TAIWANESE JOURNAL OF MATHEMATICS Vol. 13, No. 5, pp. 1379-1386, October 2009 This paper is available online at http://www.tjm.nsysu.edu.tw/

COMMON FIXED POINTS FROM BEST SIMULTANEOUS APPROXIMATIONS

A. R. Khan and F. Akbar

Abstract. We obtain some results on common fixed points from the set of best simultaneous approximations for a map T which is asymptotically (f, g)-nonexpansive where (T, f) and (T, g) are not necessarily commuting pairs. Our results extend and generalize recent results of Chen and Li [1], Jungck and Sessa [8], Sahab et al. [13], Sahney and Singh [14], Singh [15, 16] and Vijayaraju [17] and many others.

1. INTRODUCTION AND PRELIMINARIES

We first review needed definitions. Let M be a subset of a normed space $(X, \|.\|)$. The set $P_M(u) = \{x \in M : \|x - u\| = dist(u, M)\}$ is called the set of best approximants to $u \in X$ out of M, where $dist(u, M) = inf\{\|y - u\| : y \in M\}$. Suppose that A and G are bounded subsets of X. Then we write

$$r_G(A) = inf_{g \in G} sup_{a \in A} \parallel a - g \parallel$$
$$cent_G(A) = \{g_0 \in G : sup_{a \in A} \parallel a - g_0 \parallel = r_G(A)\}$$

The number $r_G(A)$ is called the *Chebyshev radius* of A w.r.t. G and an element $y_0 \in cent_G(A)$ is called a *best simultaneous approximation* of A w.r.t. G. If $A = \{u\}$, then $r_G(A) = dist(u, G)$ and $cent_G(A)$ is the set of all best approximations, $P_G(u)$, of u out of G. We also refer the reader to Milman [12] and Vijayaraju [17] for further details. We denote by IN, cl(M) and wcl(M) the set of positive integers, closure of M and weak closure of M, respectively. Let $I : M \to M$ be a mapping. A mapping $T : M \to M$ is called an (f, g)-contraction if there exists $0 \le k < 1$ such that $||Tx - Ty|| \le k ||fx - gy||$ for any $x, y \in M$. If k = 1, then T is called

Received July 27, 2007, accepted December 8, 2007.

Communicated by Jen-Chih Yao.

²⁰⁰⁰ Mathematics Subject Classification: 41A65, 47H10, 54H25.

Key words and phrases: Banach operator pair, Asymptotically (f, g)-nonexpansive maps, Best simultaneous approximation.

A. R. Khan and F. Akbar

(f,g)-nonexpansive. The map T is called *asymptotically* (f,g)-nonexpansive if there exists a sequence $\{k_n\}$ of real numbers with $k_n \ge 1$ and $\lim_n k_n = 1$ such that $||T^n x - T^n y|| \le k_n ||fx - gy||$ for all $x, y \in M$ and n = 1, 2, 3, ...; if g = f, then T is called *asymptotically* f-nonexpansive [17]. The map T is called *uniformly asymptotically regular* [17] on M, if for each $\eta > 0$, there exists $N(\eta) = N$ such that $||T^n x - T^{n+1}x|| < \eta$ for all $n \ge N$ and all $x \in M$. The set of fixed points of Tis denoted by F(T). A point $x \in M$ is a coincidence point (common fixed point) of f and T if fx = Tx (x = fx = Tx). The set of coincidence points of f and T is denoted by C(f,T). The pair $\{f,T\}$ is called: (1) commuting if Tfx = fTxfor all $x \in M$, (2) compatible (see [7]) if $\lim_n ||Tfx_n - fTx_n|| = 0$ whenever $\{x_n\}$ is a sequence such that $\lim_n Tx_n = \lim_n fx_n = t$ for some t in M; (3) *weakly compatible* if they commute at their coincidence points, i.e., if fTx = Tfxwhenever fx = Tx. The set M is called q-starshaped with $q \in M$, if the segment $[q, x] = \{(1 - k)q + kx : 0 \le k \le 1\}$ joining q to x is contained in M for all $x \in M$. The map f defined on a q-starshaped set M is called *affine* if

$$f((1-k)q + kx) = (1-k)fq + kfx, \text{ for all } x \in M.$$

A Banach space X satisfies *Opial's condition* if for every sequence $\{x_n\}$ in X weakly convergent to $x \in X$, the inequality

$$\liminf_{n \to \infty} \|x_n - x\| < \liminf_{n \to \infty} \|x_n - y\|$$

holds for all $y \neq x$. Every Hilbert space and the space $l_p(1 satisfy Opial's condition. The map <math>T: M \to X$ is said to be *demiclosed at* 0 if for every sequence $\{x_n\}$ in M converging weakly to x and $\{Tx_n\}$ convergent to $0 \in X$, then we have 0 = Tx.

