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Abstract. In this paper, we propose some parallel and cyclic algorithms
based on the extragradient method (nonextragradient method) for finding a
common element of the set of solutions of a generalized mixed equilibrium
problem, the set of fixed points of a finite family of strict pseudo-contractions
and the set of the variational inequality for a monotone, Lipschitz continuous
mapping (an inverse strongly monotone mapping). We obtain some weak and
strong convergence theorems for the sequences generated by these processes in
Hilbert spaces. The results in this paper generalize, improve and unify some
well-known results in the literature.

1. INTRODUCTION

Let H be a real Hilbert space with inner product 〈., .〉 and induced norm ‖.‖
and let C be a nonempty closed convex subset of H . let B : C → H be a nonlinear
mapping and let ϕ : C → R ∪ {+∞} be a function and F be a bifunction from
C × C to R, where R is the set of real numbers. Peng and Yao [1] considered the
following generalized mixed equilibrium problem:

(1.1) Finding x∈C such that F (x, y)+ϕ(y)+〈Bx, y−x〉≥ϕ(x), ∀y∈C.
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The set of solutions of (1.1) is denoted by GMEP (F, ϕ, B). It is easy to see that
x ∈ GMEP(F, ϕ, B) implies that x ∈ domϕ = {x ∈ C|ϕ(x) < +∞}.

If B = 0, then the generalized mixed equilibrium problem (1.1) becomes the
following mixed equilibrium problem:

(1.2) Find x ∈ C such that F (x, y) + ϕ(y) ≥ ϕ(x), ∀y ∈ C.

Problem (1.2) was studied by Ceng and Yao [2] and Bigi, Castellani and Kassay
[3]. The set of solutions of (1.2) is denoted by MEP (F, ϕ).

If ϕ = 0, then the generalized mixed equilibrium problem (1.1) becomes the
following generalized equilibrium problem:

(1.3) Finding x ∈ C such that F (x, y) + 〈Bx, y − x〉 ≥ 0, ∀y ∈ C.

Problem (1.2) was studied by Takahashi and Takahashi [4]. The set of solutions of
(1.3) is denoted by GEP (F, B).

If ϕ = 0 and B = 0, then the generalized mixed equilibrium problem (1.1)
becomes the following equilibrium problem:

(1.4) Finding x ∈ C such that F (x, y) ≥ 0, ∀y ∈ C.

The set of solutions of (1.4) is denoted by EP (F ).
If F (x, y) = 0 for all x, y ∈ C, the generalized mixed equilibrium problem

(1.1) becomes the following generalized variational inequality problem:

(1.5) Finding x ∈ C such that ϕ(y) + 〈Bx, y − x〉 ≥ ϕ(x), ∀y ∈ C.

The set of solutions of (1.5) is denoted by GV I(C, B, ϕ).
If ϕ = 0 and F (x, y) = 0 for all x, y ∈ C, the generalized mixed equilibrium

problem (1.1) becomes the following variational inequality problem:

(1.6) Finding x ∈ C such that 〈Bx, y − x〉 ≥ 0, ∀y ∈ C.

The set of solutions of (1.6) is denoted by V I(C, B).
If B = 0 and F (x, y) = 0 for all x, y ∈ C, the generalized mixed equilibrium

problem (1.1) becomes the following minimize problem:

(1.7) Finding x ∈ C such that ϕ(y) ≥ ϕ(x), ∀y ∈ C.

The set of solutions of (1.7) is denoted by Argmin(ϕ).
The problem (1.1) is very general in the sense that it includes, as special cases,

optimization problems, variational inequalities, minimax problems, Nash equilib-
rium problem in noncooperative games and others; see for instance, [1-6].

Recall that a mapping T : C → C is said to be a κ-strict pseudo-contraction
[7] if there exists 0 ≤ κ < 1 such that

‖Tx − Ty‖2 ≤ ‖x − y‖2 + κ‖(I − T )x − (I − T )y‖2, ∀x, y ∈ C,
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where I denotes the identity operator on C. When κ = 0, T is said to be nonex-
pansive [8], and it is said to be a pseudo-contraction if κ = 1. Clearly, the class
of κ-strict pseudo-contractions falls into the one between classes of nonexpansive
mappings and pseudo-contractions. It is easy to see that T is a pseudo-contraction
if and only if

〈Tx − Ty, x− y〉 ≤ ‖x − y‖2, ∀x, y ∈ C.

We denote the set of fixed points of T by Fix(T ).
Peng and Yao [1] introduced an iterative scheme for finding a common element

of the set of solution of problem (1.1), the set of fixed points of a nonexpansive map-
ping and the set of the variational inequality for a monotone, Lipschitz continuous
mapping and obtain a strong convergence theorem. Ceng and Yao [2] introduced
an iterative scheme for finding a common element of the set of solution of problem
(1.2) and the set of common fixed points of a family of finitely nonexpansive map-
pings in a Hilbert space and obtained a strong convergence theorem. Takahashi and
Takahashi [4] introduced an iterative scheme for finding a common element of the
set of solution of problem (1.3) and the set of fixed points of a nonexpansive map-
ping in a Hilbert space and proved a strong convergence theorem. Some methods
have been proposed to solve the problem (1.4); see, for instance, [5, 6, 9-16, 27-29]
and the references therein. Recently, Combettes and Hirstoaga [9] introduced an
iterative scheme of finding the best approximation to the initial data when EP (F )
is nonempty and proved a strong convergence theorem. Takahashi and Takahashi
[10] introduced an iterative scheme by the viscosity approximation method for find-
ing a common element of the set of solution of problem (1.4) and the set of fixed
points of a nonexpansive mapping and proved a strong convergence theorem in a
Hilbert space. Peng and Yao [11] introduced a hybrid iterative scheme for finding
the common element of the set of fixed points of a family of infinitely nonexpansive
mappings, the set of an equilibrium problem and the set of solutions of variational in-
equality problem for an α-inverse strongly monotone mapping. Tada and Takahashi
[12] introduced some iterative schemes for finding a common element of the set of
solution of problem (1.4) and the set of fixed points of a nonexpansive mapping in a
Hilbert space and obtained both strong convergence theorem and weak convergence
theorem. Ceng, AI-Homidan, Ansari and Yao [14] introduced an iterative algorithm
for finding a common element of the set of solution of problem (1.4) and the set of
fixed points of a strict pseudo-contraction mapping. Plubtieng and Punpaeng [15]
introduced an iterative process based on the extragradient method for finding the
common element of the set of fixed points of nonexpansive mappings, the set of an
equilibrium problem and the set of solutions of variational inequality problem for α-
inverse strongly monotone mappings. Chang, Joseph Lee and Chan [16] introduced
some iterative processes based on the extragradient method for finding the common
element of the set of fixed points of a family of infinitely nonexpansive mappings,
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the set of an equilibrium problem and the set of solutions of variational inequality
problem for an α-inverse strongly monotone mapping. Yao, Liou and Yao [27] and
Ceng and Yao [28] introduced some iterative viscosity approximation schemes for
finding a common element of the set of an equilibrium problem and the set of fixed
points of infinitely nonexpansive mappings in a Hilbert space.

On the other hand, Marino and Xu [17] and Zhou [18] introduced and re-
searched an iterative scheme for finding a fixed point of a strict pseudo-contraction
mapping. Acedoa and Xu [19] introduced the following parallel algorithm for find-
ing a common fixed point of a family of finite strict pseudo-contraction mappings
{Tj}N

j=1:

(1.8) xn+1 = αnxn + (1 − αn)
N∑

j=1

ζ
(n)
j Tjxn.

Acedoa and Xu [19] also introduced the following cyclic algorithm for find-
ing a common fixed point of a family of finite strict pseudo-contraction mappings
{Tj}N−1

j=0 : 


x0 = x ∈ C,

x1 = λ0x0 + (1− λ0)T0x0,

x2 = λ1x1 + (1− λ1)T1x1,

... ,
xN = λN−1xN−1 + (1− λN−1)TN−1xN−1,

xN+1 = λNxN + (1− λN)T0xN ,

In a more compact form, xn+1 can be written as

(1.9) xn+1 = λnxn + (1 − λn)T[n]xn,

where T[n] = Ti, with i = n(modN ), 0 ≤ i ≤ N − 1.
Acedoa and Xu obtained weak convergence theorems for the sequences generated

by the algorithms (1.8) and (1.9). Furthermore, Acedoa and Xu [19] proposed the
modifications for the algorithms (1.8) and (1.9), respectively, as follows:

(1.10)




x1 = x ∈ C,

zn = αnxn + (1− αn)Wnxn,

Cn = {z ∈ C : ‖zn − z‖2

≤ ‖xn − z‖2 − (1 − αn)(αn − ε)‖xn − Wnxn‖2},
Qn = {z ∈ H : 〈xn − z, x− xn〉 ≥ 0},

xn+1 = PCn
⋂

Qn
x
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for every n = 1, 2, ..., where Wn =
∑N

j=1 ζ
(n)
j Tj .

And

(1.11)




x0 = x ∈ C,

yn = λnxn + (1− λn)T[n]xn,

Cn = {z ∈ C : ‖yn − z‖2

≤ ‖xn − z‖2 − (1− αn)(αn − ε)‖xn − T[n]xn‖2},
Qn = {z ∈ H : 〈xn − z, x − xn〉 ≥ 0},

xn+1 = PCn∩Qn(x).

They proved the strong convergence theorems of the algorithms (1.10) and (1.11).
Ceng, Petrusel and Yao [27] introduced some parallel algorithms and cyclic algo-
rithms based on extragradient method for finding a common fixed point of a family
of finite strict pseudo-contraction mappings and a monotone and lipschitz continu-
ous mapping and obtained some weak convergence theorems and strong convergence
theorems.

In the present paper, inspired and motivated by the above ideas, we introduce
some parallel and cyclic algorithms based on the extragradient method (nonextragra-
dient method) for finding a common element of the set of solutions of a generalized
mixed equilibrium problem, the set of fixed points of a finite family of strict pseudo-
contractions and the set of the variational inequality for a monotone, Lipschitz con-
tinuous mapping (an inverse strongly monotone mapping). We obtain some weak
convergence theorems and strong convergence theorems for the sequences generated
by these processes. The results in this paper generalize, improve and unify some
well-known results in the literature.

2. PRELIMINARIES

Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. Let C be
a nonempty closed convex subset of H . Let symbols → and ⇀ denote strong and
weak convergence, respectively. In a real Hilbert space H , it is well known that

‖λx + (1 − λ)y‖2 = λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)‖x− y‖2

for all x, y ∈ H and λ ∈ [0, 1].
For any x ∈ H , there exists a unique nearest point in C, denoted by PC(x),

such that ‖x − PC(x)‖ ≤ ‖x − y‖ for all y ∈ C. The mapping PC is called the
metric projection of H onto C. We know that PC is a nonexpansive mapping from
H onto C. It is known that PC(x) ∈ C and

(2.1) 〈x − PC(x), PC(x) − y〉 ≥ 0
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for all x ∈ H and y ∈ C.
It is easy to see that (2.1) is equivalent to

(2.2) ‖x− y‖2 ≥ ‖x − PC(x)‖2 + ‖y − PC(x)‖2

for all x ∈ H and y ∈ C. It is also known that

(2.3) 〈x − y, PCx − PCy〉 ≥ ‖PCx − PCy‖2

A mapping A of C into H is called monotone if

〈Ax − Ay, x− y〉 ≥ 0

for all x, y ∈ C. A mapping A of C into H is called α-inverse strongly monotone
if there exists a positive real number α such that

〈x − y, Ax − Ay〉 ≥ α‖Ax − Ay‖2

for all x, y ∈ C. A mapping A : C → H is called k-Lipschitz continuous if there
exists a positive real number k such that

‖Ax − Ay‖ ≤ k‖x − y‖
for all x, y ∈ C. If A is α-inverse-strongly monotone of C into H , then it is obvious
that A is 1

α -Lipschitz continuous. We also have that for all x, y ∈ C and λ > 0,

(2.4)

‖(I − λA)x − (I − λA)y‖2

= ‖x − y − λ(Ax − Ay)‖2

= ‖x − y‖2 − 2λ〈x− y, Ax− Ay〉 + λ2‖Ax − Ay‖2

≤ ‖x − y‖2 + λ(λ− 2α)‖Ax− Ay‖2.

So, if λ ≤ 2α, then I − λA is a nonexpansive mapping of C into H . It is easy to
see that if A is an α-inverse strongly monotone mapping, then A is monotone and
Lipschitz continuous. The converse is not true in general. The class of α-inverse
strongly monotone mappings does not contain some important classes of mappings
even in a finite-dimensional case. For example, if the matrix in the corresponding
linear complementarity problem is positively semidefinite, but not positively definite,
then the mapping A will be monotone and Lipschitz continuous, but not α-inverse
strongly monotone.

Let A be a monotone mapping of C into H . In the context of the variational
inequality problem the characterization of projection (2.1) implies the following:

u ∈ V I(C, A) ⇒ u = PC(u− λAu), λ > 0,
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and

u = PC(u − λAu) for some λ > 0 ⇒ u ∈ V I(C, A).

It is also known that H satisfies the Opial’s condition [21], i.e., for any sequence
{xn} ⊂ H with xn ⇀ x, the inequality

lim inf
n→∞ ‖xn − x‖ < lim inf

n→∞ ‖xn − y‖

holds for every y ∈ H with x = y.
A set-valued mapping T : H → 2H is called monotone if for all x, y ∈ H ,

f ∈ Tx and g ∈ Ty imply 〈x− y, f − g〉 ≥ 0. A monotone mapping T : H → 2H

is maximal if its graph G(T ) of T is not properly contained in the graph of any other
monotone mapping. It is known that a monotone mapping T is maximal if and only
if for (x, f) ∈ H ×H, 〈x− y, f − g〉 ≥ 0 for every (y, g) ∈ G(T ) implies f ∈ Tx.
Let A be a monotone, k-Lipschitz continuous mapping of C into H and let NCv

be normal cone to C at v ∈ C, i.e, NCv = {w ∈ H : 〈v − u, w〉 ≥ 0, ∀u ∈ C}.
Define

Tv =

{
Av + NCv if v ∈ C,

∅ if v /∈ C.

