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MODULES WITH C∗-CONDITION

Y. Talebi and M. J. Nematollahi

Abstract. In this paper we investigate modules with the property C∗ : namely,
M has C∗ if every submodule N of M contains a direct summand K of M
such that N/K is cosingular. We prove that every right R-module M satisfies
C∗ if and only if every right R-module is the direct sum of an injective module
and a cosingular module.

1. INTRODUCTION

Through this paper R is an associative ring with identity and all modules are
unitary right R-modules. A submodule N of a module M is called small in M
(denoted by Nl−/M ) if for every proper submodule L of M , N + L �= M . M is
called a small module if M is small in some modules [1]. In [1] Leonard has proved
that a module M is a small module if and only if it is small in its injective hull.
For a module M let Z(M) = Rej(M, S) =

⋂{Kerf | f : M → S, S ∈ S} =⋂{U ⊆ M | M/U ∈ S} where S denotes the class of all small modules. M is
called cosingular if Z(M) = 0. It is obvious that every small module is cosingular
but in general the converse is not true. A module M has C∗ if every submodule
N of M contains a direct summand K of M such that N/K is cosingular. Finally
we recall that a module M is lifting if every submodule N of M contains a direct
summand K of M such that N/Kl−/M/K .

2. MODULES WITH C∗

Lemma 2.1. Suppose that A, B and Ai, i ∈ I , are R-modules. Then we have
the following:

(1) If A ⊆ B, then Z(A) ⊆ Z(B) and Z(B/A) ⊇ (Z(B) + A)/A;
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(2) If f : B → A is a homomorphism, then f(Z(B)) ⊆ Z(A);
(3) Z(A/Z(A)) = 0;
(4) Z(⊕i∈IAi) = ⊕i∈IZ(Ai);
(5) Z(

∏
i∈I Ai) ⊆

∏
i∈I Z(Ai);

(6) If A = B + S where S is a small module, then Z(A) = Z(B);
(7) Z(A) is the smallest submodule of A such that A/Z(A) is cosingular.

Proof. See [3, Proposition 2.7].

Proposition 2.2. Every cosingular module (and so every small module) satisfies
C∗.

Proof. By Lemma 2.1, submodule of a cosingular module is cosingular, Hence
the Proposition follows.

As every small submodule of a module M is a small module and hence a
cosingular module, we get

Proposition 2.3. Every lifting module satisfies C ∗.

Remarks. In general, the converses of the above two Propositions 2.2 and 2.3
are not true. For example let M = Zp∞ . It is easy to check that M has C∗ but M
is not cosingular. On the other hand Z has C∗, but it is not a lifting module [2,
p.56].

Lemma 2.4. A module M is lifting if and only if every submodule A of M
can be written as A = N ⊕S such that N is a direct summand of M and Sl−/M .

Proof. See [2, Proposition 4.8].

Proposition 2.5. For anR-moduleM the following statements are equivalent:
(1) M has C∗;
(2) For every submodule N of M there exists a decomposition M = M 1 ⊕ M2

such that M1 ≤ N and N ∩ M2 is cosingular;
(3) For every submodule N of M , N has a decomposition N = N 1 ⊕ N2 such

that N1 is a direct summand of M and N 2 is cosingular.

Proof. (1) ⇒ (2) Let N ≤ M , by definition there exists a decomposition
M = M1 ⊕ M2 such that M1 ≤ N and N/M1 is cosingular. We have N =
M1 ⊕ (N ∩ M2) and N ∩ M2 
 N/M1 is cosingular.
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(2) ⇒ (3) Let M = M1 ⊕ M2 with M1 ≤ N . Then N = M1 ⊕ (N ∩ M2).
Take M1 = N1 and N ∩ M2 = N2.

(3) ⇒ (1) Suppose N ≤ M . We have N = N1 ⊕ N2 with N1 is a direct
summand of M and N2 cosingular. But N/N1 
 N2 is cosingular. M has C∗.