The class of asymptotically nonexpansive mappings was introduced by Goeble and Kirk [2] and further studied by various authors (see [17] and references therein). Recently, Chen and Li [1] introduced the class of Banach operator pairs, as a new class of noncommuting maps which is further investigated by Hussain [3]. In this paper, we improve and extend invariant approximation results of Chen and Li [1] and Vijayaraju [17] to the class of asymptotically (f, g)-nonexpansive map Twhere (T, f) and (T, g) are Banach operator pairs without the condition of linearity or affinity of f and g which is a key assumption in the results obtained in of [4-8, 11, 13, 16, 17].

2. MAIN RESULTS

The ordered pair (T, f) of two selfmaps of a metric space (X, d) is called a *Banach operator pair*, if the set F(f) is T-invariant, namely, $T(F(f)) \subseteq F(f)$.

Obviously, commuting pair (T, f) is a Banach operator pair but not conversely, in general; see [1, 3] and Example 2.8 below. If (T, f) is a Banach operator pair, then (f, T) need not be Banach operator pair(cf. Example 1[1]). If the selfmaps T and f of X satisfy

$$d(fTx, Tx) \le kd(fx, x),$$

for all $x \in X$ and $k \ge 0$, then (T, f) is a Banach operator pair; in particular, when f = T and X is a normed space, the above inequality can be rewritten as

$$||T^2x - Tx|| \le k ||Tx - x||$$
 for all $x \in X$.

The following recent result will be needed.

Lemma 2.1. ([3], Lemma 2.10). Let C be a nonempty subset of a metric space (X, d), and (T, f) and (T, g) be Banach operator pairs on C. Assume that cl(T(C)) is complete, and T, f and g satisfy for all $x, y \in C$ and $0 \le h < 1$,

$$(2.1) \quad d(Tx, Ty) \le h \max\{d(fx, gy), d(Tx, fx), d(Ty, gy), d(Tx, gy), d(Ty, fx)\}$$

If f and g are continuous, $F(f) \cap F(g)$ is nonempty, then there is a unique common fixed point of T, f and g.

The following result extends Theorem 2.3 due to Vijayaraju [17] and approximation results in [13, 14, 15, 16] to noncommuting pairs.

Theorem 2.2. Let K be a nonempty subset of a normed space X and $y_1, y_2 \in X$. Suppose that T, f and g are selfmaps of K such that T is asymptotically (f,g)-nonexpansive. Suppose that the set $F(f) \cap F(g)$ is nonempty. Let the set D, of best simultaneous K-approximants to y_1 and y_2 , is nonempty compact and starshaped with respect to an element q in $F(f) \cap F(g)$ and D is invariant under T, f and g. Assume further that (T, f) and (T,g) are Banach operator pairs on D, F(f) and F(g) are q-starshaped with $q \in F(f) \cap F(g)$, f and g are continuous and T is uniformly asymptotically regular on D. Then D contains a T-, f- and g-invariant point.

Proof. For each $n \ge 1$, define a mapping T_n from D to D by

$$T_n x = (1 - \mu_n)q + \mu_n T^n x,$$

where $\mu_n = \frac{\lambda_n}{k_n}$ and $\{\lambda_n\}$ is a sequence of numbers in (0, 1) such that $\lim_n \lambda_n = 1$. Since $T(D) \subset D$ and D is q-starshaped, it follows that T_n maps D into D. As (T, f) is a Banach operator pair, $T(F(f)) \subseteq F(f)$ implies that $T^n(F(f)) \subseteq F(f)$ for each $n \geq 1$. On utilizing q-starshapedness of F(f) we see that for each $x \in$ A. R. Khan and F. Akbar