Then T is maximal monotone and 0 ∈ Tv if and only if v ∈ V I(C, A)(see [21]).
We shall use the following results in the sequel.

Lemma 2.1. [22] Let H be a real Hilbert space, let D be a nonempty closed
convex subset of H . Let {xn} be a sequence in H . Suppose that, for all u ∈ D,

‖xn+1 − u‖ ≤ ‖xn − u‖,
for every n = 0, 1, 2, .... Then, the sequence {PDxn} converges strongly to some
z ∈ D.

Lemma 2.2. [17, 19] Assume C is a closed convex subset of a Hilbert space
H .

(i) If T : C → C is a κ-strict pseudo-contraction, then T satisfies the Lipschitz
condition

‖Tx − Ty‖ ≤ 1 + κ

1 − κ
‖x − y‖, ∀x, y ∈ C.

(ii) If T : C → C is a κ-strict pseudo-contraction, then the mapping I − T is
demiclosed (at 0). That is, if {xn} is a sequence in C such that xn ⇀ x̄ and
(I − T )xn → 0, then (I − T )x̄ = 0.

(iii) If T : C → C is a κ-strict pseudo-contraction, then the fixed point set Fix(T )
of T is closed and convex so that the projection P Fix(T ) is well defined.



1544 Jian-Wen Peng and Jen-Chih Yao

(iv) Given an integer N ≥ 1, assume, for each 1 ≤ i ≤ N , T i : C → C is
a κi -strict pseudo-contraction for some 0 < κ i < 1. Assume {ζi}N

i=1 is
a positive sequence such that

∑N
i=1 ζi = 1. Then

∑N
i=1 ζiTi is a κ-strict

pseudo-contraction, with κ = max{κ i : 1 ≤ i ≤ N}.
(v) Let {Ti}N

i=1 and {ζi}N
i=1 be given as in (iv) above. Suppose that {Ti}N

i=1 has
a common fixed point. Then Fix(

∑N
i=1 ζiTi) =

⋂N
i=1 Fix(Ti).

For solving the generalized mixed equilibrium problem, let us give the following
assumptions for the bifunction F , ϕ and the set C:

(A1) F (x, x) = 0 for all x ∈ C;
(A2) F is monotone, i.e. F (x, y) + F (y, x) ≤ 0 for any x, y ∈ C;
(A3) for each y ∈ C, x �→ F (x, y) is weakly upper semicontinuous;
(A4) for each x ∈ C, y �→ F (x, y) is convex;
(A5) for each x ∈ C, y �→ F (x, y) is lower semicontinuous;
(B1) For each x ∈ H and r > 0, there exist a bounded subset D x ⊆ C and

yx ∈ C such that for any z ∈ C \ Dx,

F (z, yx) + ϕ(yx) +
1
r
〈yx − z, z − x〉 < ϕ(z);

(B2) C is a bounded set;
(B3) For each x ∈ H and r > 0, there exist a bounded subset D x ⊆ C and

yx ∈ C such that for any z ∈ C \ Dx,

F (z, yx) +
1
r
〈yx − z, z − x〉 < 0;

(B4) For each x ∈ H and r > 0, there exists a bounded subset D x ⊆ C and
yx ∈ C such that for any z ∈ C \ Dx,

ϕ(yx) +
1
r
〈yx − z, z − x〉 < ϕ(z).

3. STRONG CONVERGENCE THEOREMS

We first derive two strong convergence theorems of some parallel and cyclic
algorithms based on both hybrid method and extragradient method which solves the
problem of finding a common element of the set of solutions of a generalized mixed
equilibrium problem, the set of fixed points of a finite family of strict pseudo-
contractions and the set of the variational inequality for a monotone, Lipschitz
continuous mapping in a Hilbert space.
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Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert
space H . Let F be a bifunction from C × C to R satisfying (A1)-(A5) and ϕ :
C → R ∪ {+∞} be a proper lower semicontinuous and convex function. Let A

be a monotone and k-Lipschitz continuous mapping of C into H and B be a β-
inverse strongly monotone mapping of C into H . Let N ≥ 1 be an integer. For each
1 ≤ j ≤ N , let Tj : C → C be an εj-strict pseudo-contraction for some 0 ≤ ε j < 1
such that Γ1 = ∩N

j=1Fix(Tj) ∩ V I(C, A) ∩ GMEP (F, ϕ, B) = ∅. Assume for
each n, {ζ(n)

j }N
j=1 is a finite sequence of positive numbers such that

∑N
j=1 ζ

(n)
j = 1

for all n and inf n≥1 ζ
(n)
j > 0 for all 0 ≤ j ≤ N . Let ε = max{εj : 1 ≤ j ≤ N}.

Assume also that either (B1) or (B2) holds. Let the mapping Wn be defined by

Wnx =
N∑

j=1

ζ
(n)
j Tjx, ∀x ∈ C.

Let {xn}, {un}, {yn}, {tn} and {zn} be sequences generated by




x1 = x ∈ C, F (un, y) + ϕ(y)− ϕ(un)

+〈Bxn, y − un〉+
1
rn

〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

yn = PC(un − λnAun),

tn = PC(un − λnAyn),

zn = αntn + (1− αn)Wntn,

Cn = {z ∈ C : ‖zn − z‖2 ≤ ‖xn − z‖2 − (1− αn)(αn − ε)‖tn − Wntn‖2},
Qn = {z ∈ H : 〈xn − z, x − xn〉 ≥ 0},

xn+1 = PCn
⋂

Qn
x

for every n = 1, 2, .... If {λn} ⊂ [a, b] for some a, b ∈ (0, 1
k ), {αn} ⊂ [c, d] for

some c, d ∈ (ε, 1) and {rn} ⊂ [γ, τ ] for some γ, τ ∈ (0, 2α). Then, {xn}, {un},
{yn} , {tn} and {zn} converge strongly to w = PΓ1(x).

Proof. From observe that Cn is closed and convex by Lemma 1.3 in [23] and Qn

is closed and convex for every n = 1, 2, .... It is easy to see that 〈xn−z, x−xn〉 ≥ 0
for all z ∈ Qn and by (2.1), xn = PQn(x). Let u ∈ Γ1 and let {Trn} be a sequence
of mappings defined as in Lemma 2.1 in [31]. Then u = PC(u − λnAu) =
Trn(u − rnBu). From un = Trn(xn − rnBxn) ∈ C and the β-inverse-strongly
monotonicity of B and (2.4), we have
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(3.1)

‖un − u‖2 = ‖Trn(xn − rnBxn)− Trn(u − rnBu)‖2

≤ ‖xn − rnBxn − (u − rnBu)‖2

≤ ‖xn − u‖2 + rn(rn − 2β)‖Bxn − Bu‖2

≤ ‖xn − u‖2.

From (2.2), the monotonicity of A, and u ∈ V I(C, A), we have

‖tn − u‖2 ≤ ‖un − λnAyn − u‖2 − ‖un − λnAyn − tn‖2

= ‖un − u‖2 − ‖un − tn‖2 + 2λn〈Ayn, u− tn〉
= ‖un − u‖2 − ‖un − tn‖2 + 2λn(〈Ayn − Au, u− yn〉

+〈Au, u − yn〉 + 〈Ayn, yn − tn〉)
≤ ‖un − u‖2 − ‖un − tn‖2 + 2λn〈Ayn, yn − tn〉
≤ ‖un − u‖2 − ‖un − yn‖2 − 2〈un − yn, yn − tn〉

−‖yn − tn‖2 + 2λn〈Ayn, yn − tn〉
= ‖un − u‖2 − ‖un − yn‖2 − ‖yn − tn‖2 + 2〈un − λnAyn − yn, tn − yn〉.

Further, Since yn = PC(un − λnAun) and A is k-Lipschitz continuous, we have

〈un − λnAyn − yn, tn − yn〉
= 〈un − λnAun − yn, tn − yn〉 + 〈λnAun − λnAyn, tn − yn〉
≤ 〈λnAun − λnAyn, tn − yn〉
≤ λnk‖un − yn‖‖tn − yn‖.

So, we have

(3.2)

‖tn − u‖2 ≤ ‖un − u‖2 − ‖un − yn‖2

−‖yn − tn‖2 + 2λnk‖un − yn‖‖tn − yn‖
≤ ‖un − u‖2 − ‖un − yn‖2 − ‖yn − tn‖2

+λn
2k2‖un − yn‖2 + ‖tn − yn‖2

= ‖un − u‖2 + (λn
2k2 − 1)‖un − yn‖2.

≤ ‖un − u‖2.

By Lemma 2.2, we know that Wn is an ε-strict pseudo-contraction and F (Wn) =
∩N

j=1Fix(Tj). It follows from (3.1), (3.2), zn = αntn+(1−αn)Wntn and u = Wnu
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that

(3.3)

‖zn − u‖2 = αn‖tn − u‖2 + (1− αn)‖Wntn − u‖2

−αn(1 − αn)‖tn − Wntn‖2

≤ αn‖tn − u‖2 + (1− αn)[‖tn − u‖2 + ε‖tn − Wntn‖2]

−αn(1 − αn)‖tn − Wntn‖2

= ‖tn − u‖2 + (1 − αn)(ε− αn)‖tn − Wntn‖2

≤ ‖un−u‖2+(λn
2k2−1)‖un−yn‖2+(1− αn)(ε − αn)‖tn − Wntn‖2

≤ ‖un − u‖2 + (λn
2k2 − 1)‖un − yn‖2

≤ ‖xn − u‖2 + (λn
2k2 − 1)‖un − yn‖2

≤ ‖xn − u‖2,

for every n = 1, 2, ....
From (3.3) and (3.1), we know that

(3.4) ‖zn − u‖2 ≤ ‖xn − u‖2 + (1 − αn)(ε− αn)‖tn − Wntn‖2,

for every n = 1, 2, ..., and hence u ∈ Cn. So, Γ1 ⊂ Cn for every n = 1, 2, .... Next,
let us show by mathematical induction that {xn} is well defined and Γ1 ⊂ Cn ∩Qn

for every n = 1, 2, .... For n = 1 we have x1 = x ∈ H and Q1 = H . Hence we
obtain Γ1 ⊂ C1∩Q1. Suppose that xk is given and Γ1 ⊂ Ck ∩Qk for some positive
integer k. Since Γ1 is nonempty, Ck ∩Qk is a nonempty closed convex subset of H .
So, there exists a unique element xk+1 ∈ Ck ∩ Qk such that xk+1 = PCk∩Qk

(x). It
is also obvious that there holds 〈xk+1 − z, x− xk+1〉 ≥ 0 for every z ∈ Ck ∩ Qk.
Since Γ1 ⊂ Ck ∩ Qk , we have 〈xk+1 − z, x − xk+1〉 ≥ 0 for every z ∈ Γ1 and
hence Γ1 ⊂ Qk+1. Therefore, we obtain Γ1 ⊂ Ck+1 ∩ Qk+1.

Let l0 = PΓ1x. From xn+1 = PCn∩Qnx and l0 ∈ Γ1 ⊂ Cn ∩ Qn, we have

(3.5) ‖xn+1 − x‖ ≤ ‖l0 − x‖

for every n = 1, 2, .... Therefore, {xn} is bounded. From (3.1)-(3.3), we also
obtain that {tn}, {zn} and {un} are bounded. Since xn+1 ∈ Cn ∩ Qn ⊂ Qn and
xn = PQn(x), we have

‖xn − x‖ ≤ ‖xn+1 − x‖
for every n = 1, 2, .... Therefore, limn→∞ ‖xn − x‖ exists.

Since xn = PQn(x) and xn+1 ∈ Qn, using (2.2), we have

‖xn+1 − xn‖2 ≤ ‖xn+1 − x‖2 − ‖xn − x‖2
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for every n = 1, 2, .... This implies that

lim
n→∞ ‖xn+1 − xn‖ = 0.

Since xn+1 ∈ Cn, we have

‖zn −xn+1‖2 ≤ ‖xn −xn+1‖2 − (1−αn)(αn − ε)‖tn −Wntn‖2 ≤ ‖xn − xn+1‖2

and hence

‖xn − zn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − zn‖ ≤ 2‖xn − xn+1‖
for every n = 1, 2, .... From limn→∞ ‖xn+1 − xn‖ = 0, we have ‖xn − zn‖ → 0.

For u ∈ Γ1, from (3.3) we obtain

‖zn − u‖2 ≤ ‖xn − u‖2 + (λn
2k2 − 1)‖un − yn‖2.

Thus, we have

‖un − yn‖2 ≤ 1
(1 − λn

2k2)

(
‖xn − u‖2 − ‖zn − u‖2

)

≤ 1
(1− b2k2)

(‖xn − u‖ + ‖zn − u‖)‖xn − zn‖.

It follows from ‖xn − zn‖ → 0, {xn} and {zn} are bounded that ‖un − yn‖ → 0.
From the the definition of tn and yn, we have

‖tn − yn‖ = ‖PC(un − λnAyn)− PC(un − λnAun)‖
≤ ‖(un − λnAyn) − (un − λnAun)‖ ≤ λnk‖yn − un‖,

which implies that limn→∞ ‖tn−yn‖ = 0. From ‖un−tn‖ ≤ ‖un−yn‖+‖yn−tn‖
we also have ‖un − tn‖ → 0. As A is k-Lipschitz continuous, we have ‖Ayn −
Atn‖ → 0.

From ε < c ≤ αn ≤ d < 1 and (3.4), we have

(1 − d)(c− ε)‖tn − Wntn‖2 ≤ (1− αn)(αn − ε)‖tn − Wntn‖2

≤ ‖xn − u‖2 − ‖zn − u‖2 ≤ (‖xn − u‖ + ‖zn − u‖)‖xn − zn‖.
This implies that

(3.6) lim
n→∞ ‖tn − Wntn‖ = 0.

