary 4.5. Let C be a nonempty closed convex subset of a real Hilbert space H. Let $\varphi: C \rightarrow R \cup\{+\infty\}$ be a proper lower semicontinuous and convex function. Let A be a monotone and k-Lipschitz continuous mapping of C into H. Let $N \geq 1$ be an integer. For each $1 \leq j \leq N$, let $T_{j}: C \rightarrow C$ be an ε_{j}-strict pseudo-contraction for some $0 \leq \varepsilon_{j}<1$ such that $\Xi=\cap_{j=1}^{N} \operatorname{Fix}\left(T_{j}\right) \cap V I(C, A) \cap$ $\operatorname{Argmin}(\varphi) \neq \emptyset$. Assume for each $n,\left\{\zeta_{j}^{(n)}\right\}_{j=1}^{N}$ is a finite sequence of positive numbers such that $\sum_{j=1}^{N} \zeta_{j}^{(n)}=1$ for all n and $\inf _{n \geq 1} \zeta_{j}^{(n)}>0$ for all $0 \leq j \leq N$. Let $\varepsilon=\max \left\{\varepsilon_{j}: 1 \leq j \leq N\right\}$. Assume also that either (B4) or (B2) holds. Let $\left\{x_{n}\right\},\left\{u_{n}\right\},\left\{t_{n}\right\}$ and $\left\{y_{n}\right\}$ be sequences generated by

$$
\left\{\begin{aligned}
x_{1}= & x \in C, \\
& \varphi(y)-\varphi\left(u_{n}\right)+\frac{1}{r_{n}}\left\langle y-u_{n}, u_{n}-x_{n}\right\rangle \geq 0, \quad \forall y \in C, \\
y_{n}= & P_{C}\left(u_{n}-\lambda_{n} A u_{n}\right), \\
t_{n}= & P_{C}\left(u_{n}-\lambda_{n} A y_{n}\right), \\
x_{n+1}= & \alpha_{n} t_{n}+\left(1-\alpha_{n}\right) \sum_{j=1}^{N} \zeta_{j}^{(n)} T_{j} t_{n},
\end{aligned}\right.
$$

for every $n=1,2, \ldots$. If $\left\{\lambda_{n}\right\} \subset[a, b]$ for some $a, b \in\left(0, \frac{1}{k}\right),\left\{\alpha_{n}\right\} \subset[c, d]$ for some $c, d \in(\varepsilon, 1)$ and $\left\{r_{n}\right\} \subset[\gamma,+\infty)$ for some $\gamma>0$. Then, $\left\{x_{n}\right\},\left\{u_{n}\right\},\left\{t_{n}\right\}$ and $\left\{y_{n}\right\}$ converge weakly to $w \in \Xi$, where $w=\lim _{n \rightarrow \infty} P_{\Xi} x_{n}$.

Proof. Putting $F=0$ and $B=0$, by Theorem 4.1 we obtain the desired result.

Remark 4.2.

(i) Theorems 4.1-4.7 generalize, extend and improve Theorem 4.1 in [12] and Theorem 3.1 in [14]. Corollary 4.3 and 4.4 generalize and improve Theorem 3.1 in [26].
(ii) Let $A=B=0$, by Corollary 3.3, 3.4, 4.3 and 4.4 , respectively, we can recover Theorem 5.1, 5.2, 3.3 and 4.1 in [19] with modified condition $\left\{\alpha_{n}\right\} \subset$ $[c, d]$ for some $c, d \in(\varepsilon, 1)$.
(iii) Let $A=0$, by Corollary 3.3, 3.4, 4.3 and 4.4, respectively, we can recover Theorem 5.1, 5.2, 3.1 and 4.1 in [30].