F(f), $T_n x = (1 - \mu_n)q + \mu_n T^n x \in F(f)$, since $T^n x \in F(f)$ for each $x \in F(f)$. Thus (T_n, f) is a Banach operator pair on D for each $n \ge 1$. Similarly, (T_n, g) is a Banach operator pair on D for each $n \ge 1$. For each $x, y \in D$, we have

$$\|T_n x - T_n y\| = \mu_n \|T^n x - T^n y\|$$

$$\leq \lambda_n \|f x - gy\|.$$

By Lemma 2.1, for each $n \ge 1$, there exists $x_n \in D$ such that $x_n = fx_n = gx_n = T_n x_n$. As T(D) is bounded, so $||x_n - T^n x_n|| = (1 - \mu_n) ||T^n x_n - q|| \to 0$ as $n \to \infty$. Since (T, f) is a Banach operator pair and $fx_n = x_n$, so $fT^n x_n = T^n fx_n = T^n x_n$. Thus we have

$$\begin{aligned} \|x_n - Tx_n\| &= \|x_n - T^n x_n\| + \|T^n x_n - T^{n+1} x_n\| + \|T^{n+1} x_n - Tx_n\| \\ &\leq \|x_n - T^n x_n\| + \|T^n x_n - T^{n+1} x_n\| + k_1 \|fT^n x_n - gx_n\| \\ &= \|x_n - T^n x_n\| + \|T^n x_n - T^{n+1} x_n\| + k_1 \|T^n x_n - x_n\| \end{aligned}$$

Since T is uniformly asymptotically regular on D, it follows that

$$T^n x_n - T^{n+1} x_n \to 0 \quad as \quad n \to \infty.$$

Thus we have

$$||x_n - Tx_n|| \le ||x_n - T^n x_n|| + ||T^n x_n - T^{n+1} x_n|| + k_1 ||T^n x_n - x_n|| \to 0 \quad as \quad n \to \infty$$

. Since D is compact, there exists a subsequence $\{x_m\}$ of $\{x_n\}$ such that $x_m \to y$ as $m \to \infty$. By the continuity of I - T, we have $(I - T)x_m \to (I - T)y$. But $(I - T)x_m \to 0$, so we have (I - T)y = 0. Since f and g are continuous, it follows that

$$fy = f(lim_m x_m) = lim_m f x_m = lim_m x_m = y$$

and
$$gy = g(lim_m x_m) = lim_m g x_m = lim_m x_m = y.$$

This completes the proof.

The following corollary follows from Theorem 2.2 as condition (i) implies that D is T-invariant.

Corollary 2.3. Let X, K, y_1 , y_2 , f, g and T be as in Theorem 2.2. Assume that T satisfies the following condition:

(*i*) $||Tx - y_i|| \le ||x - y_i||$ for all $x \in X$ and i = 1, 2.

Suppose that the set D, of best simultaneous K-approximants to y_1 and y_2 , is nonempty compact and starshaped with respect to an element q in $F(f) \cap F(g)$. Then D contains a T-, f- and g-invariant point.

Take g = f in Theorem 2.2 to get:

Corollary 2.4. Let K be a nonempty subset of a normed space X and $y_1, y_2 \in X$. Suppose that T and f are selfmaps of K such that T is asymptotically f-nonexpansive. Suppose that the set F(f) is nonempty. Let the set D, of best simultaneous K-approximants to y_1 and y_2 , is nonempty compact and starshaped with respect to an element q in F(f) and D is invariant under T and f. Assume further that (T, f) is a Banach operator pair on D, F(f) is q-starshaped with $q \in F(f)$, f is continuous and T is uniformly asymptotically regular on D. Then D contains a T- and f-invariant point.

A commuting pair (T, f) is a Banach operator pair and affineness of f implies that F(f) is q-starshaped; hence we get the following from Corollary 2.4.

Corollary 2.5. ([17], Theorem 2.3). Let K be a nonempty subset of a normed space X and $y_1, y_2 \in X$. Suppose that T and f are selfmaps of K such that T is asymptotically f-nonexpansive. Suppose that the set F(f) is nonempty. Let the set D, of best simultaneous K-approximants to y_1 and y_2 , is nonempty compact and starshaped with respect to an element q in F(f) and D is invariant under T and f. Assume further that T and f are commuting, T is uniformly asymptotically regular on D and f is affine. Then D contains a T- and f-invariant point.

Remark 2.6. Note that the condition "f(D) = D" in Theorem 2.3 of Vijayaraju [17] is not needed in our work.

Theorem 2.7. Let K be a nonempty subset of a Banach space X and $y_1, y_2 \in X$. Suppose that T, f and g are selfmaps of K such that T is asymptotically (f,g)-nonexpansive. Suppose that the set $F(f) \cap F(g)$ is nonempty. Let the set D, of best simultaneous K-approximants to y_1 and y_2 , is nonempty weakly compact and starshaped with respect to an element q of $F(f) \cap F(g)$ and D is invariant under T, f and g. Assume further that (T, f) and (T, g) are Banach operator pairs on D, F(f) and F(g) are q-starshaped with $q \in F(f) \cap F(g)$, f and g are continuous under weak and strong topologies and T is uniformly asymptotically regular on D. Then D contains a T - f - and g - invariant point provided <math>f - T is demiclosed at 0.