Also by (3.3) and (3.1), we have

‖zn − u‖2 ≤ ‖un − u‖2 ≤ ‖xn − u‖2 + rn(rn − 2β)‖Bxn − Bu‖2.
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Thus, we have

γ(2β − τ)‖Bxn − Bu‖2 ≤ rn(2β − rn)‖Bxn − Bu‖2

≤ ‖xn − u‖2 − ‖zn − u‖2 ≤ (‖xn − u‖ + ‖zn − u‖)‖xn − zn‖.
It follows from ‖xn−zn‖ → 0, {xn} and {zn} are bounded that ‖Bxn−Bu‖ → 0.

For u ∈ Γ1, we have, from Lemma 2.1 in [31],

‖un − u‖2 = ‖Trn(xn − rnBxn) − Trn(u − rnBu)‖2

≤ 〈Trn(xn − rnBxn) − Trn(u − rnBu), xn − rnBxn − (u − rnBu)〉

=
1
2
{‖un − u‖2 + ‖xn − rnBxn − (u − rnBu)‖2

−‖xn − rnBxn − (u − rnBu) − (un − u)‖2}

≤ 1
2
{‖un − u‖2 + ‖xn − u‖2 − ‖xn − rnBxn − (u − rnBu) − (un − u)‖2}

=
1
2
{‖un − u‖2 + ‖xn − u‖2 − ‖xn − un‖2

+2rn〈Bxn − Bu, xn − un〉 − r2
n‖Bxn − Bu‖2.

Hence,

(3.7) ‖un − u‖2 ≤ ‖xn − u‖2 − ‖xn − un‖2 + 2rn〈Bxn − Bu, xn − un〉.

It follows from (3.3) and (3.7) that

‖zn − u‖2 ≤ ‖un − u‖2 ≤ ‖xn − u‖2 − ‖xn − un‖2 + 2rn〈Bxn − Bu, xn − un〉.

Hence,

‖xn − un‖2 ≤ ‖xn − u‖2 − ‖zn − u‖2 + 2rn‖Bxn − Bu‖‖xn − un‖.

≤ (‖xn − u‖ + ‖zn − u‖)‖xn − zn‖ + 2rn‖Bxn − Bu‖‖xn − un‖.
Since ‖Bxn − Bu‖ → 0, ‖xn − zn‖ → 0, {xn}, {un} and {zn} are bounded, we
obtain ‖xn − un‖ → 0. From ‖tn − xn‖ ≤ ‖tn − un‖ + ‖xn − un‖ we also have
‖tn − xn‖ → 0.

As {xn} is bounded, there exists a subsequence {xni} of {xn} such that xni ⇀

w. From ‖xn−un‖ → 0 and ‖tn−xn‖ → 0, we obtain that uni ⇀ w and tni ⇀ w.
Since {uni} ⊂ C and C is closed and convex, we obtain w ∈ C.

In order to show that w ∈ Γ1, we first show that w ∈ ∩N
k=1Fix(Tk). To see this,

we observe that we may assume (by passing to a further subsequence if necessary)
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ζ
(ni)
k → ζk (as i → ∞) for k = 1, 2, ..., N. It is easy to see that ζk > 0 and∑N

k=1 ζk = 1. We also have

Wnix → Wx ( as i → ∞) for all x ∈ C,

where W =
∑N

k=1 ζkTk. Note that by Lemma 2.2, W is an ε-strict pseudo-
contraction and Fix(W ) = ∩N

i=1Fix(Ti). Since

‖tni − Wtni‖ ≤ ‖tni − Wnitni‖ + ‖Wnitni − Wtni‖

≤ ‖tni − Wnitni‖ +
N∑

k=1

|ζ(ni)
k − ζk|‖Tktni‖.

It follows from (3.6) and ζ
(ni)
k → ζk that

‖tni − Wtni‖ → 0.

So by the demiclosedness principle (Lemma 2.2(ii)), it follows that w ∈ Fix(W ) =
∩N

i=1Fix(Ti).
By the similar argument as in the proof of Theorem 3.1 in [1], we can show

w ∈ GMEP (F, ϕ, B) and w ∈ V I(C, A), which implies w ∈ Γ1.
From l0 = PΓ1(x), w ∈ Γ1 and (3.5), we have

‖l0 − x‖ ≤ ‖w − x‖ ≤ lim inf
i→∞

‖xni − x‖ ≤ lim sup
i→∞

‖xni − x‖ ≤ ‖l0 − x‖.

So, we obtain
lim
i→∞

‖xni − x‖ = ‖w − x‖.
From xni − x ⇀ w − x we have xni − x → w − x and hence xni → w. Since
xn = PQn(x) and l0 ∈ Γ1 ⊂ Cn ∩ Qn ⊂ Qn, we have

−‖l0 − xni‖2 = 〈l0 − xni , xni − x〉 + 〈l0 − xni , x− l0〉 ≥ 〈l0 − xni , x− l0〉.

As i → ∞, we obtain −‖l0 − w‖2 ≥ 〈l0 − w, x − l0〉 ≥ 0 by l0 = PΓ1(x) and
w ∈ Γ1. Hence we have w = l0. This implies that xn → l0. It is easy to see
un → l0, yn → l0, tn → l0, and zn → l0. The proof is now complete.

Theorem 3.2. Let C be a nonempty closed convex subset of a real Hilbert
space H . Let F be a bifunction from C×C to R satisfying (A1)-(A5) and ϕ : C →
R ∪ {+∞} be a proper lower semicontinuous and convex function. Let A be a
monotone and k-Lipschitz continuous mapping of C into H and B be a β-inverse
strongly monotone mapping of C into H . Let N ≥ 1 be an integer. For each
0 ≤ j ≤ N − 1, let Tj : C → C be an εj-strict pseudo-contraction for some
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0 ≤ εj < 1 such that Γ2 = ∩N−1
j=0 Fix(Tj) ∩ V I(C, A) ∩ GMEP (F, ϕ, B) = ∅.

Let ε = max{εj : 0 ≤ j ≤ N − 1}. Assume that either (B1) or (B2) holds. Let
{xn}, {un}, {yn}, {tn} and {zn} be sequences generated by



x0 = x ∈ C,

F (un, y) + ϕ(y)− ϕ(un) + 〈Bxn, y − un〉

+
1
rn

〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

yn = PC(un − λnAun),

tn = PC(un − λnAyn),

zn = αntn + (1− αn)T[n]tn,

Cn = {z ∈ C : ‖zn − z‖2 ≤ ‖xn − z‖2 − (1− αn)(αn − ε)‖tn − T[n]tn‖2},
Qn = {z ∈ H : 〈xn − z, x − xn〉 ≥ 0},

xn+1 = PCn
⋂

Qn
(x)

for every n = 0, 1, 2, .... If {λn} ⊂ [a, b] for some a, b ∈ (0, 1
k ), {αn} ⊂ [c, d] for

some c, d ∈ (ε, 1) and {rn} ⊂ [γ, τ ] for some γ, τ ∈ (0, 2β). Then, {xn}, {un},
{yn} , {tn} and {zn} converge strongly to w = PΓ2(x).

Proof. From the proof of Theorem 3.1, we know that both Cn and Qn are
closed and convex for every n = 0, 1, 2, ..., xn = PQn(x) and for u ∈ Γ2, the
following formula hold

(3.1) ‖un − u‖2 ≤ ‖xn − u‖2 + rn(rn − 2β)‖Bxn − Bu‖2 ≤ ‖xn − u‖2.

(3.2) ‖tn − u‖2 ≤ ‖un − u‖2 + (λn
2k2 − 1)‖un − yn‖2 ≤ ‖un − u‖2.

(3.7) ‖un − u‖2 ≤ ‖xn − u‖2 − ‖xn − un‖2 + 2rn〈Bxn − Bu, xn − un〉.

And

(3.8) ‖tn − yn‖ ≤ λnk‖yn − un‖.

Since for each j = 0, 1, ..., N − 1, Tj is εj-strictly pseudocontractive and ε =
max{εj : 0 ≤ j ≤ N − 1} ∈ [0, 1), we have

(3.9) ‖T[n]x − T[n]y‖2 ≤ ‖x − y‖2 + ε‖x − T[n]x − (y − T[n]y)‖2, ∀x, y ∈ C.

It follows from (3.1), (3.2) and (3.9), zn = αntn +(1−αn)T[n]tn and u = T[n]u

that
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(3.10)

‖zn − u‖2

= αn‖tn − u‖2 + (1− αn)‖T[n]tn − u‖2 − αn(1 − αn)‖tn − T[n]tn‖2

≤ αn‖tn − u‖2 + (1− αn)[‖tn − u‖2

+ε‖tn − T[n]tn‖2] − αn(1− αn)‖tn − T[n]tn‖2

= ‖tn − u‖2 + (1 − αn)(ε− αn)‖tn − T[n]tn‖2

≤ ‖un−u‖2+(λn
2k2−1)‖un−yn‖2+(1−αn)(ε−αn)‖tn−T[n]tn‖2

≤ ‖xn − u‖2 + (λn
2k2 − 1)‖un − yn‖2

≤ ‖xn − u‖2,

for every n = 0, 1, 2, ....
From (3.10) and (3.1), we can obtain that

(3.11) ‖zn − u‖2 ≤ ‖xn − u‖2 + (1 − αn)(ε − αn)‖tn − T[n]tn‖2,

for every n = 0, 1, 2, ..., and hence u ∈ Cn. So, Γ2 ⊂ Cn for every n = 0, 1, 2, ....
Next, let us show by mathematical induction that {xn} is well defined and Γ2 ⊂
Cn ∩ Qn for every n = 0, 1, 2, .... For n = 0 we have x0 = x ∈ H and Q0 = H .
Hence we obtain Γ2 ⊂ C0 ∩ Q0. Suppose that xk is given and Γ2 ⊂ Ck ∩ Qk

for some integer k ≥ 0. Since Γ2 is nonempty, Ck ∩ Qk is a nonempty closed
convex subset of H . So, there exists a unique element xk+1 ∈ Ck ∩ Qk such that
xk+1 = PCk∩Qk

(x). It is also obvious that there holds 〈xk+1 − z, x − xk+1〉 ≥ 0
for every z ∈ Ck ∩ Qk. Since Γ2 ⊂ Ck ∩ Qk, we have 〈xk+1 − z, x − xk+1〉 ≥ 0
for every z ∈ Γ2 and hence Γ2 ⊂ Qk+1. Therefore, we obtain Γ2 ⊂ Ck+1 ∩ Qk+1.

Let l0 = PΓ2(x). From xn+1 = PCn∩Qnx and l0 ∈ Γ2 ⊂ Cn ∩ Qn, we have

(3.12) ‖xn+1 − x‖ ≤ ‖l0 − x‖
for every n = 0, 1, 2, .... Therefore, {xn} is bounded. From (3.1), (3.2) and (3.10),
we also obtain that {tn}, {zn} and {un} are bounded. Since xn+1 ∈ Cn∩Qn ⊂ Qn

and xn = PQn(x), we have

‖xn − x‖ ≤ ‖xn+1 − x‖
for every n = 0, 1, 2, .... Therefore, limn→∞ ‖xn − x‖ exists.

Since xn = PQn(x) and xn+1 ∈ Qn, using (2.2), we have

‖xn+1 − xn‖2 ≤ ‖xn+1 − x‖2 − ‖xn − x‖2

for every n = 0, 1, 2, .... This implies that

lim
n→∞ ‖xn+1 − xn‖ = 0.
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It follows that for all j = 0, 1, ..., N − 1,

lim
n→∞ ‖xn+j − xn‖ = 0.

Since xn+1 ∈ Cn, we have

‖zn −xn+1‖2 ≤ ‖xn − xn+1‖2 − (1−αn)(αn − ε)‖tn −T[n]tn‖2 ≤ ‖xn −xn+1‖2

and hence

‖xn − zn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − zn‖ ≤ 2‖xn − xn+1‖

for every n = 0, 1, 2, .... From limn→∞ ‖xn+1−xn‖ = 0, we have ‖xn−zn‖ → 0.
For u ∈ Γ2, from (3.10) we obtain

‖zn − u‖2 ≤ ‖xn − u‖2 + (λn
2k2 − 1)‖un − yn‖2.

Thus, we have

‖un − yn‖2 ≤ 1
(1− λn

2k2)

(
‖xn − u‖2 − ‖zn − u‖2

)
≤ 1

(1 − b2k2)
(‖xn − u‖ + ‖zn − u‖)‖xn − zn‖.

It follows from ‖xn − zn‖ → 0, {xn} and {zn} are bounded that ‖un − yn‖ → 0.
It follows from (3.8) that limn→∞ ‖tn − yn‖ = 0. From ‖un − tn‖ ≤ ‖un −

yn‖+ ‖yn − tn‖ we also have ‖un − tn‖ → 0. As A is k-Lipschitz continuous, we
have ‖Ayn − Atn‖ → 0.

From ε < c ≤ αn ≤ d < 1 and (3.11), we have

(1 − d)(c− ε)‖tn − T[n]tn‖2 ≤ (1− αn)(αn − ε)‖tn − T[n]tn‖2

≤ ‖xn − u‖2 − ‖zn − u‖2 ≤ (‖xn − u‖ + ‖zn − u‖)‖xn − zn‖.
This implies that

(3.13) lim
n→∞ ‖tn − T[n]tn‖ = 0.

Let Lj = 1−εj

1+εj
, by Lemma 2.2, we have ‖Tjx − Tjy‖ ≤ Lj‖x − y‖, ∀j =

0, 1, ..., N − 1.

If we choose L = max0≤j≤N−1{Lj}, then

(3.14) ‖Tjx − Tjy‖ ≤ L‖x − y‖, ∀j = 0, 1, ..., N − 1.
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Also by (3.10) and (3.1), we have

‖zn − u‖2 ≤ ‖un − u‖2 ≤ ‖xn − u‖2 + rn(rn − 2β)‖Bxn − Bu‖2.

Thus, we have

γ(2β − τ)‖Bxn − Bu‖2 ≤ rn(2β − rn)‖Bxn − Bu‖2

≤ ‖xn − u‖2 − ‖zn − u‖2 ≤ (‖xn − u‖ + ‖zn − u‖)‖xn − zn‖.
It follows from ‖xn−zn‖ → 0, {xn} and {zn} are bounded that ‖Bxn−Bu‖ → 0.

