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THE SECOND LARGEST NUMBER OF MAXIMAL INDEPENDENT
SETS IN GRAPHS WITH AT MOST k CYCLES

Zemin Jin and Sherry H. F. Yan*

Abstract. Let G be a simple undirected graph. Denote by mi(G) (respec-
tively, xi(G)) the number of maximal (respectively, maximum) independent
sets in G. In this paper we determine the second largest value of mi(G) for
graphs with at most k cycles. Extremal graphs achieving these values are also
determined.

1. INTRODUCTION

Let G be a simple undirected graph. The neighborhood NG(x) of a vertex
x in G is the set of vertices adjacent to x, the closed neighborhood is the set
NG[x] = NG(x) ∪ {x}. Denote by dG(x) = |NG(x)| the degree of x in G.
Sometimes, we simply use N (x), N [x] and d(x) for NG(x), NG[x] and dG(x),
respectively, if no confusion occurs. Let δ(G) = min{d(x) | x ∈ V (G)} and
∆(G) = max{d(x) | x ∈ V (G)}. For notation and terminology not defined here,
we refer to [1].

An independent set is a subset S of V (G) such that no two vertices in S are
adjacent in G. A maximal independent set is an independent set that is not a proper
subset of any other independent set. A maximum independent set is an independent
set of maximum size. Note that a maximum independent set is maximal but the
converse is not always true. Denote by mi(G) (respectively, xi(G)) the number of
maximal (respectively, maximum) independent sets in G.

Erd"os and Moser raised the problem of determining the maximum value of mi(G)
for a general graph of order n and the extremal graphs achieving the maximum value.
This problem was solved by Moon and Moser [22]. Since then, researchers have
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studied the problem for many special graph classes, see [2, 5, 6, 7, 10, 21, 23, 25].
For other related, including algorithmic, results on mi(G), see [4, 8, 12, 13, 14,
17, 18]. Compared to mi(G), there are less results for the parameter xi(G), see
[3, 9, 19]. A survey on counting maximal independent sets in graphs can be found
in [15].

In previous results, an interesting problem is to consider the number of the
maximal independent set in graphs with restriction on the number of cycles, see
[16, 24, 26]. In this paper we determine the second largest value of mi(G) and
xi(G) for graphs with at most k cycles. Extremal graphs achieving these values are
also determined.

The paper is organized as follows. Section 2 presents some preliminaries. We
prove the main results in Sections 3 and 4. Finally, we present concluding remarks
in the last section.

2. PRELIMINARIES

In this section we present some notation and preliminary results we need in order
to prove our main results. Throughout the paper, we use r to denote

√
2. Define

g(n) =

{
rn−2 + 1, if n ≡ 0 (mod 2);

rn−1, if n ≡ 1 (mod 2).

t(n) =

{
rn, if n ≡ 0 (mod 2);

rn−1, if n ≡ 1 (mod 2).

f(n) =




3s, if n = 3s;

4 · 3s−1, if n = 3s + 1;

2 · 3s, if n = 3s + 2.

Lemma 2.1. [10]. For any vertex x in a graph G, the followings hold.

(1) mi(G) ≤ mi(G − x) + mi(G− N [x]).
(2) If x is a leaf adjacent to y, then mi(G) = mi(G− N [x]) + mi(G − N [y]).

Lemma 2.2. [5]. If n ≥ 6, then mi(Cn) = mi(Cn−2) + mi(Cn−3).

Lemma 2.3. [10]. For any two disjoint graphs G and H , mi(G ∪ H) =
mi(G)mi(H).
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Many researchers have independently considered the problem for trees. Define
a baton B(i, j) as follows: Start with a basic path P with i vertices and attach j
paths of length two to the endpoints of P .

Lemma 2.4. [23]. If T is a tree of order n, then mi(G) ≤ g(n). Furthermore,
the equality holds if and only if

T ∼= T (n) =




B(2,
n − 2

2
) or B(4,

n − 4
2

), if n ≡ 0 (mod 2);

B(1,
n − 1

2
), if n ≡ 1 (mod 2).

In particular, as a consequence, mi(Pn) ≤ g(n) for any path Pn. Let G and H
be two vertex disjoint graphs. Denote by G∪H the union of G and H . Denote by
G+H the graph obtained from G∪H by adding the edges between all the vertices
of G and those of H . When G is a graph each component of which is a complete
graph, denote by Km ∗ G the graph obtained from Km ∪ G by adding an edge
between a vertex of Km and each component G. For forests, Jou [13] obtained the
following result.