Proposition 2.6. Suppose that M satisfies C ∗ and every cosingular submodule
of M is small in M . Then M is lifting.

Proof. Proof follows from Lemma 2.4 and Proposition 2.5.

Proposition 2.7. The class of all modules having C ∗ is closed under submod-
ules.

Proof. Let M be an R-module satisfying C∗ and N ≤ M . For each X ≤ N

we have X ≤ M , hence there exists a direct summand K of M with K ≤ X and
X/K cosingular. Since K is a direct summand of N , N has C∗.

Proposition 2.8. Let R be a ring. An injective right R-module M satisfies C ∗

if and only if every submodule of M is a direct sum of an injective module and a
cosingular module.

Proof. Suppose that M is an injective module and satisfies C ∗. By Proposition
2.5(3), every submodule of M is a direct sum of an injective module and a cosingular
module.

Conversely, suppose that every submodule of M is a direct sum of an injective
module and a cosingular module. Since an injective submodule is a direct summand,
M has C∗ by 2.5(3).

Theorem 2.9. The following statements are equivalent for a ring R:

(1) Every right R-module satisfies C ∗;
(2) Every injective right R-module satisfies C ∗;
(3) Every right R-module is a direct sum of an injective module and a cosingular

module.

Proof. (1) ⇔ (2) It is clear because every submodule of a module with C∗

also has C∗.
(2) ⇔ (3) It follows by Proposition 2.8.

Theorem 2.10. Let M = M1 ⊕ M2 where M1 is semisimple and M2 satisfies
C∗. Then M satisfies C∗.
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Proof. Let M = M1 ⊕ M2 where M1 is semisimple and M2 satisfies C∗.
Let N ≤ M . Then M1 = (N ∩ M1) ⊕ M ′ for some M ′ ≤ M1. Thus M =
(N ∩M1)⊕M ′ ⊕M2 and N = (N ∩M1)⊕A where A = N ∩ (M ′ ⊕M2). Since
(M2 ⊕ M ′)/M ′ satisfies C∗, it follows that (A + M ′)/M ′ = K/M ′ ⊕ L/M ′ for
some submodule K and L containing M ′ such that K/M ′ is a direct summand of
(M2 ⊕ M ′)/M ′ and L/M ′ is cosingular. Thus K is a direct summand of M . As
K = M ′ ⊕ (K ∩ A), K ∩ A is also a direct summand of M . It is now clear that
(N ∩ M1)⊕ (K ∩ A) is a direct summand of M . Moreover

N/((N ∩M1)⊕ (K ∩A)) 
 A/(K ∩A) 
 (A + K)/K = (A + M ′)/K 
 L/M ′

is cosingular. It follows that M satisfies C∗.

It may be noted that the above Theorem is not true if we replace ‘C∗’ by ‘lifting’.
For example, let R = Z, M1 = Z/2Z and M2 = Z/8Z.

Corollary 2.11. Let M = M1 ⊕ M2 where M1 is semisimple and M2 is
cosingular. Then M satisfies C ∗.

Let P and M be modules. P is said to be M -projective if for any module N

with an epimorphism π : M → N and homomorphism θ : P → N , there exists a
homomorphism θ′ : P → M such that πθ′ = θ. P is called projective if it is M -
projective for every module M . If P is P -projective, P is called quasi-projective.
A class of modules {Pi}i∈I is called relatively projective if Pi is Pj -projective for
all distinct i, j ∈ I .

Lemma 2.12. Let M1 and M2 be modules and M = M1⊕M2. The following
are equivalent:

(1) M1 is M2-projective;
(2) For every submodule N of M such that M = N + M2, there exists a

submodule N ′ of N such that M = N ′ ⊕ M2.

Proof. See [4, 41.14].

Proposition 2.13. Suppose M = M1⊕M2 where Mi (i = 1,2), is M2 projective
and M = L + M2.