It follows from (3.10) and (3.7) that

‖zn − u‖2 ≤ ‖un − u‖2 ≤ ‖xn − u‖2 − ‖xn − un‖2 + 2rn〈Bxn − Bu, xn − un〉.
Hence,

‖xn − un‖2 ≤ (‖xn − u‖ + ‖zn − u‖)‖xn − zn‖ + 2rn‖Bxn − Bu‖‖xn − un‖.
Since ‖Bxn − Bu‖ → 0, ‖xn − zn‖ → 0, {xn}, {un} and {zn} are bounded, we
obtain ‖xn − un‖ → 0. From ‖tn − xn‖ ≤ ‖tn − un‖ + ‖xn − un‖ we also have
‖tn − xn‖ → 0.

By (3.14), we have

(3.15)
‖xn − T[n]xn‖ ≤ ‖xn − tn‖ + ‖tn − T[n]tn‖ + ‖T[n]tn − T[n]xn‖

≤ (1 + L)‖xn − tn‖ + ‖tn − T[n]tn‖.
It follows from (3.13), (3.15) and ‖tn − xn‖ → 0 that ‖xn − T[n]xn‖ → 0.
We observe that for each j = 0, 1, ..., N − 1,

(3.16)

‖xn − T[n+j]xn‖ ≤ ‖xn − xn+j‖ + ‖xn+j − T[n+j]xn+j‖
+‖T[n+j]xn+j − T[n+j]xn‖

≤ (1 + L)‖xn − xn+j‖ + ‖xn+j − T[n+j]xn+j‖.
Thus, we get for each j = 0, 1, ..., N − 1,

(3.17) lim
n→∞ ‖xn − T[n+j]xn‖ = 0.

As {xn} is bounded, there exists a subsequence {xni} of {xn} such that xni ⇀

w. From ‖xn−un‖ → 0 and ‖tn−xn‖ → 0, we obtain that uni ⇀ w and tni ⇀ w.
Since {uni} ⊂ C and C is closed and convex, we obtain w ∈ C.

In order to show that w ∈ Γ2, we first show that w ∈ ∩N−1
j=0 Fix(Tj). In fact, it

follows from (3.17) that for each l = 0, 1, ..., N − 1

‖xni − Tlxni‖ → 0.
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So by the demiclosedness principle, it follows that w ∈ Fix(Tl). Since l is an
arbitrary element in the finite set {0, 1, ..., N− 1}, we get w ∈ ∩N−1

j=0 Fix(Tj). The
rest of the proof is similar with that of Theorem 3.1. The proof is now complete.

Now we derive a strong convergence theorem of a cyclic algorithm based on
hybrid method but not extragradient method which solves the problem of finding a
common element of the set of solutions of a generalized mixed equilibrium problem,
the set of fixed points of a finite family of strict pseudo-contractions and the set
of the variational inequality for an inverse strongly monotone mapping in a Hilbert
space.

Theorem 3.3. Let C be a nonempty closed convex subset of a real Hilbert
space H . Let F be a bifunction from C × C to R satisfying (A1)-(A5) and ϕ :
C → R ∪ {+∞} be a proper lower semicontinuous and convex function. Let
A : C → H and B : C → H be α-inverse strongly monotone and β-inverse
strongly monotone, respectively. Let N ≥ 1 be an integer. For each 0 ≤ j ≤ N−1,
let Tj : C → C be an εj -strict pseudo-contraction for some 0 ≤ ε j < 1 such that
Γ2 = ∩N−1

j=0 Fix(Tj) ∩ V I(C, A) ∩ GMEP (F, ϕ, B) = ∅. Let ε = max{εj : 0 ≤
j ≤ N − 1}. Assume also that either (B1) or (B2) holds. Let {xn}, {un}, {yn}
and {zn} be sequences generated by



x0 = x ∈ C,

F (un, y) + ϕ(y)− ϕ(un) + 〈Bxn, y − un〉

+
1
rn

〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

yn = PC(un − λnAun),

zn = αnyn + (1− αn)T[n]yn,

Cn = {z ∈ C : ‖zn − z‖2 ≤ ‖xn − z‖2 − (1− αn)(αn − ε)‖yn − T[n]yn‖2},
Qn = {z ∈ H : 〈xn − z, x − xn〉 ≥ 0},

xn+1 = PCn
⋂

Qn
x

for every n = 0, 1, 2, .... If {λn} ⊂ [a, b] for some a, b ∈ (0, 2α), {αn} ⊂
[c, d] for some c, d ∈ (ε, 1) and {rn} ⊂ [γ, τ ] for some γ, τ ∈ (0, 2β). Then,
{xn}, {un}, {yn} and {zn} converge strongly to w = PΓ2(x).

Proof. From the proof of Theorem 3.1 and 3.2, we know that both Cn and Qn

are closed and convex for every n = 0, 1, 2, ..., xn = PQn(x) and for u ∈ Γ2, the
following formula hold

(3.1) ‖un − u‖2 ≤ ‖xn − u‖2 + rn(rn − 2β)‖Bxn − Bu‖2 ≤ ‖xn − u‖2.
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(3.7) ‖un − u‖2 ≤ ‖xn − u‖2 − ‖xn − un‖2 + 2rn〈Bxn − Bu, xn − un〉.

(3.9) ‖T[n]x − T[n]y‖2 ≤ ‖x− y‖2 + ε‖x − T[n]x − (y − T[n]y)‖2, ∀x, y ∈ C.

(3.14) ‖Tjx − Tjy‖ ≤ L‖x − y‖, ∀j = 0, 1, ..., N − 1,

where L = max0≤j≤N−1{1−εj

1+εj
}. And

(3.16) ‖xn − T[n+j]xn‖ ≤ (1 + L)‖xn − xn+j‖ + ‖xn+j − T[n+j]xn+j‖.

Since A is an α-inverse strongly monotone mapping, from (2.4), we have

(3.18)

‖yn − u‖2 = ‖PC(un − λnAun) − PC(u − λnAu)‖2

≤ ‖un − λnAun − (u − λnAu)‖2

≤ ‖un − u‖2 + λn(λn − 2α)‖Aun − Au‖2

≤ ‖un − u‖.

It follows from (3.1) and (3.18), zn = αnyn + (1 − αn)T[n]yn and u = T[n]u that

(3.19)

‖zn − u‖2 = αn‖yn − u‖2 + (1− αn)‖T[n]yn − u‖2

−αn(1 − αn)‖yn − T[n]yn‖2

≤ αn‖yn − u‖2 + (1− αn)[‖yn − u‖2 + ε‖yn − T[n]yn‖2]

−αn(1 − αn)‖yn − T[n]yn‖2

= ‖yn − u‖2 + (1− αn)(ε − αn)‖yn − T[n]yn‖2

≤ ‖un − u‖2 + λn(λn − 2α)‖Aun − Au‖2

+(1 − αn)(ε − αn)‖yn − T[n]yn‖2

≤ ‖xn − u‖2 + λn(λn − 2α)‖Aun − Au‖2

≤ ‖xn − u‖2,

for every n = 0, 1, 2, ....
From (3.19) and (3.1), we know that

(3.20) ‖zn − u‖2 ≤ ‖xn − u‖2 + (1− αn)(ε − αn)‖yn − T[n]yn‖2,

for every n = 0, 1, 2, ..., and hence u ∈ Cn. So, Γ2 ⊂ Cn for every n = 0, 1, 2, ....
By the similar argument in the proof of Theorem 3.2, we can show by mathematical
induction that {xn} is well defined and Γ2 ⊂ Cn∩Qn for every n = 0, 1, 2, ..., {xn},
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{yn}, {zn} and {un} are bounded, limn→∞ ‖xn−x‖ exists, limn→∞ ‖xn+1−xn‖ =
0, ‖xn − zn‖ → 0 and for each j = 0, 1, ..., N − 1, limn→∞ ‖xn+j − xn‖ = 0.

From ε < c ≤ αn ≤ d < 1 and (3.20), we have

(1− d)(c− ε)‖yn − T[n]yn‖2 ≤ (1 − αn)(αn − ε)‖yn − T[n]yn‖2

≤ ‖xn − u‖2 − ‖zn − u‖2 ≤ (‖xn − u‖ + ‖zn − u‖)‖xn − zn‖.
This implies that

(3.21) lim
n→∞ ‖yn − T[n]yn‖ = 0.

By similar argument with that in the proof of Theorem 3.2, we know that
‖Bxn − Bu‖ → 0 and ‖xn − un‖ → 0. From (2.3) and (2.4), we have

‖yn − u‖2 = ‖PC(un − λnAun) − PC(u − λnAu)‖2

≤ 〈(un − λnAun)− (u − λnAu), yn − u〉

=
1
2
{‖(un − λnAun) − (u − λnAu)‖2 + ‖yn − u‖2

−‖[(un − λnAun) − (u − λnAu)] − (yn − u)‖2}

≤ 1
2
{‖un − u‖2 + ‖yn − u‖2 − ‖(un − yn) − λn(Aun − Au)‖2}

=
1
2
{‖un − u‖2 + ‖yn − u‖2 − ‖un − yn‖2

+2λn〈un − yn, Aun − Au〉 − λ2
n‖Aun − Au‖2}.

Hence,

(3.22)
‖yn − u‖2 ≤ ‖un − u‖2 − ‖un − yn‖2

+2λn〈un − yn, Aun − Au〉 − λ2
n‖Aun − Au‖2.

From (3.19), (3.1) and (3.22), we have

‖zn − u‖2 ≤ ‖yn − u‖2 ≤ ‖xn − u‖2 − ‖un − yn‖2

+2λn〈un − yn, Aun − Au〉 − λ2
n‖Aun − Au‖2.

And hence

‖un−yn‖2 ≤ ‖xn−u‖2−‖zn−u‖2+2λn〈un−yn, Aun−Au〉−λ2
n‖Aun−Au‖2

≤ (‖xn−u‖+‖zn−u‖)‖xn−zn‖+2λn〈un−yn, Aun−Au〉−λ2
n‖Aun−Au‖2.

Since ‖xn − zn‖ → 0 and ‖Aun − Au‖ → 0, we obtain ‖un − yn‖ → 0.
It follows from the Lipschitz-continuity of A that ‖Aun − Ayn‖ → 0. From
‖yn − xn‖ ≤ ‖yn − un‖ + ‖xn − un‖ we also have ‖yn − xn‖ → 0.



1558 Jian-Wen Peng and Jen-Chih Yao

By (3.14), we have

‖xn − T[n]xn‖ ≤ ‖xn − yn‖+ ‖yn − T[n]yn‖ + ‖T[n]yn − T[n]xn‖
≤ (1 + L)‖xn − yn‖ + ‖yn − T[n]yn‖.

It follows from (3.21) and ‖yn − xn‖ → 0 that ‖xn − T[n]xn‖ → 0.
It follows from (3.16) that for each j = 0, 1, ..., N − 1,

(3.23) lim
n→∞ ‖xn − T[n+j]xn‖ = 0.

As {xn} is bounded, there exists a subsequence {xni} of {xn} such that xni ⇀

w. From ‖xn − un‖ → 0 and ‖yn − xn‖ → 0, we obtain that uni ⇀ w and
yni ⇀ w. Since {uni} ⊂ C and C is closed and convex, we obtain w ∈ C. The
rest of the proof is similar with that of Theorem 3.2. The proof is now complete.

Let A = 0, by Theorem 3.1 and 3.2, respectively, we obtain the following
results:

Theorem 3.4. Let C be a nonempty closed convex subset of a real Hilbert
space H . Let F be a bifunction from C × C to R satisfying (A1)-(A5) and ϕ :
C → R ∪ {+∞} be a proper lower semicontinuous and convex function. Let B

be a β-inverse strongly monotone mapping of C into H . Let N ≥ 1 be an integer.
For each 1 ≤ j ≤ N , let Tj : C → C be an εj -strict pseudo-contraction for some
0 ≤ εj < 1 such that ∆1 = ∩N

j=1Fix(Tj) ∩ GMEP (F, ϕ, B) = ∅. Assume for
each n, {ζ(n)

j }N
j=1 is a finite sequence of positive numbers such that

∑N
j=1 ζ

(n)
j = 1

for all n and infn≥1 ζ
(n)
j > 0 for all 0 ≤ j ≤ N . Let ε = max{εj : 1 ≤ j ≤ N}.

Assume also that either (B1) or (B2) holds. Let the mapping Wn be defined by

Wnx =
N∑

j=1

ζ
(n)
j Tjx, ∀x ∈ C.

Let {xn}, {un} and {zn} be sequences generated by


x1 = x ∈ C,

F (un, y) + ϕ(y)− ϕ(un) + 〈Bxn, y − un〉
+

1
rn

〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

zn = αnun + (1 − αn)Wnun,

Cn = {z ∈ C : ‖zn − z‖2 ≤ ‖xn − z‖2 − (1− αn)(αn − ε)‖un − Wnun‖2},
Qn = {z ∈ H : 〈xn − z, x − xn〉 ≥ 0},

xn+1 = PCn
⋂

Qn
x
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for every n=1, 2, .... If {αn}⊂ [c, d] for some c, d∈ (ε, 1) and {rn}⊂ [γ, τ ] for
some γ, τ∈(0, 2β). Then, {xn}, {un} and {zn} converge strongly to w = P∆1(x).

Theorem 3.5. Let C be a nonempty closed convex subset of a real Hilbert
space H . Let F be a bifunction from C×C to R satisfying (A1)-(A5) and ϕ : C →
R ∪ {+∞} be a proper lower semicontinuous and convex function. Let B be a
β-inverse strongly monotone mapping of C into H . Let N ≥ 1 be an integer. For
each 0 ≤ j ≤ N − 1, let Tj : C → C be an εj -strict pseudo-contraction for some
0 ≤ εj < 1 such that ∆2 = ∩N−1

j=0 Fix(Tj) ∩ V I(C, A) ∩ GMEP (F, ϕ, B) = ∅.
Let ε = max{εj : 0 ≤ j ≤ N − 1}. Assume that either (B1) or (B2) holds. Let
{xn}, {un} and {zn} be sequences generated by


x0 = x ∈ C,

F (un, y) + ϕ(y)− ϕ(un) + 〈Bxn, y − un〉
+

1
rn

〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

zn = αnun + (1− αn)T[n]un,

Cn = {z ∈ C : ‖zn − z‖2 ≤ ‖xn − z‖2 − (1− αn)(αn − ε)‖tn − T[n]tn‖2},
Qn = {z ∈ H : 〈xn − z, x − xn〉 ≥ 0},

xn+1 = PCn
⋂

Qn
x

for every n = 0, 1, 2, .... If {αn} ⊂ [c, d] for some c, d ∈ (ε, 1) and {rn} ⊂ [γ, τ ]
for some γ, τ ∈ (0, 2β). Then, {xn}, {un} and {zn} converge strongly to w =
P∆2(x).