Theorem 2.5. [13]. If F is a forest of order n ≥ 1, then mi(F ) ≤ t(n).
Furthermore, the equality holds if and only if F ∼= F (n), where

F (n) =




n

2
K2, if n ≡ 0 (mod 2);

B(1,
n − 1 − 2s

2
) ∪ sK2, if n ≡ 1 (mod 2).

For n ≥ 2, let

G(n) =




sK3, if n = 3s;
K4 ∪ (s − 1)K3 or 2K2 ∪ (s − 1)K3, if n = 3s + 1;

K2 ∪ sK3, if n = 3s + 2.

For n ≥ 6, let

H(n) =




(K3 ∗ K3) ∪ (s − 2)K3, or 3K2 ∪ (s − 2)K3,

or K4 ∪ K2 ∪ (s − 2)K3, if n = 3s;

(K4 ∗ K3) ∪ (s − 2)K3, if n = 3s + 1;
(K3 ∗ K3) ∪ (s − 2)K3 ∪ K2, or 4K2 ∪ (s − 2)K3,

or K4 ∪ 2K2 ∪ (s − 2)K3, or 2K4 ∪ (s − 2)K3, if n = 3s + 2.

For general graphs, we have the following result, see [22].
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Theorem 2.6. [22]. If G is a graph of order n ≥ 2, then mi(G) ≤ f(n).
Furthermore, the equality holds if and only if G ∼= G(n).

For general graphs, Jin and Li [11] proved the following result.

Theorem 2.7. [11]. If G is a graph of order n ≥ 3 and G � G(n), then

mi(G) ≤




11
12

f(n), if n ≡ 1 (mod 3);

8
9
f(n), otherwise.

Furthermore, the equality holds if and only if G ∼= H(n).

For n ≥ 3k − 1 and k ≥ 1, let

G(n, k) =




kK3 ∪ n − 3k

2
K2, if n − k ≡ 0 (mod 2);

(k − 1))K3 ∪ n − 3k + 3
2

K2, if n − k ≡ 1 (mod 2).

For n ≥ 3k, k ≥ 2 and (n, k) 	= (7, 2), let

H(n, k) =




(K3 ∗ K3) ∪ (k − 2)K3 ∪ n − 3k

2
K2,

or (k − 2)K3 ∪ n − 3k + 6
2

K2, if n − k ≡ 0 (mod 2);

(K3 ∗ K3) ∪ (k − 3)K3 ∪ n−3k+3
2 K2,

or (k − 3)K3 ∪ n − 3k + 9
2

K2, if n − k ≡ 1 (mod 2).

Let

f(n, k) =

{
3krn−3k, if n − k ≡ 0 (mod 2);

3k−1rn−3(k−1), if n − k ≡ 1 (mod 2).

The following lemmas are clear, and we omit the details.

Lemma 2.8. For any k ≥ 
n
2 �, f(n) ≤ f(n, k).

Lemma 2.9. For any k ≥ 0, g(n) < f(n, k).

Lemma 2.10. For any k
′ ≤ k and n

′ ≤ n, f(n
′
, k

′
) ≤ f(n, k).

When considering the restriction on the number of cycles in graphs, Ying et al.
[26] proved the following result. By Theorem 2.6, the authors [26] only needed to
consider the case n ≥ 3k − 1.
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Theorem 2.11. [26] Let G be a graph with n vertices and at most k cycles,
k ≥ 1. If n ≥ 3k − 1, then mi(G) ≤ f(n, k). Furthermore, the equality holds if
and only if G ∼= G(n, k).

Note that the theorem above also presents an upper bound for trees.

3. THE CASES k = 1 AND k = 2, n ≡ 1 (MOD 2)

In this section we consider the problem for the cases k = 1 and k = 2, n ≡
1 (mod 2). First, we present an upper bound for the cycles.

Lemma 3.1. For n ≥ 4,

mi(Cn) ≤




5
6
f(n, 1), if n ≡ 1 (mod 2);

3
4
f(n, 1), if n ≡ 0 (mod 2).

Furthermore, the equality holds if and only if n = 5.