References

1. J. W. Peng and J. C. Yao, A New Hybrid-extragradient Method For Generalized Mixed Equilibrium Problems and Fixed Point Problems and variational inequality problems, Taiwan. J. Math., 2008, (to appear).
2. L. C. Ceng and J. C. Yao, A hybrid iterative scheme for mixed equilibrium problems and fixed point problems, Journal of Computational and Applied Mathematics, 214 (2008), 186-201.
3. G. Bigi, M. Castellani and G. Kassay, A dual view of equilibrium problems, J. Math. Anal. Appl., 342 (2008), 17-26.
4. S. Takahashi and W. Takahashi, Strong convergence theorem for a generalized equilibrium problem and a nonexpansive mapping in a Hilbert space, Nonlinear Analysis, 69 (2008), 1025-1033.
5. S. D. Flam and A. S. Antipin, Equilibrium programming using proximal-like algorithms, Math. Program, 78 (1997), 29-41.
6. E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Stud., 63 (1994), 123-145.
7. F. E. Browder and W. V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert spaces, J. Math. Anal. Appl., 20 (1967), 197-228.
8. K. Goebel and W. A. Kirk, Topics on Metric Fixed-Point Theory, Cambridge University Press, Cambridge, England, 1990.
9. P. L. Combettes and S. A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal., 6 (2005), 117-136.
10. S. Takahashi and W. Takahashi, Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces, J. Math. Anal. Appl., 331 (2006), 506-515.
11. J. W. Peng and J. C. Yao, A Modified CQ Method For Equilibrium Problems and Fixed Point Problems and variational inequality problems, Fixed Point Theorey, 9 (2008), 515-531.
12. A. Tada and W. Takahashi, Weak and Strong Convergence Theorems for a Nonexpansive Mapping and an Equilibrium Problem, J. Optim. Theory Appl., 133 (2007), 359-370.
13. V. Colao, G. Marino and H. K. Xu, An iterative method for finding common solutions of equilibrium and fixed point problems, J. Math. Anal. Appl., 344 (2008), 340-352.
14. L. C. Ceng, S. AI-Homidan, Q. H. Ansari and J. C. Yao, An iterative scheme for equilibrium problems and fixed point problems of strict pseudo-contraction mappings, Journal of Computational and Applied Mathematics, (2008), doi:10.1016/j.cam.2008. 03.032.
15. S. Plubtieng and R. Punpaeng, A new iterative method for equilibrium problems and fixed point problems of nonexpansive mappings and monotone mappings, Applied Mathematics and Computation, 197 (2008), 548-558.
16. S. S. Chang, H. W. Joseph Lee and C. K. Chan, A new method for solving equilibrium problem, fixed point problem and variational inequality problem with application to optimization, Nonlinear Analysis, (2008), doi:10.1016/j.na.2008.04.035.
17. G. Marino and H. K. Xu, Weak and strong convergence theorems for strict pseudocontractions in Hilbert spaces, J. Math. Anal. Appl. 329 (2007), 336-346.
18. H. Y. Zhou, Convergence theorems of fixed points for κ-strict pseudo-contractions in Hilbert spaces, Nonlinear Analysis, 69 (2008), 456-462.
19. G. L. Acedoa and H. K. Xu, Iterative methods for strict pseudo-contractions in Hilbert spaces, Nonlinear Analysis, 67 (2007), 2258-2271.
20. Z. Opial, Weak convergence of the sequence of successive approximation for nonexpansive mappings, Bull. Amer. Math. Soc., 73 (1967), 561-597.
21. R. T. Rockafellar, On the maximality of sums of nonlinear monotone operators, Trans. Amer. Math. Soc., 149 (1970), 75-88.
22. W. Takahashi and M. Toyoda, Weak convergence theorems for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl., 118 (2003), 417-428.
23. C. Martinez-Yanes and H.-K. Xu, Strong convergence of the $C Q$ method for fixed point iteration processes, Nonlinear Analysis, 64 (2006), 2400-2411.
24. L. C. Zeng and J. C. Yao, Strong convergence theorem by an extragradient method for fixed point problems and variational inequality problems, Taiwan. J. Math., 10 (2006), 1293-1303.
25. N. Nadezhkina and W. Takahashi, Strong Convergence Theorem by a Hybrid Method for Nonexpansive Mappings and Lipschitz-continuous monotone mappings, SIAM J. Optim., 16(4) (2006), 1230-1241.
26. N. Nadezhkina and W. Takahashi, Weak convergence theorem by an extragradient method for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl., 128 (2006), 191-201.
27. Y. Yao, Y. C. Liou and J. C. Yao, Convergence Theorem for Equilibrium Problems and Fixed Point Problems of Infinite Family of Nonexpansive Mappings, Fixed Point Theory and Applications Volume 2007, Article ID 64363, 12 pages.
28. L. C. Ceng and J. C. Yao, Hybrid viscosity approximation schemes for equilibrium problems and fixed point problems of infinitely many nonexpansive mappings, Appl. Math. and Compu., (2007), doi:10.1016/j.amc.2007.09.011.
29. O. Chadli, I. V. Konnov and J. C. Yao, Descent methods for equilibrium problems in a Banach space, Computers and Mathematics with Applications, 48 (2004), 609-616.
30. L. C. Ceng, A. Petrusel, C. Lee and M. M. Wong, Two Extragradient approximation methods for variational inequalities and fixed point problems of strict pseudocontractions, Taiwan. J. Math., 13 (2009), 607-632.
31. J. W. Peng and J. C. Yao, Strong convergence theorems of iterative scheme based on the extragradient method for mixed equilibrium problems and fixed point problems, Mathematical and Computer modelling, 49 (2009), 1816-1828.

Jian-Wen Peng

College of Mathematics and Computer Science,
Chongqing Normal University,
Chongqing 400047,
P. R. China

Jen-Chih Yao
Department of Applied Mathematics, National Sun Yat-sen University,
Kaohsiung 804, Taiwan.
E-mail: yaojc@math.nsysu.edu.tw

[^0]: Received May 3, 2008, accepted July 15, 2008.
 Communicated by Mau-Hsiang Shih.
 2000 Mathematics Subject Classification: 47H05, 47H10, 47H17.
 Key words and phrases: Generalized mixed equilibrium problem, Extragradient method, Parallel algorithms, Cyclic algorithms, Strict pseudo-contraction, Monotone mapping.
 ${ }^{1}$ The first author was supported by the National Natural Science Foundation of China (Grant No. 10471159), the Science and Technology Research Project of Chinese Ministry of Education (Grant No. 206123), the Education Committee project Research Foundation of Chongqing (Grant No. KJ070816).
 ${ }^{2}$ The second author was partially supported by the grant NSC96-2628-E-110-014-MY3.
 *Corresponding author.