Theorem 3.6. Let C be a nonempty closed convex subset of a real Hilbert
space H . Let F be a bifunction from C × C to R satisfying (A1)-(A5) and ϕ :
C → R∪{+∞} be a proper lower semicontinuous and convex function. Let S be
a pseudo-contraction and m-Lipschitz-continuous mapping of C into itself and B
be a β-inverse strongly monotone mapping of C into H . Let N ≥ 1 be an integer.
For each 1 ≤ j ≤ N , let Tj : C → C be an εj-strict pseudo-contraction for
some 0 ≤ εj < 1 such that Ω1 = ∩N

j=1Fix(Tj)∩Fix(S)∩GMEP (F, ϕ, B) = ∅.
Assume for each n, {ζ (n)

j }N
j=1 is a finite sequence of positive numbers such that∑N

j=1 ζ
(n)
j = 1 for all n and infn≥1 ζ

(n)
j > 0 for all 0 ≤ j ≤ N . Let ε = max{εj :

1 ≤ j ≤ N}. Assume also that either (B1) or (B2) holds. Let the mapping Wn be
defined by

Wnx =
N∑

j=1

ζ
(n)
j Tjx, ∀x ∈ C.

Let {xn}, {un}, {yn}, {tn} and {zn} be sequences generated by
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x1 = x ∈ C,

F (un, y) + ϕ(y)− ϕ(un) + 〈Bxn, y − un〉
+

1
rn

〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

yn = un − λn(un − Sun),

tn = PC(un − λn(yn − Syn)),

zn = αntn + (1− αn)Wntn,

Cn = {z ∈ C : ‖zn − z‖2 ≤ ‖xn − z‖2 − (1− αn)(αn − ε)‖tn − Wntn‖2},
Qn = {z ∈ H : 〈xn − z, x − xn〉 ≥ 0},

xn+1 = PCn
⋂

Qn
x

for every n = 1, 2, .... If {λn} ⊂ [a, b] for some a, b ∈ (0, 1
m+1 ), {αn} ⊂ [c, d] for

some c, d ∈ (ε, 1) and {rn} ⊂ [γ, τ ] for some γ, τ ∈ (0, 2α). Then, {xn}, {un},
{yn} , {tn} and {zn} converge strongly to w = PΩ1(x).

Proof. Let A = I−S. From the proof of Theorem 4.5 in [26], we know that the
mapping A is monotone and (m+1)-Lipschitz-continuous and Fix(S) = V I(C, A).
By Theorem 3.1 we obtain the desired result.

Theorem 3.7. Let C be a nonempty closed convex subset of a real Hilbert
space H . Let F be a bifunction from C × C to R satisfying (A1)-(A5) and ϕ :
C → R∪{+∞} be a proper lower semicontinuous and convex function. Let S be
a pseudo-contraction and m-Lipschitz-continuous mapping of C into itself and B
be a β-inverse strongly monotone mapping of C into H . Let N ≥ 1 be an integer.
For each 0 ≤ j ≤ N − 1, let Tj : C → C be an εj-strict pseudo-contraction for
some 0 ≤ εj < 1 such that Ω2 = ∩N−1

j=0 Fix(Tj)∩Fix(S)∩GMEP (F, ϕ,B) = ∅.
Let ε = max{εj : 0 ≤ j ≤ N − 1}. Assume that either (B1) or (B2) holds. Let
{xn}, {un}, {yn}, {tn} and {zn} be sequences generated by


x0 = x ∈ C,

F (un, y) + ϕ(y)− ϕ(un) + 〈Bxn, y − un〉
+

1
rn

〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

yn = un − λn(un − Sun),

tn = PC(un − λn(yn − Syn)),

zn = αntn + (1− αn)T[n]tn,

Cn = {z ∈ C : ‖zn − z‖2 ≤ ‖xn − z‖2 − (1− αn)(αn − ε)‖tn − T[n]tn‖2},
Qn = {z ∈ H : 〈xn − z, x − xn〉 ≥ 0},

xn+1 = PCn
⋂

Qn
(x)
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for every n = 0, 1, 2, .... If {λn} ⊂ [a, b] for some a, b ∈ (0, 1
m+1 ), {αn} ⊂

[c, d] for some c, d ∈ (ε, 1) and {rn} ⊂ [γ, τ ] for some γ, τ ∈ (0, 2β). Then,
{xn}, {un}, {yn} , {tn} and {zn} converge strongly to w = PΩ2(x).

Proof. By Theorem 3.2 and the proof of Theorem 3.6, we know that the
conclusion holds.

Remark 3.1.

(i) Let A = 0 in Theorem 3.3, we can also recover Theorem 3.5.
(ii) In Theorems 3.1 - 3.7, if we let part of the mappings F, B, ϕ be zero mappings,

we can obtain many new and interesting strong convergence theorems for some
algorithms for the special case of problem (1.1) (i.e., problems (1.2)-(1.7)).
Now we only give five examples as follows:

Corollary 3.1. Let C be a nonempty closed convex subset of a real Hilbert
space H . Let F be a bifunction from C × C to R satisfying (A1)-(A5) and ϕ :
C → R∪{+∞} be a proper lower semicontinuous and convex function. Let A be
a monotone and k-Lipschitz continuous mapping of C into H . Let N ≥ 1 be an
integer. For each 1 ≤ j ≤ N , let Tj : C → C be an εj -strict pseudo-contraction
for some 0 ≤ εj < 1 such that Λ = ∩N

j=1Fix(Tj) ∩ V I(C, A)∩ MEP (F, ϕ) = ∅.
Assume for each n, {ζ (n)

j }N
j=1 is a finite sequence of positive numbers such that∑N

j=1 ζ
(n)
j = 1 for all n and infn≥1 ζ

(n)
j > 0 for all 0 ≤ j ≤ N . Let ε = max{εj :

1 ≤ j ≤ N}. Assume also that either (B1) or (B2) holds. Let the mapping Wn be
defined by

Wnx =
N∑

j=1

ζ
(n)
j Tjx, ∀x ∈ C.

Let {xn}, {un}, {yn}, {tn} and {zn} be sequences generated by


x1 = x ∈ C,

F (un, y) + ϕ(y)− ϕ(un) +
1
rn

〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

yn = PC(un − λnAun),

tn = PC(un − λnAyn),

zn = αntn + (1− αn)Wntn,

Cn = {z ∈ C : ‖zn − z‖2 ≤ ‖xn − z‖2 − (1− αn)(αn − ε)‖tn − Wntn‖2},
Qn = {z ∈ H : 〈xn − z, x − xn〉 ≥ 0},

xn+1 = PCn
⋂

Qn
x
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for every n = 1, 2, .... If {λn} ⊂ [a, b] for some a, b ∈ (0, 1
k ), {αn} ⊂ [c, d] for

some c, d ∈ (ε, 1) and {rn} ⊂ [γ, +∞) for some γ > 0. Then, {xn}, {un}, {yn},
{tn} and {zn} converge strongly to w = PΛ(x).

Proof. Putting B = 0, by Theorem 3.1 we obtain the desired result.

Corollary 3.2. Let C be a nonempty closed convex subset of a real Hilbert
space H . Let F be a bifunction from C × C to R satisfying (A1)-(A5). Let A be
a monotone and k-Lipschitz continuous mapping of C into H . Let N ≥ 1 be an
integer. For each 0 ≤ j ≤ N−1, let Tj : C → C be an εj -strict pseudo-contraction
for some 0 ≤ εj < 1 such that Σ = ∩N−1

j=0 Fix(Tj) ∩ V I(C, A)∩EP (F ) = ∅. Let
ε = max{εj : 0 ≤ j ≤ N − 1}. Assume that either (B3) or (B2) holds. Let {xn},
{un}, {yn}, {tn} and {zn} be sequences generated by


x0 = x ∈ C,

F (un, y) +
1
rn

〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

yn = PC(un − λnAun),

tn = PC(un − λnAyn),

zn = αntn + (1− αn)T[n]tn,

Cn = {z ∈ C : ‖zn − z‖2 ≤ ‖xn − z‖2 − (1− αn)(αn − ε)‖tn − T[n]tn‖2},
Qn = {z ∈ H : 〈xn − z, x − xn〉 ≥ 0},

xn+1 = PCn
⋂

Qn
(x)

for every n = 0, 1, 2, .... If {λn} ⊂ [a, b] for some a, b ∈ (0, 1
k ), {αn} ⊂ [c, d] for

some c, d ∈ (ε, 1) and {rn} ⊂ [γ, +∞) for some γ > 0. Then, {xn}, {un}, {yn},
{tn} and {zn} converge strongly to w = PΣ(x).

Proof. Putting F = 0 and ϕ = 0. By Theorem 3.2 we obtain the desired result.

Corollary 3.3. Let C be a nonempty closed convex subset of a real Hilbert
space H . Let A be a monotone and k-Lipschitz continuous mapping of C into H

and B be a β-inverse strongly monotone mapping of C into H . Let N ≥ 1 be an
integer. For each 1 ≤ j ≤ N , let Tj : C → C be an εj-strict pseudo-contraction
for some 0 ≤ εj < 1 such that Θ1 = ∩N

j=1Fix(Tj) ∩ V I(C, A)∩∩V I(C, B) = ∅.
Assume for each n, {ζ (n)

j }N
j=1 is a finite sequence of positive numbers such that∑N

j=1 ζ
(n)
j = 1 for all n and inf n≥1 ζ

(n)
j > 0 for all 0 ≤ j ≤ N . Let ε = max{εj :

1 ≤ j ≤ N}. Let the mapping Wn be defined by

Wnx =
N∑

j=1

ζ
(n)
j Tjx, ∀x ∈ C.
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Let {xn}, {un}, {yn}, {tn} and {zn} be sequences generated by


x1 = x ∈ C,

un = PC(xn − rnBxn),

yn = PC(un − λnAun),

tn = PC(un − λnAyn),

zn = αntn + (1− αn)Wntn,

Cn = {z ∈ C : ‖zn − z‖2 ≤ ‖xn − z‖2 − (1− αn)(αn − ε)‖tn − Wntn‖2},
Qn = {z ∈ H : 〈xn − z, x − xn〉 ≥ 0},

xn+1 = PCn
⋂

Qn
x

for every n = 1, 2, .... If {λn} ⊂ [a, b] for some a, b ∈ (0, 1
k ), {αn} ⊂ [c, d] for

some c, d ∈ (ε, 1) and {rn} ⊂ [γ, τ ] for some γ, τ ∈ (0, 2β). Then, {xn}, {un},
{yn} , {tn} and {zn} converge strongly to w = PΘ1(x).

Proof. In Theorem 3.1, put F = 0 and ϕ = 0. Then, we obtain that

〈Bxn, y − un〉 +
1
rn

〈y − un, un − xn〉 ≥ 0, ∀y ∈ C, ∀n ≥ 1.

This implies that

〈y − un, un − (xn − rnBxn)〉 ≥ 0, ∀y ∈ C, ∀n ≥ 1.

So, we get that un = PC(xn − rnBxn) for all n ≥ 1. Then we obtain the desired
result from Theorem 3.1.

Corollary 3.4. Let C be a nonempty closed convex subset of a real Hilbert
space H . Let A be a monotone and k-Lipschitz continuous mapping of C into H
and B be a β-inverse strongly monotone mapping of C into H . Let N ≥ 1 be an
integer. For each 0 ≤ j ≤ N−1, let Tj : C → C be an εj -strict pseudo-contraction
for some 0 ≤ εj < 1 such that Θ2 = ∩N−1

j=0 Fix(Tj) ∩ V I(C, A) ∩ V I(C, B) = ∅.
Let ε = max{εj : 0 ≤ j ≤ N − 1}. Let {xn}, {un}, {yn}, {tn} and {zn} be
sequences generated by


x0 = x ∈ C,

un = PC(xn − rnBxn),

yn = PC(un − λnAun),

tn = PC(un − λnAyn),

zn = αntn + (1− αn)T[n]tn,

Cn = {z ∈ C : ‖zn − z‖2 ≤ ‖xn − z‖2 − (1− αn)(αn − ε)‖tn − T[n]tn‖2},
Qn = {z ∈ H : 〈xn − z, x − xn〉 ≥ 0},

xn+1 = PCn
⋂

Qn
x



1564 Jian-Wen Peng and Jen-Chih Yao

for every n = 0, 1, 2, .... If {λn} ⊂ [a, b] for some a, b ∈ (0, 1
k ), {αn} ⊂ [c, d] for

some c, d ∈ (ε, 1) and {rn} ⊂ [γ, τ ] for some γ, τ ∈ (0, 2β). Then, {xn}, {un},
{yn} , {tn} and {zn} converge strongly to w = PΘ2(x).

Proof. Putting F = 0 and ϕ = 0, by Theorem 3.2 and the proof of Corollary
3.4, we obtain the desired result.

Corollary 3.5. Let C be a nonempty closed convex subset of a real Hilbert
space H . Let ϕ : C → R ∪ {+∞} be a proper lower semicontinuous and convex
function. Let A be a monotone and k-Lipschitz continuous mapping of C into H .
Let N ≥ 1 be an integer. For each 1 ≤ j ≤ N , let Tj : C → C be an εj -strict
pseudo-contraction for some 0 ≤ ε j < 1 such that Ξ = ∩N

j=1Fix(Tj)∩V I(C, A)∩
Argmin(ϕ) = ∅. Assume for each n, {ζ (n)

j }N
j=1 is a finite sequence of positive

numbers such that
∑N

j=1 ζ
(n)
j = 1 for all n and inf n≥1 ζ

(n)
j > 0 for all 0 ≤ j ≤ N .