Proof. Clearly, the equality holds when n = 5. By Lemma 2.2, one can easily
verify that the result holds for 3 ≤ n ≤ 8. We prove the result by the induction
hypothesis on n.

Let n be an even integer and n ≥ 9. By Lemma 2.2, we have

mi(Cn) = mi(Cn−2) + mi(Cn−3)

<
3
4
f(n − 2, 1) +

5
6
f(n − 3, 1)

=
11
16

f(n, 1) <
3
4
f(n, 1).

So, let n be an odd integer and n ≥ 9. By Lemma 2.2, we have

mi(Cn) = mi(Cn−2) + mi(Cn−3)

<
5
6
f(n − 2, 1) +

3
4
f(n − 3, 1)

=
2
3
f(n, 1) <

5
6
f(n, 1).

This completes the proof.

Theorem 3.2. Let G be a graph of order n (n ≥ 2) with at most k cycles and
G 	= G(n, k).
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(1) If n ≡ 1 (mod 2) and k = 1, then mi(G) ≤ 5
6f(n, k). Furthermore, the

equality holds if and only if G ∼= (K3 ∗K2)∪ n−5
2 K2 or G ∼= C5 ∪ n−5

2 K2.
(2) If n ≡ 1 (mod 2) and k = 2, then mi(G) ≤ 5

6f(n, k). Furthermore, the
equality holds if and only if G ∼= (K3 ∗K2)∪ n−5

2 K2, or G ∼= C5 ∪ n−5
2 K2,

or G ∼= (K1 + 2K2) ∪ n−5
2 K2.

(3) If n ≡ 0 (mod 2) and k = 1, then mi(G) ≤ 3
4f(n, k). Furthermore, the

equality holds if and only if G ∼= (K1 ∗ (K3 ∪ sK2)) ∪ n−2s−4
2 K2 or G ∼=

K3 ∪ B(1, s) ∪ n−2s−4
2 K2 for some 0 ≤ s ≤ n−4

2

Proof. It is easy to see that the equalities hold for the graphs listed in the
theorem. We prove the theorem by the induction hypothesis on n. By a simple
computer search, the theorem holds clearly for n ≤ 6. Now suppose that the graph
G is of order n ≥ 7. If G is disconnected, let G

′ be a component of order n
′
< n

which contains k
′ cycles. It is easy to see that at least one of G

′
� G(n

′
, k

′
) and

G − G
′
� G(n − n

′
, k − k

′
) is true.

If n ≡ 1 (mod 2) and k = 1, then by the induction hypothesis we have

mi(G) = mi(G
′
)mi(G − G

′
)

≤ 5
6
f(n

′
, k

′
)f(n − n

′
, k − k

′
)

≤ 5
6
f(n, k).

Furthermore, by the induction hypothesis, the equality holds if and only if G
′ ∼=

(K3 ∗K2)∪ n
′−5
2 K2 or C5∪ n

′−5
2 K2 and G−G

′ ∼= G(n−n
′
, k−k

′
), or G−G

′ ∼=
(K3 ∗ K2) ∪ n−n

′−5
2 K2 or C5 ∪ n−n

′−5
2 K2 and G

′ ∼= G(n
′
, k

′
). By construction,

that is to say that the equality holds if and only if G ∼= (K3 ∗ K2) ∪ n−5
2 K2 or

G ∼= C5 ∪ n−5
2 K2.

The case n ≡ 1 (mod 2) and k = 2 can be proved in a similar way. We omit
the details.

So, let n ≡ 0 (mod 2) and k = 1. Then both n
′ and n − n

′ have the same
parity. Assume that both n

′ and n − n
′ are odd. Since k = 1, either G

′ or G − G
′

is a forest. Without loss generality, we may assume that G − G
′ is a forest. By

Theorems 2.5 and 2.11, we have

mi(G) = mi(G
′
)mi(G− G

′
)

≤ f(n
′
, 1)t(n− n

′
)

≤ 3
4
f(n, k).
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The equality holds if and only if G
′ ∼= G(n

′
, 1) and G−G

′ ∼= B(1, n−n
′−1−2s

′

2 )∪
s
′
K2 for some 0 ≤ s

′ ≤ n − n
′ − 1. In fact, this just implies that G ∼= K3 ∪

B(1, s)∪ n−2s−4
2 K2 for some 0 ≤ s ≤ n−4

2 . The case both n
′ and n− n

′ are even
can be proved in similar way.