(1) If M2 is a module satisfying C ∗, then M = K ⊕ M ′
2 where M ′

2 ≤ M2,
K ≤ L and (L∩ M ′

2) is cosingular.
(2) If M2 is a lifting module, then M = K ⊕ M ′

2 where M ′
2 ≤ M2, K ≤ L and

(L∩ M ′
2)l−/M .
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Proof. (1) As M2 satisfies C∗, there exists a decomposition M2 = M ′′
2 ⊕ M ′

2

with M ′′
2 ≤ L∩M2 and ((L∩M2)∩M ′

2) = (L∩M ′
2) a cosingular module. Hence

we have
M = L + M2 = L + M ′

2.

As M ′′
2 ≤ L,

L = M ′′
2 ⊕ ((M ′

2 ⊕ M1) ∩ L).

Put N = M1 ⊕ M ′
2. Then L = M ′′

2 ⊕ (N ∩ L). Since M = L + M ′
2,

N = (N ∩L)+M1. As M1 is M ′
2-projective, by 2.12, there exists a decomposition

N = T ⊕ M ′
2 where T ≤ (N ∩ L) . Since T ≤ (N ∩ L) and L = M ′′

2 ⊕ (N ∩ L),
we have (M ′′

2 ⊕ T ) ≤ L. Put K = M ′′
2 ⊕ T . Then M = K ⊕ M ′

2, K ≤ L and
L ∩ M ′

2 is a cosingular module.
(2) Proof is similar to the proof of (1) and hence is omitted.

Theorem 2.14. Let M be a quasi-projective module and M = M1 ⊕ M2. M
satisfies C∗ if and only if both M1 and M2 satisfy C∗.

Proof. Suppose M satisfies C∗. By Proposition 2.7 both M1 and M2 satisfy
C∗.

Suppose M1 and M2 satisfy C∗. Let L ≤ M . In the sequel π will denote the
obvoious projections. Since M1 satisfies C∗, there exists a decomposition M =
M ′

1 ⊕ M ′′
1 such that M ′

1 ≤ πM1(L) and πM1(L) ∩ M ′′
1 is a cosingular module.

Put L′ = (M ′′
1 ⊕ M2) ∩ L. Since M2 satisfies C∗, there exists a decomposition

M2 = M ′
2 ⊕ M ′′

2 such that M ′
2 ≤ πM2(L

′) and πM2(L
′) ∩ M ′′

2 is a cosingular
module.

Set L′′ = (M ′′
1 ⊕ M ′′

2 ) ∩ L. Then

πM ′′
1
(L′′) ≤ M ′′

1 ∩ πM1(L) and πM ′′
2
(L′′) ≤ M ′′

2 ∩ πM2(L
′).

Also
L′′ ≤ πM ′′

1
(L′′)⊕ πM ′′

2
(L′′).

Now M ′′
1 ∩ πM1(L) and M ′′

2 ∩ πM2(L
′) are cosingular modules. As cosingular

modules are closed under direct sums and submodules (see 2.1) L′′ is a cosingular
module. Also

M = πM1(L) + M ′′
1 + M2

= L + M ′′
1 + M2

= L + M ′′
1 + πM2(L

′) + M ′′
2

= L + M ′′
1 + L′ + M ′′

2

= L + (M ′′
1 ⊕ M ′′

2 )
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By hypothesis, M′
1 ⊕ M ′

2 is (M ′′
1 ⊕ M ′′

2 )-projective. By Proposition 2.13, there is
a decomposition M = U ⊕ V with U ≤ L and L ∩ V a cosingular module. Now
Proposition 2.5 implies that M satisfies C ∗.

Corollary 2.15. Let M = M1 ⊕ M2 be a projective module. M satisfies C ∗

if and only if M1 and M2 satisfy C∗.

Corollary 2.16. Let R be a ring. Then R as a right R-module satisfies C ∗ if
and only if every finitely generated projective R-module satisfies C ∗.
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