Let ε = max{εj : 1 ≤ j ≤ N}. Assume also that either (B4) or (B2) holds. Let
the mapping Wn be defined by

Wnx =
N∑

j=1

ζ
(n)
j Tjx, ∀x ∈ C.

Let {xn}, {un}, {yn}, {tn} and {zn} be sequences generated by


x1 = x ∈ C,

ϕ(y)− ϕ(un) +
1
rn

〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

yn = PC(un − λnAun),

tn = PC(un − λnAyn),

zn = αntn + (1− αn)Wntn,

Cn = {z ∈ C : ‖zn − z‖2 ≤ ‖xn − z‖2 − (1− αn)(αn − ε)‖tn − Wntn‖2},
Qn = {z ∈ H : 〈xn − z, x − xn〉 ≥ 0},

xn+1 = PCn
⋂

Qn
x

for every n = 1, 2, .... If {λn} ⊂ [a, b] for some a, b ∈ (0, 1
k ), {αn} ⊂ [c, d] for

some c, d ∈ (ε, 1) and {rn} ⊂ [γ, +∞) for some γ > 0. Then, {xn}, {un}, {yn},
{tn} and {zn} converge strongly to w = PΞ(x).

Proof. Putting F = 0 and B = 0, by Theorem 3.1 we obtain the desired result.

Remark 3.2.

(i) Since the nonexpansive mappings has been replaced by the strict pseudo-
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contraction mappings, Theorems 3.1-3.7 improve Theorem 3.1 in [1] and
Theorem 3.1 in [4]. Theorems 3.1 -3.7 extend and improve Theorem 4.1 in
[2], Theorem 4.1 in [4], Theorem 3.2 in [10], Theorem 3.1 in [11], Theorem
3.1 in [12]. Corollary 3.3 and 3.4 generalize and improve Theorem 3.1 in
[24] and Theorem 3.1 in [25].

(ii) Since the inverse strongly monotonicity of the mapping A has been weakened
by the monotonicity of A, Theorem 3.1, 3.2, Corollary 3.1 and 3.2 also extend
and improve Theorem 3.1 in [15] and Theorem 3.1 in [16].

4. WEAK CONVERGENCE THEOREMS

we first show weak convergence theorems of the parallel and cyclic algorithms
based on extragradient method which solves the problem of finding a common
element of the set of solutions of a generalized mixed equilibrium problem, the set
of fixed points of a finite family of strict pseudo-contractions and the set of the
variational inequality for a monotone, Lipschitz continuous mapping in a Hilbert
space.

Theorem 4.1. Let C be a nonempty closed convex subset of a real Hilbert
space H . Let F be a bifunction from C × C to R satisfying (A1)-(A5) and ϕ :
C → R ∪ {+∞} be a proper lower semicontinuous and convex function. Let A
be a monotone and k-Lipschitz continuous mapping of C into H and B be a β-
inverse strongly monotone mapping of C into H . Let N ≥ 1 be an integer. For each
1 ≤ j ≤ N , let Tj : C → C be an εj-strict pseudo-contraction for some 0 ≤ ε j < 1
such that Γ1 = ∩N

j=1Fix(Tj) ∩ V I(C, A) ∩ GMEP (F, ϕ, B) = ∅. Assume for
each n, {ζ(n)

j }N
j=1 is a finite sequence of positive numbers such that

∑N
j=1 ζ

(n)
j = 1

for all n and inf n≥1 ζ
(n)
j > 0 for all 0 ≤ j ≤ N . Let ε = max{εj : 1 ≤ j ≤ N}.

Assume also that either (B1) or (B2) holds. Let {xn}, {un}, {tn} and {yn} be
sequences generated by



x1 = x ∈ C,

F (un, y) + ϕ(y)− ϕ(un) + 〈Bxn, y − un〉

+
1
rn

〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

yn = PC(un − λnAun),

tn = PC(un − λnAyn),

xn+1 = αntn + (1− αn)
N∑

j=1

ζ
(n)
j Tjtn,
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for every n = 1, 2, .... If {λn} ⊂ [a, b] for some a, b ∈ (0, 1
k ), {αn} ⊂ [c, d] for

some c, d ∈ (ε, 1) and {rn} ⊂ [γ, τ ] for some γ, τ ∈ (0, 2β). Then, {xn}, {un},
{tn} and {yn} converge weakly to w ∈ Γ1, where w = limn→∞ PΓ1xn.

Proof. Let u ∈ Γ1 and let {Trn} be a sequence of mappings defined as in
Lemma 2.1 in [31]. Then u = PC(u − λnAu) = Trn(u − rnBu). From the proof
of Theorem 3.1, we have

(4.1) ‖un − u‖2 ≤ ‖xn − u‖2 + rn(rn − 2β)‖Bxn − Bu‖2 ≤ ‖xn − u‖2.

(4.2) ‖tn − u‖2 ≤ ‖un − u‖2 + (λn
2k2 − 1)‖un − yn‖2 ≤ ‖un − u‖2.

(4.3) ‖un − u‖2 ≤ ‖xn − u‖2 − ‖xn − un‖2 + 2rn〈Bxn − Bu, xn − un〉.

And

(4.4) ‖tn − yn‖ ≤ λnk‖yn − un‖.

For each n ≥ 1, let Wn =
∑N

j=1 ζ
(n)
j Tj . By Lemma 2.2, we know that Wn is ε-

strict pseudo-contraction and F (Wn) = ∩N
j=1Fix(Tj). It follows from (4.1), (4.2),

xn+1 = αntn + (1 − αn)Wntn and u = Wnu that

(4.5)

‖xn+1 − u‖2

= αn‖tn − u‖2 + (1− αn)‖Wntn − u‖2 − αn(1− αn)‖tn − Wntn‖2

≤ αn‖tn − u‖2 + (1− αn)[‖tn − u‖2

+ε‖tn − Wntn‖2]− αn(1 − αn)‖tn − Wntn‖2

= ‖tn − u‖2 + (1 − αn)(ε− αn)‖tn − Wntn‖2

≤ ‖un − u‖2

+(λn
2k2 − 1)‖un − yn‖2 + (1 − αn)(ε− αn)‖tn − Wntn‖2

≤ ‖xn − u‖2 + (λn
2k2 − 1)‖un − yn‖2

≤ ‖xn − u‖2,

for every n = 1, 2, .... Therefore, there exists θ = limn→∞ ‖xn − u‖ and {xn} is
bounded. From (4.1) and (4.2), we also obtain that {tn} and {un} are bounded.

By (4.5), we have

‖un − yn‖2 ≤ 1
(1− αn)(1 − λn

2k2)

(
‖xn − u‖2 − ‖xn+1 − u‖2

)
.



Some New Iterative Algorithms for Generalized Mixed Equilibrium Problems 1567

Hence, ‖un − yn‖ → 0. It follows from (4.4) that limn→∞ ‖tn − yn‖ = 0. From
‖un − tn‖ ≤ ‖un − yn‖ + ‖yn − tn‖ we also have ‖un − tn‖ → 0. As A is
k-Lipschitz continuous, we have ‖Ayn − Atn‖ → 0.

From (4.5) and (4.1), we also have

(4.6) ‖xn+1 − u‖2 ≤ ‖xn − u‖2 + (1 − αn)(ε − αn)‖tn − Wntn‖2,

for every n = 1, 2, ....
From ε < c ≤ αn ≤ d < 1 and (4.6), we have

(1−d)(c−ε)‖tn−Wntn‖2≤(1−αn)(αn−ε)‖tn−Wntn‖2≤‖xn−u‖2−‖xn+1−u‖2.

This implies that

(4.7) lim
n→∞ ‖tn − Wntn‖ = 0.

Also by (4.5) and (4.1), we have

‖xn+1 − u‖2 ≤ ‖un − u‖2 ≤ ‖xn − u‖2 + rn(rn − 2β)‖Bxn − Bu‖2.

Thus, we have

γ(2β−τ)‖Bxn −Bu‖2 ≤ rn(2β−rn)‖Bxn−Bu‖2 ≤ ‖xn−u‖2−‖xn+1−u‖2.

It follows that ‖Bxn − Bu‖ → 0.
By (4.5) and (4.3),

‖xn+1−u‖2 ≤ ‖un−u‖2 ≤ ‖xn−u‖2−‖xn−un‖2 +2rn〈Bxn −Bu, xn−un〉.
Hence,

‖xn − un‖2 ≤ ‖xn − u‖2 − ‖xn+1 − u‖2 + 2rn‖Bxn − Bu‖‖xn − un‖.
Since ‖Bxn−Bu‖ → 0, {xn} and {un} are bounded, we obtain ‖xn−un‖ → 0.

From ‖tn − xn‖ ≤ ‖tn − un‖ + ‖xn − un‖ we also have ‖tn − xn‖ → 0.
As {xn} is bounded, there exists a subsequence {xni} of {xn} such that xni ⇀

w. From ‖xn − un‖ → 0 and ‖tn − xn‖ → 0, we obtain that uni ⇀ w and
tni ⇀ w. Since {uni} ⊂ C and C is closed and convex, we obtain w ∈ C. By
the similar argument with that in the proof of Theorem 3.1, we can obtain that
w ∈ ∩N

k=1Fix(Tk). And by the similar argument as in the proof of Theorem 3.1
in [1], we can show w ∈ GMEP (F, ϕ, B) and w ∈ V I(C, A), which implies
w ∈ Γ1.

Let {xnj} be another subsequence of {xn} such that xnj ⇀ z. Then z ∈ Γ1.
Let us show w = z. Assume that w = z. From the Opial condition, we have

lim
n→∞ ‖xn − w‖ = lim inf

i→∞
‖xni − w‖ < lim inf

i→∞
‖xni − z‖
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= lim
n→∞ ‖xn − z‖ = lim inf

j→∞
‖xnj − z‖

< lim inf
j→∞

‖xnj − w‖ = lim
n→∞ ‖xn − w‖.

This is a contradiction. Thus, we have w = z. This implies that xn ⇀ w ∈ Γ1.
Since ‖xn − un‖ → 0, we have un ⇀ w ∈ Γ1. Since ‖yn − un‖ → 0, we have
also yn ⇀ w ∈ Γ1.

Now put wn = PΓ1(xn). We show that w = limn→∞ wn.
From wn = PΓ1(xn) and w ∈ Γ1, we have

〈w − wn, wn − xn〉 ≥ 0.

From (4.5) and Lemma 2.1, we know that {wn} converges strongly to some w0 ∈ Γ1.
Then, we have

〈w − w0, w0 − w〉 ≥ 0

and hence w = w0. The proof is now complete.

Theorem 4.2. Let C be a nonempty closed convex subset of a real Hilbert
space H . Let F be a bifunction from C×C to R satisfying (A1)-(A5) and ϕ : C →
R ∪ {+∞} be a proper lower semicontinuous and convex function. Let A be a
monotone and k-Lipschitz continuous mapping of C into H and B be a β-inverse
strongly monotone mapping of C into H . Let N ≥ 1 be an integer. For each
0 ≤ j ≤ N − 1, let Tj : C → C be an εj-strict pseudo-contraction for some
0 ≤ εj < 1 such that Γ2 = ∩N−1

j=0 Fix(Tj) ∩ V I(C, A) ∩ GMEP (F, ϕ, B) = ∅.
Let ε = max{εj : 0 ≤ j ≤ N − 1}. Assume that either (B1) or (B2) holds. Let
{xn}, {un}, {tn} and {yn} be sequences generated by



x0 = x ∈ C,

F (un, y) + ϕ(y)− ϕ(un) + 〈Bxn, y − un〉
+

1
rn

〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

yn = PC(un − λnAun),

tn = PC(un − λnAyn),

xn+1 = αntn + (1 − αn)T[n]tn,

for every n = 0, 1, 2, .... If {λn} ⊂ [a, b] for some a, b ∈ (0, 1
k ), {αn} ⊂ [c, d] for

some c, d ∈ (ε, 1) and {rn} ⊂ [γ, τ ] for some γ, τ ∈ (0, 2β). Then, {xn}, {un} ,
{tn} and {yn} converge weakly to w ∈ Γ2, where w = limn→∞ PΓ2(xn).

Proof. Let u ∈ Γ2 and let {Trn} be a sequence of mappings defined as in
Lemma 2.1 in [31]. Then u = PC(u − λnAu) = Trn(u − rnBu). From the proof
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of Theorem 3.2, we have:

(4.1) ‖un − u‖2 ≤ ‖xn − u‖2 + rn(rn − 2β)‖Bxn − Bu‖2 ≤ ‖xn − u‖2.

(4.2) ‖tn − u‖2 ≤ ‖un − u‖2 + (λn
2k2 − 1)‖un − yn‖2 ≤ ‖un − u‖2.

(4.3) ‖un − u‖2 ≤ ‖xn − u‖2 − ‖xn − un‖2 + 2rn〈Bxn − Bu, xn − un〉.

(4.4) ‖tn − yn‖ ≤ λnk‖yn − un‖.

(4.8) ‖T[n]x − T[n]y‖2 ≤ ‖x − y‖2 + ε‖x − T[n]x − (y − T[n]y)‖2, ∀x, y ∈ C.

(4.9) ‖xn − T[n]xn‖ ≤ (1 + L)‖xn − tn‖+ ‖tn − T[n]tn‖,

where L = max0≤j≤N−1{1−εj

1+εj
}. And

(4.10) ‖xn − T[n+j]xn‖ ≤ (1 + L)‖xn − xn+j‖ + ‖xn+j − T[n+j]xn+j‖.
It follows from (4.1), (4.2) and (4.8), xn+1 = αntn +(1−αn)T[n]tn and u = T[n]u
that

(4.11)

‖xn+1 − u‖2

= αn‖tn − u‖2 + (1 − αn)‖T[n]tn − u‖2 − αn(1− αn)‖tn − T[n]tn‖2

≤ αn‖tn − u‖2 + (1 − αn)[‖tn − u‖2

+ε‖tn − T[n]tn‖2] − αn(1− αn)‖tn − T[n]tn‖2

= ‖tn − u‖2 + (1 − αn)(ε − αn)‖tn − T[n]tn‖2

≤ ‖un − u‖2 + (λn
2k2 − 1)‖un − yn‖2

+(1− αn)(ε − αn)‖tn − T[n]tn‖2

≤ ‖xn − u‖2 + (λn
2k2 − 1)‖un − yn‖2

≤ ‖xn − u‖2,

for every n = 0, 1, 2, .... Therefore, there exists θ = limn→∞ ‖xn − u‖ and {xn}
is bounded. From (4.1) and (4.2), we also obtain that {tn} and {un} are bounded.