Hence in the rest of the proof we assume that G is connected. Also, by Lemma
3.1, we may assume that G � Cn.

Let n ≡ 0 (mod 2) and k = 1. Then we have δ(G) = 1. Let N (x) = {y}, and
then d(y) ≥ 2. So, both G − x − y and G − N (y) contain at most one cycle.

If d(y) ≥ 4, then by the induction hypothesis we have

mi(G) = mi(G− x − y) + mi(G− N [y])

≤ f(n − 2, 1) + f(n − 5, 1)

=
11
16

f(n, 1) <
3
4
f(n, 1).

So, let d(y) = 3. If G− x− y � G(n− 2, 1) or G−N (y) � G(n− 4, 1), then by
the induction hypothesis we have

mi(G) = mi(G− x − y) + mi(G− N [y])

≤ 3
4
f(n − 2, 1) + f(n − 4, 1)

=
5
8
f(n, 1) <

3
4
f(n, 1).

or
mi(G) = mi(G− x − y) + mi(G− N [y])

≤ f(n − 2, 1) +
3
4
f(n − 4, 1)

=
11
16

f(n, 1) <
3
4
f(n, 1).

So we assume that G − x − y ∼= G(n − 2, 1) and G − N (y) ∼= G(n − 4, 1). This
implies that G ∼= (K1 ∗ K3) ∪ n−4

2 K2.
So let d(y) = 2. Suppose that G − x − y ∼= G(n − 2, 1). By the construction

of the graph G(n − 2, 1), we have mi(G) = 1
2f(n, 1) < 3

4f(n, 1). So we assume
that G − x − y � G(n − 2, 1). If G − N (y) � G(n − 3, 1), then by the induction
hypothesis we have

mi(G) = mi(G− x − y) + mi(G− N [y])

≤ 3
4
f(n − 2, 1) +

5
6
f(n − 3, 1)

=
11
16

f(n, 1) <
3
4
f(n, 1).
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If G − N (y) ∼= G(n− 3, 1), then by the induction hypothesis we have

mi(G) = mi(G− x − y) + mi(G− N [y])

≤ 3
4
f(n − 2, 1) + f(n − 3, 1)

=
3
4
f(n, 1).

Furthermore, the equality holds only if G− x − y ∼= (K1 ∗ (K3 ∪ s)) ∪ n−2s−6
2 K2

or G−x−y ∼= K3 ∪B(1, s)∪ n−2s−6
2 K2 for some 0 ≤ s ≤ n−6

2 , and G−N [y] ∼=
G(n − 3, 1). This implies that the equality holds if and only if G ∼= (K1 ∗ (K3 ∪
sK2)) ∪ n−2s−4

2 K2 or G ∼= K3 ∪ B(1, s) ∪ n−2s−4
2 K2 for some 0 ≤ s ≤ n−4

2 .
This completes the proof of the case n ≡ 0 (mod 2) and k = 1. The case

n ≡ 1 (mod 2) and k = 1 or 2 can be proved in the similar way. For simplicity
we omit the details.

4. REMAINING CASES

In this section we consider the second largest mi(G) for the cases other than
that in previous section. Since Theorem 2.7 gives a complete answer for n ≤ 3k,
we only need to consider the case n ≥ 3k. We have the following result.

Theorem 4.1. Let G be a graph of order n (n ≥ 2) with at most k cycles, and
G � G(n, k). If n ≡ 1 (mod 2) and k ≥ 3, or n ≡ 0 (mod 2) and k ≥ 2, then
mi(G) ≤ 8

9f(n, k). Furthermore, the equality holds if and only if G ∼= H(n, k).

Proof. If n = 3s+1, since 11
12f(n) < 8

9f(n, k) for any k ≥ s+6, by Theorem
2.7, the theorem holds for any n ≤ 3k. So it’s left to consider the case n ≥ 3k in
the following proof.

It is easy to see that mi(H(n, k)) = 8
9f(n, k). We prove the theorem by the

induction hypothesis on n. By simple computer search, the theorem holds for
3 ≤ n ≤ 6. Now we consider the graph G of order n, n ≥ 7, which contains k
cycles.