It follows from (4.11) that

‖un − yn‖2 ≤ 1
(1 − αn)(1− λn

2k2)

(
‖xn − u‖2 − ‖xn+1 − u‖2

)
.

Hence, ‖un − yn‖ → 0. It follows from (4.4) that limn→∞ ‖tn − yn‖ = 0. From
‖un − tn‖ ≤ ‖un − yn‖ + ‖yn − tn‖ we also have ‖un − tn‖ → 0. As A is
k-Lipschitz continuous, we have ‖Ayn − Atn‖ → 0.
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From (4.10) and (4.1), we also obtain

(4.12) ‖xn+1 − u‖2 ≤ ‖xn − u‖2 + (1− αn)(ε − αn)‖tn − T[n]tn‖2,

for every n = 0, 1, 2, ....
From ε < c ≤ αn ≤ d < 1 and (4.12), we have

(1−d)(c−ε)‖tn−T[n]tn‖2 ≤ (1−αn)(αn−ε)‖tn−T[n]tn‖2 ≤ ‖xn−u‖2−‖xn+1−u‖2.

This implies that

(4.13) lim
n→∞ ‖tn − T[n]tn‖ = 0.

By (4.11) and (4.1), we have

‖xn+1 − u‖2 ≤ ‖un − u‖2 ≤ ‖xn − u‖2 + rn(rn − 2β)‖Bxn − Bu‖2.

Thus, we have

γ(2β−τ)‖Bxn −Bu‖2 ≤ rn(2β−rn)‖Bxn−Bu‖2 ≤ ‖xn−u‖2−‖xn+1−u‖2.

Thus, we have ‖Bxn − Bu‖ → 0.
It follows from (4.11) and (4.3) that

‖xn+1−u‖2 ≤ ‖un−u‖2 ≤ ‖xn−u‖2−‖xn−un‖2 +2rn〈Bxn −Bu, xn−un〉.

Hence,

‖xn − un‖2 ≤ ‖xn − u‖2 − ‖xn+1 − u‖2 + 2rn‖Bxn − Bu‖‖xn − un‖.

Since ‖Bxn − Bu‖ → 0, {xn} and {un} are bounded, we obtain ‖xn − un‖ → 0.
From ‖tn −xn‖ ≤ ‖tn −un‖+‖xn −un‖ we also have ‖tn −xn‖ → 0. It follows
from (4.9) and (4.13) that

(4.14) lim
n→∞ ‖xn − T[n]xn‖ = 0.

Since ‖T[n]tn − xn‖ ≤ ‖T[n]tn − tn‖+ ‖tn − xn‖, it follows from (4.13) that

(4.15) lim
n→∞ ‖T[n]tn − xn‖ = 0.

We observe that

‖xn+1 − xn‖2 ≤ αn‖tn − xn‖2 + (1 − αn)‖T[n]tn − xn‖2.
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It follows from (4.15) that limn→∞ ‖xn+1 − xn‖ = 0. It is easy to see that

(4.16) lim
n→∞ ‖xn+j − xn‖ = 0, ∀j = 0, 1, ..., N − 1.

By (4.10), (4.14) and (4.16), we get

lim
n→∞ ‖xn − T[n+j]xn‖ = 0.

As {xn} is bounded, there exists a subsequence {xni} of {xn} such that xni ⇀ w.
From ‖xn − un‖ → 0 and ‖tn − xn‖ → 0, we obtain that uni ⇀ w and tni ⇀ w.
Since {uni} ⊂ C and C is closed and convex, we obtain w ∈ C. By similar
argument with that in the proof of Theorem 3.2, we know that w ∈ ∩N−1

j=0 Fix(Tj).
The rest of the proof is similar with that in the proof of Theorem 4.1. The proof is
now complete.

we now derive a weak convergence theorem of the cyclic algorithm based on
nonextragradient method which solves the problem of finding a common element
of the set of solutions of a generalized mixed equilibrium problem, the set of fixed
points of a finite family of strict pseudo-contractions and the set of the variational
inequality for an inverse strongly monotone mapping in a Hilbert space.

Theorem 4.3. Let C be a nonempty closed convex subset of a real Hilbert
space H . Let F be a bifunction from C × C to R satisfying (A1)-(A5) and ϕ :
C → R ∪ {+∞} be a proper lower semicontinuous and convex function. Let
A : C → H and B : C → H be α-inverse strongly monotone and β-inverse
strongly monotone, respectively. Let N ≥ 1 be an integer. For each 0 ≤ j ≤ N−1,
let Tj : C → C be an εj -strict pseudo-contraction for some 0 ≤ ε j < 1 such that
Γ2 = ∩N−1

j=0 Fix(Tj) ∩ V I(C, A) ∩ GMEP (F, ϕ, B) = ∅. Let ε = max{εj : 0 ≤
j ≤ N −1}. Assume also that either (B1) or (B2) holds. Let {xn}, {un} and {yn}
be sequences generated by




x0 = x ∈ C,

F (un, y) + ϕ(y)− ϕ(un) + 〈Bxn, y − un〉

+
1
rn

〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

yn = PC(un − λnAun),

xn+1 = αnyn + (1− αn)T[n]yn,

for every n = 0, 1, 2, .... If {λn} ⊂ [a, b] for some a, b ∈ (0, 2α), {αn} ⊂
[c, d] for some c, d ∈ (ε, 1) and {rn} ⊂ [γ, τ ] for some γ, τ ∈ (0, 2β). Then,
{xn}, {un} and {yn} converge weakly to w ∈ Γ2, where w = PΓ2(xn).
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Proof. Let u ∈ Γ2 and let {Trn} be a sequence of mappings defined as in
Lemma 2.1 in [31]. Then u = PC(u − λnAu) = Trn(u − rnBu). From the proof
of Theorem 3.3, we have:

(4.1) ‖un − u‖2 ≤ ‖xn − u‖2 + rn(rn − 2β)‖Bxn − Bu‖2 ≤ ‖xn − u‖2.

(4.8) ‖T[n]x − T[n]y‖2 ≤ ‖x− y‖2 + ε‖x − T[n]x − (y − T[n]y)‖2, ∀x, y ∈ C.

(4.10) ‖xn − T[n+j]xn‖ ≤ (1 + L)‖xn − xn+j‖ + ‖xn+j − T[n+j]xn+j‖,

where L = max0≤j≤N−1{1−εj

1+εj
}.

(4.17) ‖xn − T[n]xn‖ ≤ (1 + L)‖xn − yn‖ + ‖yn − T[n]yn‖.

(4.18) ‖yn − u‖2 ≤ ‖un − u‖2 + λn(λn − 2α)‖Aun − Au‖2 ≤ ‖un − u‖.

(4.19) ‖un − u‖2 ≤ ‖xn − u‖2 − ‖xn − un‖2 + 2rn〈Bxn − Bu, xn − un〉.
And

(4.20)
‖yn − u‖2 ≤ ‖un − u‖2 − ‖un − yn‖2

+2λn〈un − yn, Aun − Au〉 − λ2
n‖Aun − Au‖2.

It follows from (4.1), (4.8), (4.18), xn+1 = αnyn+(1−αn)T[n]yn and u = T[n]u

that

(4.21)

‖xn+1 − u‖2

= αn‖yn−u‖2 + (1−αn)‖T[n]yn−u‖2 − αn(1−αn)‖yn−T[n]yn‖2

≤ αn‖yn − u‖2 + (1− αn)[‖yn − u‖2

+ε‖yn − T[n]yn‖2] − αn(1− αn)‖yn − T[n]yn‖2

= ‖yn − u‖2 + (1 − αn)(ε− αn)‖yn − T[n]yn‖2

≤ ‖un − u‖2 + λn(λn − 2α)‖Aun − Au‖2

+(1 − αn)(ε − αn)‖yn − T[n]yn‖2

≤ ‖xn − u‖2 + λn(λn − 2α)‖Aun − Au‖2

≤ ‖xn − u‖2,

for every n = 0, 1, 2, .... Therefore, there exists θ = limn→∞ ‖xn −u‖ and {xn} is
bounded. From (4.1) and (4.18), we also obtain that {yn} and {un} are bounded.

It follows from (4.21) that
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‖Aun − Au‖2 ≤ 1
λn(2α − λn)

(
‖xn − u‖2 − ‖xn+1 − u‖2

)
≤ 1

a(2α − b)

(
‖xn − u‖2 − ‖xn+1 − u‖2

)
.

Hence, ‖Aun − Au‖ → 0.
From (4.21) and (4.1), we also have

(4.22) ‖xn+1 − u‖2 ≤ ‖xn − u‖2 + (1 − αn)(ε− αn)‖yn − T[n]yn‖2,

for every n = 0, 1, 2, .... From ε < c ≤ αn ≤ d < 1 and (4.22), we have

(1−d)(c−ε)‖yn−T[n]yn‖2≤(1−αn)(αn−ε)‖yn−T[n]yn‖2≤‖xn−u‖2−‖xn+1−u‖2.

This implies that

(4.23) lim
n→∞ ‖yn − T[n]yn‖ = 0.

Also by (4.21) and (4.1), we have

‖xn+1 − u‖2 ≤ ‖un − u‖2 ≤ ‖xn − u‖2 + rn(rn − 2β)‖Bxn − Bu‖2.

Thus, we have

γ(2β−τ)‖Bxn −Bu‖2 ≤ rn(2β−rn)‖Bxn−Bu‖2 ≤ ‖xn−u‖2−‖xn+1−u‖2.

It follows that ‖Bxn − Bu‖ → 0.
By (4.21) and (4.19), we have

‖xn+1−u‖2 ≤ ‖un−u‖2 ≤ ‖xn−u‖2−‖xn−un‖2 +2rn〈Bxn −Bu, xn−un〉.

Hence,

‖xn − un‖2 ≤ ‖xn − u‖2 − ‖xn+1 − u‖2 + 2rn‖Bxn − Bu‖‖xn − un‖.

Since ‖Bxn − Bu‖ → 0, {xn} and {un} are bounded, we obtain ‖xn − un‖ → 0.
From (4.21), (4.1) and (4.20), we have

‖xn+1−u‖2 ≤ ‖yn−u‖2 ≤ ‖xn−u‖2−‖un−yn‖2+2λn‖un−yn‖‖Aun−Au‖.

Thus, we have

‖un − yn‖2 ≤ ‖xn − u‖2 − ‖xn+1 − u‖2 + 2λn‖un − yn‖‖Aun − Au‖.
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It follows from ‖Aun − Au‖ → 0 that ‖un − yn‖ → 0. From ‖yn − xn‖ ≤
‖yn − un‖ + ‖xn − un‖ we also have ‖yn − xn‖ → 0. It follows from (4.17) and
(4.23) that

(4.24) lim
n→∞ ‖xn − T[n]xn‖ = 0.

Since ‖T[n]yn − xn‖ ≤ ‖T[n]yn − yn‖+ ‖yn − xn‖, it follows from (4.23) that

(4.25) lim
n→∞ ‖T[n]yn − xn‖ = 0.

We observe that

‖xn+1 − xn‖2 ≤ αn‖yn − xn‖2 + (1 − αn)‖T[n]yn − xn‖2.

It follows from (4.25) that limn→∞ ‖xn+1 − xn‖ = 0. It is easy to see that

(4.26) lim
n→∞ ‖xn+j − xn‖ = 0, ∀j = 0, 1, ..., N − 1.

It follows from (4.10) and (4.26) that for each j = 0, 1, ..., N − 1

(4.27) lim
n→∞ ‖xn − T[n+j]xn‖ = 0.

As {xn} is bounded, there exists a subsequence {xni} of {xn} such that xni ⇀

w. From ‖xn − un‖ → 0 and ‖yn − xn‖ → 0, we obtain that uni ⇀ w and
yni ⇀ w. Since {uni} ⊂ C and C is closed and convex, we obtain w ∈ C. The
rest of the proof is similar with that in the proof of Theorem 4.2. The proof is now
complete.

Let A=0, by Theorem4.1 and4.2, respectively, we obtain the following results:

Theorem 4.4. Let C be a nonempty closed convex subset of a real Hilbert
space H . Let F be a bifunction from C × C to R satisfying (A1)-(A5) and ϕ :
C → R ∪ {+∞} be a proper lower semicontinuous and convex function. Let B
be a β-inverse strongly monotone mapping of C into H . Let N ≥ 1 be an integer.
For each 1 ≤ j ≤ N , let Tj : C → C be an εj -strict pseudo-contraction for some
0 ≤ εj < 1 such that ∆1 = ∩N

j=1Fix(Tj) ∩ GMEP (F, ϕ, B) = ∅. Assume for
each n, {ζ(n)

j }N
j=1 is a finite sequence of positive numbers such that

∑N
j=1 ζ

(n)
j = 1

for all n and infn≥1 ζ
(n)
j > 0 for all 0 ≤ j ≤ N . Let ε = max{εj : 1 ≤ j ≤ N}.

Assume also that either (B1) or (B2) holds. Let {xn} and {un} be sequences
generated by



x1 = x ∈ C,

F (un, y) + ϕ(y)− ϕ(un) + 〈Bxn, y − un〉
+

1
rn

〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

xn+1 = αnun + (1− αn)
N∑

j=1

ζ
(n)
j Tjun,
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for every n = 1, 2, .... If {αn} ⊂ [c, d] for some c, d ∈ (ε, 1) and {rn} ⊂ [γ, τ ]
for some γ, τ ∈ (0, 2β). Then, {xn} and {un} converge weakly to w ∈ ∆1, where
w = limn→∞ P∆1xn.