If G is disconnected, let G
′ be a component of order n

′
< n which contains k

′

cycles. Since G � G(n, k), it is easy to see that at least one of G
′
� G(n

′
, k

′
) and

G − G
′
� G(n − n

′
, k − k

′
) is true. Then

mi(G) = mi(G
′
)mi(G − G

′
)

≤ 8
9
f(n

′
, k

′
)f(n − n

′
, k − k

′
)

≤ 8
9
f(n, k).
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Furthermore, by the construction of H(n, k) and G(n, k), the equality holds if and
only if G ∼= H(n, k). Hence we may assume that G is connected. We distinguish
the following cases.

Case 1. δ(G) = 1. Let N (x) = {y}. Since G � K2, d(y) ≥ 2. So, both
G−x− y and G−N (y) contain at most k cycles. By the induction hypothesis we
have

mi(G) = mi(G − x − y) + mi(G − N [y])
≤ f(n − 2, k) + f(n − 3, k)

=




3krn−2−3k + 3k−1rn−3−3(k−1), if n − k ≡ 0 (mod 2);

3k−1rn−2−3(k−1) + 3krn−3−3k, if n − k ≡ 1 (mod 2);

=




5
6
f(n, k), if n − k ≡ 0 (mod 2);

7
8
f(n, k), if n − k ≡ 1 (mod 2);

<
8
9
f(n, k).

Case 2. δ(G) = �(G) = 2. Then G ∼= Cn, and Lemma 3.1 implies that the
theorem is true.

Case 3. δ(G) ≥ 2, �(G) ≥ 3, and there are two cycles sharing the same
vertex y.

Then both G − y and G − N [y] contain at most k − 2 cycles. Without loss of
generality, we can choose the vertex y with d(y) ≥ 3. By the induction hypothesis
we have

mi(G) ≤ mi(G − y) + mi(G− N [y])

≤ f(n − 1, k − 2) + f(n − 4, k − 2)

=




3k−3rn−1−3(k−3) + 3k−2rn−4−3(k−2), if n − k ≡ 0 (mod 2);

3k−2rn−1−3(k−2) + 3k−3rn−4−3(k−3), if n − k ≡ 1 (mod 2);

=




22
27

f(n, k), if n − k ≡ 0 (mod 2);

8
9
f(n, k), if n − k ≡ 1 (mod 2);

≤ 8
9
f(n, k).

Furthermore, the equality holds if and only if n − k ≡ 1 (mod 2), G − y ∼=
G(n−1, k−2) and G−N [y] ∼= G(n−4, k−2). From G−N [y] ∼= G(n−4, k−2)
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we have d(y) = 3; and from G−y ∼= G(n−1, k−2) = (k−2)K3∪ n−1−3(k−2)
2 K2,

we have that there are exactly two cycles passing through y. This is a contradiction.

Case 4. δ(G) ≥ 2, �(G) ≥ 3, and the cycles of G are vertex-disjoint.
Then, since G � Cn and δ(G) ≥ 2, there is at least one cycle, denoted by Cl,

such that there is a unique cut-vertex x of G on Cl, i.e., x is the unique vertex of
Cl adjacent to vertices not on Cl. It is easy to see that d(x) ≥ 3 and G−x contains
exactly k − 1 cycles. We distinguish the following subcases.

Subcase 4.1. n − k ≡ 1 (mod 2) and l = 3.
If d(x) ≥ 4, by the induction hypothesis we have

mi(G) ≤ mi(G − x) + mi(G− N [x])
= mi(G − Cl)mi(Pl−1) + mi(G − N [x])
≤ f(n − 3, k − 1)mi(P2) + f(n − 5, k − 1)

= 2 · 3k−2rn−3−3(k−2) + 3k−2rn−5−3(k−2)

=
5
6
f(n, k) <

8
9
f(n, k).

So, let d(x) = 3. We claim that G − Cl � G(n − 3, k − 1). Otherwise, from
the construction of the graph G(n−3, k−1), G−Cl contains exactly k−2 cycles,
which implies that G contains exactly k − 1 cycles, a contradiction. Then, by the
induction hypothesis we have

mi(G) ≤ mi(G− x) + mi(G − N [x])
= mi(G− Cl)mi(Pl−1) + mi(G− N [x])

≤ 8
9
f(n − 3, k − 1)mi(P2) + f(n − 4, k − 1)

=
16
9

· 3k−2rn−3−3(k−2) + 3k−1rn−4−3(k−1)

=
91
108

f(n, k) <
8
9
f(n, k).

Thus, if n − k ≡ 1 (mod 2) and l = 3, we have mi(G) < 8
9f(n, k).

Subcase 4.2. n − k ≡ 0 (mod 2) and l = 3.

If d(x) ≥ 4, by the induction hypothesis we have

mi(G) ≤ mi(G − x) + mi(G− N [x])
= mi(G − Cl)mi(Pl−1) + mi(G − N [x])
≤ f(n − 3, k − 1)mi(P2) + f(n − 5, k − 1)

= 2 · 3k−1rn−3−3(k−1) + 3k−1rn−5−3(k−1)

=
5
6
f(n, k) <

8
9
f(n, k).
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So, let d(x) = 3. Then, by the induction hypothesis we have

mi(G) ≤ mi(G − x) + mi(G− N [x])

= mi(G − Cl)mi(Pl−1) + mi(G − N [x])

≤ f(n − 3, k − 1)mi(P2) + f(n − 4, k − 1)

= 2 · 3k−2rn−3−3(k−2) + 3k−1rn−4−3(k−1)

=
8
9
f(n, k).

Furthermore, the equality holds if and only if G − Cl
∼= G(n − 3, k − 1) and

G − N [x] ∼= G(n − 4, k − 1). Since δ(G) ≥ 2 and G − Cl is connected, we have
G −Cl

∼= K3, and G− N [x] ∼= K2. That is to say, G ∼= H(6, 2). This contradicts
to the assumption n ≥ 7.

Thus, if n − k ≡ 0 (mod 2) and l = 3, we have mi(G) < 8
9f(n, k).

Subcase 4.3. Otherwise, by the induction hypothesis we have

mi(G) ≤ mi(G − x) + mi(G− N [x])

= mi(G − Cl)mi(Pl−1) + mi(G − Cl − N (x))mi(Pl−3)

≤ f(n − l, k − 1)mi(Pl−1) + f(n − l − 1, k − 1)mi(Pl−3)

≤




3k−2rn−l−3(k−2)rl−2

+3k−1rn−l−1−3(k−1)rl−4, if n − k ≡ 0 (mod 2),

l ≡ 0 (mod 2);

3k−1rn−l−3(k−1)(rl−3 + 1)

+3k−2rn−l−1−3(k−2)(rl−5 + 1), if n − k ≡ 0 (mod 2),

l ≡ 1 (mod 2),

and l ≥ 5;

3k−1rn−l−3(k−1)rl−2

+3k−2rn−l−1−3(k−2)rl−4, if n − k ≡ 1 (mod 2),

l ≡ 0 (mod 2);

3k−2rn−l−3(k−2)(rl−3 + 1)

+3k−1rn−l−1−3(k−1)(rl−5 + 1), if n − k ≡ 1 (mod 2),

l ≡ 1 (mod 2),

and l ≥ 5;
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≤




11
18

f(n, k), if n − k ≡ 0 (mod 2), l ≡ 0 (mod 2);

13
18

f(n, k), if n − k ≡ 0 (mod 2), l ≡ 1 (mod 2),

and l ≥ 5;
2
3
f(n, k), if n − k ≡ 1 (mod 2), l ≡ 0 (mod 2);

3
4
f(n, k), if n − k ≡ 1 (mod 2), l ≡ 1 (mod 2),

and l ≥ 5;

<
8
9
f(n, k).

This completes the proof.

5. CONCLUDING REMARKS

Note that, if G ∼= (K3∗K2)∪ n−5
2 K2, or G ∼= C5∪ n−5

2 K2, or G ∼= H(n, k), an
independent set of G is maximal if and only if it is maximum, i.e., xi(G) = mi(G).
From Theorems 3.2 and 4.1, we have the following result for maximum independent
sets.

Theorem 1.1. Let G be a graph of order n with at most k cycles, n ≥ 3k, and
G � G(n, k).

(1) If n ≡ 1 (mod 2) and k = 1 or 2, then xi(G) ≤ 5
6f(n, k). Furthermore, the

equality holds if and only if G ∼= (K3 ∗K2)∪ n−5
2 K2 or G ∼= C5 ∪ n−5

2 K2.
(2) If n ≡ 1 (mod 2) and k ≥ 3, or n ≡ 0 (mod 2) and k ≥ 2, then xi(G) ≤

8
9f(n, k). Furthermore, the equality holds if and only if G ∼= H(n, k).
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