Theorem 4.5. Let C be a nonempty closed convex subset of a real Hilbert
space H . Let F be a bifunction from C × C to R satisfying (A1)-(A5) and ϕ :
C → R ∪ {+∞} be a proper lower semicontinuous and convex function. Let B

be a β-inverse strongly monotone mapping of C into H . Let N ≥ 1 be an integer.
For each 0 ≤ j ≤ N − 1, let Tj : C → C be an εj-strict pseudo-contraction for
some 0 ≤ εj < 1 such that ∆2 = ∩N−1

j=0 Fix(Tj) ∩ GMEP (F, ϕ, B) = ∅. Let
ε = max{εj : 0 ≤ j ≤ N − 1}. Assume that either (B1) or (B2) holds. Let {xn}
and {un} be sequences generated by


x0 = x ∈ C,

F (un, y)+ϕ(y)−ϕ(un)+〈Bxn, y−un〉+ 1
rn

〈y−un, un−xn〉≥0, ∀y∈C,

xn+1 = αnun + (1− αn)T[n]un,

for every n = 0, 1, 2, .... If {αn} ⊂ [c, d] for some c, d ∈ (ε, 1) and {rn} ⊂ [γ, τ ]
for some γ, τ ∈ (0, 2β). Then, {xn}, {un} , {tn} and {yn} converge weakly
to w ∈ ∆2, where w = limn→∞ P∆2(xn).

Theorem 4.6. Let C be a nonempty closed convex subset of a real Hilbert
space H . Let F be a bifunction from C × C to R satisfying (A1)-(A5) and ϕ :
C → R∪{+∞} be a proper lower semicontinuous and convex function. Let S be
a pseudo-contraction and m-Lipschitz-continuous mapping of C into itself and B

be a β-inverse strongly monotone mapping of C into H . Let N ≥ 1 be an integer.
For each 1 ≤ j ≤ N , let Tj : C → C be an εj-strict pseudo-contraction for
some 0 ≤ εj < 1 such that Ω1 = ∩N

j=1Fix(Tj)∩Fix(S)∩GMEP (F, ϕ, B) = ∅.
Assume for each n, {ζ (n)

j }N
j=1 is a finite sequence of positive numbers such that∑N

j=1 ζ
(n)
j = 1 for all n and infn≥1 ζ

(n)
j > 0 for all 0 ≤ j ≤ N . Let ε = max{εj :

1 ≤ j ≤ N}. Assume also that either (B1) or (B2) holds. Let {xn}, {un}, {tn}
and {yn} be sequences generated by


x1 = x ∈ C,

F (un, y)+ϕ(y)−ϕ(un)+〈Bxn, y−un〉+ 1
rn

〈y−un, un−xn〉≥0, ∀y∈C,

yn = un − λn(un − Sun),

tn = PC(un − λn(yn − Syn)),

xn+1 = αntn + (1− αn)
N∑

j=1

ζ
(n)
j Tjtn,
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for every n = 1, 2, .... If {λn} ⊂ [a, b] for some a, b ∈ (0, 1
m+1 ), {αn} ⊂ [c, d] for

some c, d ∈ (ε, 1) and {rn} ⊂ [γ, τ ] for some γ, τ ∈ (0, 2β). Then, {xn}, {un} ,
{tn} and {yn} converge weakly to w ∈ Ω1, where w = limn→∞ PΩ1xn.

Proof. By Theorem 4.1 and the proof of Theorem 3.6, we know the conclusion
holds.

Theorem 4.7. Let C be a nonempty closed convex subset of a real Hilbert
space H . Let F be a bifunction from C×C to R satisfying (A1)-(A5) and ϕ : C →
R ∪ {+∞} be a proper lower semicontinuous and convex function. Let Let S be
a pseudo-contraction and m-Lipschitz-continuous mapping of C into itself and B

be a β-inverse strongly monotone mapping of C into H . Let N ≥ 1 be an integer.
For each 0 ≤ j ≤ N − 1, let Tj : C → C be an εj-strict pseudo-contraction for
some 0 ≤ εj < 1 such that Ω2 = ∩N−1

j=0 Fix(Tj)∩Fix(S)∩GMEP (F, ϕ,B) = ∅.
Let ε = max{εj : 0 ≤ j ≤ N − 1}. Assume that either (B1) or (B2) holds. Let
{xn}, {un}, {tn} and {yn} be sequences generated by




x0 = x ∈ C,

F (un, y) + ϕ(y)− ϕ(un) + 〈Bxn, y − un〉

+
1
rn

〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

yn = un − λn(un − Sun),

tn = PC(un − λn(yn − Syn)),

xn+1 = αntn + (1 − αn)T[n]tn,

for every n = 0, 1, 2, .... If {λn} ⊂ [a, b] for some a, b ∈ (0, 1
m+1 ), {αn} ⊂

[c, d] for some c, d ∈ (ε, 1) and {rn} ⊂ [γ, τ ] for some γ, τ ∈ (0, 2β). Then,
{xn}, {un} , {tn} and {yn} converge weakly to w ∈ Ω2, where w = limn→∞
PΩ2(xn).

Proof. From Theorem 4.2 and the proof of Theorem 4.6, we know that the
conclusion holds.

Remark 4.1. In Theorems 4.1-4.7, if we assume some of the mappings F, B, ϕ
equal to zero mappings, we can obtain many new and interesting weak convergence
theorems for some algorithms for the special case of problem (1.1) (i.e., Problems
(1.2)-(1.7)). Now we only give five examples as follows:

Corollary 4.1. Let C be a nonempty closed convex subset of a real Hilbert
space H . Let F be a bifunction from C × C to R satisfying (A1)-(A5) and ϕ :
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C → R∪{+∞} be a proper lower semicontinuous and convex function. Let A be
a monotone and k-Lipschitz continuous mapping of C into H . Let N ≥ 1 be an
integer. For each 1 ≤ j ≤ N , let Tj : C → C be an εj -strict pseudo-contraction
for some 0 ≤ εj < 1 such that Λ = ∩N

j=1Fix(Tj) ∩ V I(C, A)∩ MEP (F, ϕ) = ∅.
Assume for each n, {ζ (n)

j }N
j=1 is a finite sequence of positive numbers such that∑N

j=1 ζ
(n)
j = 1 for all n and infn≥1 ζ

(n)
j > 0 for all 0 ≤ j ≤ N . Let ε = max{εj :

1 ≤ j ≤ N}. Assume also that either (B1) or (B2) holds. Let {xn}, {un}, {tn}
and {yn} be sequences generated by



x1 = x ∈ C,

F (un, y) + ϕ(y)− ϕ(un) +
1
rn

〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

yn = PC(un − λnAun),

tn = PC(un − λnAyn),

xn+1 = αntn + (1 − αn)
N∑

j=1

ζ
(n)
j Tjtn,

for every n = 1, 2, .... If {λn} ⊂ [a, b] for some a, b ∈ (0, 1
k ), {αn} ⊂ [c, d] for

somec, d ∈ (ε, 1) and {rn} ⊂ [γ, +∞) for some γ > 0. Then, {xn}, {un} , {tn}
and {yn} converge weakly to w ∈ Λ, where w = limn→∞ PΛxn.

Proof. Putting B = 0, by Theorem 4.1 we obtain the desired result.

Corollary 4.2. Let C be a nonempty closed convex subset of a real Hilbert
space H . Let F be a bifunction from C × C to R satisfying (A1)-(A5). Let A be
a monotone and k-Lipschitz continuous mapping of C into H . Let N ≥ 1 be an
integer. For each 0 ≤ j ≤ N−1, let Tj : C → C be an εj -strict pseudo-contraction
for some 0 ≤ εj < 1 such that Σ = ∩N−1

j=0 Fix(Tj) ∩ V I(C, A)∩EP (F ) = ∅. Let
ε = max{εj : 0 ≤ j ≤ N − 1}. Assume that either (B3) or (B2) holds. Let {xn},
{un}, {tn} and {yn} be sequences generated by




x0 = x ∈ C,

F (un, y) +
1
rn

〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

yn = PC(un − λnAun),

tn = PC(un − λnAyn),

xn+1 = αntn + (1 − αn)T[n]tn,
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for every n = 0, 1, 2, .... If {λn} ⊂ [a, b] for some a, b ∈ (0, 1
k ), {αn} ⊂ [c, d] for

some c, d ∈ (ε, 1) and {rn} ⊂ [γ, +∞) for some γ > 0. Then, {xn}, {un} , {tn}
and {yn} converge weakly to w ∈ Σ, where w = limn→∞ PΣ(xn).

Proof. Putting B = 0 and ϕ = 0. By Theorem 4.2 we obtain the desired result.

Corollary 4.3. Let C be a nonempty closed convex subset of a real Hilbert
space H . Let A be a monotone and k-Lipschitz continuous mapping of C into H

and B be a β-inverse strongly monotone mapping of C into H . Let N ≥ 1 be an
integer. For each 1 ≤ j ≤ N , let Tj : C → C be an εj-strict pseudo-contraction
for some 0 ≤ εj < 1 such that Θ1 = ∩N

j=1Fix(Tj) ∩ V I(C, A) ∩ V I(C, B) = ∅.
Assume for each n, {ζ (n)

j }N
j=1 is a finite sequence of positive numbers such that∑N

j=1 ζ
(n)
j = 1 for all n and inf n≥1 ζ

(n)
j > 0 for all 0 ≤ j ≤ N . Let ε = max{εj :

1 ≤ j ≤ N}. Let {xn}, {un}, {tn} and {yn} be sequences generated by




x1 = x ∈ C,

un = PC(xn − rnBxn),

yn = PC(un − λnAun),

tn = PC(un − λnAyn),

xn+1 = αntn + (1 − αn)
N∑

j=1

ζ
(n)
j Tjtn,

for every n = 1, 2, .... If {λn} ⊂ [a, b] for some a, b ∈ (0, 1
k ), {αn} ⊂ [c, d] for

some c, d ∈ (ε, 1) and {rn} ⊂ [γ, τ ] for some γ, τ ∈ (0, 2β). Then, {xn}, {un} ,
{tn} and {yn} converge weakly to w ∈ Θ1, where w = limn→∞ PΘ1xn.

Proof. Putting F = 0 and ϕ = 0, by Theorem 4.1 and the proof of Corollary
3.3, we obtain the desired result.

Corollary 4.4. Let C be a nonempty closed convex subset of a real Hilbert
space H . Let A be a monotone and k-Lipschitz continuous mapping of C into H

and B be a β-inverse strongly monotone mapping of C into H . Let N ≥ 1 be an
integer. For each 0 ≤ j ≤ N−1, let Tj : C → C be an εj -strict pseudo-contraction
for some 0 ≤ εj < 1 such that Θ2 = ∩N−1

j=0 Fix(Tj) ∩ V I(C, A)∩ V I(C, B) = ∅.
Let ε = max{εj : 0 ≤ j ≤ N − 1}. Let {xn}, {un}, {tn} and {yn} be sequences
generated by
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x0 = x ∈ C,

un = PC(xn − rnBxn),

yn = PC(un − λnAun),

tn = PC(un − λnAyn),

xn+1 = αntn + (1− αn)T[n]tn,

for every n = 0, 1, 2, .... If {λn} ⊂ [a, b] for some a, b ∈ (0, 1
k ), {αn} ⊂ [c, d] for

some c, d ∈ (ε, 1) and {rn} ⊂ [γ, τ ] for some γ, τ ∈ (0, 2β). Then, {xn}, {un} ,
{tn} and {yn} converge weakly to w ∈ Θ2, where w = limn→∞ PΘ2(xn).

Proof. Putting F = 0 and ϕ = 0, by Theorem 4.2 and the proof of Corollary
3.3, we obtain the desired result.

Corollary 4.5. Let C be a nonempty closed convex subset of a real Hilbert
space H . Let ϕ : C → R ∪ {+∞} be a proper lower semicontinuous and convex
function. Let A be a monotone and k-Lipschitz continuous mapping of C into H .
Let N ≥ 1 be an integer. For each 1 ≤ j ≤ N , let Tj : C → C be an εj-strict
pseudo-contraction for some 0 ≤ ε j < 1 such that Ξ = ∩N

j=1Fix(Tj)∩V I(C, A)∩
Argmin(ϕ) = ∅. Assume for each n, {ζ (n)

j }N
j=1 is a finite sequence of positive

numbers such that
∑N

j=1 ζ
(n)
j = 1 for all n and inf n≥1 ζ

(n)
j > 0 for all 0 ≤ j ≤ N .

Let ε = max{εj : 1 ≤ j ≤ N}. Assume also that either (B4) or (B2) holds. Let
{xn}, {un}, {tn} and {yn} be sequences generated by



x1 = x ∈ C,

ϕ(y)− ϕ(un) +
1
rn

〈y − un, un − xn〉 ≥ 0, ∀y ∈ C,

yn = PC(un − λnAun),

tn = PC(un − λnAyn),

xn+1 = αntn + (1 − αn)
N∑

j=1

ζ
(n)
j Tjtn,

for every n = 1, 2, .... If {λn} ⊂ [a, b] for some a, b ∈ (0, 1
k ), {αn} ⊂ [c, d] for

some c, d ∈ (ε, 1) and {rn} ⊂ [γ, +∞) for some γ > 0. Then, {xn}, {un} , {tn}
and {yn} converge weakly to w ∈ Ξ, where w = limn→∞ PΞxn.

Proof. Putting F = 0 and B = 0, by Theorem 4.1 we obtain the desired result.

Remark 4.2.
(i) Theorems 4.1-4.7 generalize, extend and improve Theorem 4.1 in [12] and

Theorem 3.1 in [14]. Corollary 4.3 and 4.4 generalize and improve Theorem
3.1 in [26].
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(ii) Let A = B = 0, by Corollary 3.3, 3.4, 4.3 and 4.4, respectively, we can
recover Theorem 5.1, 5.2, 3.3 and 4.1 in [19] with modified condition {αn} ⊂
[c, d] for some c, d ∈ (ε, 1).

(iii) Let A = 0, by Corollary 3.3, 3.4, 4.3 and 4.4, respectively, we can recover
Theorem 5.1, 5.2, 3.1 and 4.1 in [30].
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