Proof. Let $\{T_n\}$ be defined as in the proof of Theorem 2.2. The weak compactness of wclT(D) implies that $wclT_n(D)$ is weakly compact and hence complete by the completeness of X (see [3, 7]). The analysis in Theorem 2.2, guarantees that there exists an $x_n \in D$ such that $x_n = fx_n = gx_n = T_nx_n$ and $||x_n - Tx_n|| \to 0$ as $n \to \infty$. The weak compactness of wclT(D) implies that there is a subsequence $\{x_m\}$ of $\{x_n\}$ converging weakly to $z \in D$ as

 $m \to \infty$. Weak continuity of f and g implies that fz = z = gz. Also, we have, $fx_m - Tx_m = x_m - Tx_m \to 0$ as $m \to \infty$. As so f - T is demiclosed at 0, then fz = Tz. Thus $D \cap F(T) \cap F(f) \cap F(g) \neq \emptyset$. This completes the proof.

Theorem 2.7 extends and improves the results due to Jungck and Sessa [8], Latif

[11], Sahab et al. [13], Sahney and Singh [14], Singh [15, 16] and Vijayaraju [17]. Following example exhibits an important fact: F(f) may be q-starshaped without the affineness of f.

Example 2.8. Consider $X = \mathbb{R}^2$ with the norm $||(x, y)|| = |x| + |y|, (x, y) \in \mathbb{R}^2$. Define T and f on X as follows:

$$T(x,y) = \left(\frac{1}{2}(x-2), \frac{1}{2}(x^2+y-4)\right)$$
$$f(x,y) = \left(\frac{1}{2}(x-2), x^2+y-4\right).$$

Obviously, T being f-nonexpansive is asymptotically f-nonexpansive but f is not affine. Moreover, $F(T) = \{-2, 0\}$, $F(f) = \{(-2, y) : y \in R\}$ and $C(f, T) = \{(x, y) : y = 4 - x^2, x \in R\}$. Thus (T, f) is a continuous Banach operator pair which is not a compatible pair [1, 3], F(f) is q-starshaped for any $q \in F(f)$ and (-2, 0) is a common fixed point of f and T.

Definition 2.9. A subset M of a linear space X is said to have the property (N) with respect to T [5, 6] if,

(i)
$$T: M \to M$$
,

(*ii*) $(1-k_n)q+k_nTx \in M$, for some $q \in M$ and a fixed sequence of real numbers $k_n(0 < k_n < 1)$ converging to 1 and for each $x \in M$.

Hussain et al. [5] noted that each q-starshaped set M has the property (N) but converse does not hold, in general. A mapping f is said to be affine on a set M with property (N) if $f((1-k_n)q+k_nTx) = (1-k_n)fq+k_nfTx$ for each $x \in M$ and $n \in \mathbb{N}$.

Remark 2.10. The results (2.2-2.5 and 2.7) of this paper remain valid, provided the q-starshapedness of the set D, F(f) and F(g) is replaced by the property (N). Consequently, recent results due to Hussain, O'Regan and Agarwal [5], Hussain and Rhoades [6], Khan et al. [9] and Khan and Khan [10] are extended to asymptotically (f, g)-nonexpansive map T where (T, f) and (T, g) are Banach operator pairs which are different from C_q -commuting and R-subweakly commuting maps (see Remark 2.15(ii) [3]).

ACKNOWLEDGMENT

The author A. R. Khan is grateful to King Fahd University of Petroleum & Minerals and SABIC for supporting FAST TRACK RESEARCH PROJECT SB070016.

References

- 1. J. Chen and Z. Li, Common fixed points for Banach operator pairs in best approximation, *J. Math. Anal. Appl.*, **336** (2007), 1466-1475.
- K. Goeble and W. A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, *Proc. Amer. Math. Soc.*, 35 (1972), 171-174.
- 3. N. Hussain, Common fixed points in best approximation for Banach operator pairs with Ciric Type *I*-contractions, *J. Math. Anal. Appl.*, **338** (2008), 1351-1363.
- N. Hussain and G. Jungck, Common fixed point and invariant approximation results for noncommuting generalized (f, g)-nonexpansive maps, J. Math. Anal. Appl., 321 (2006), 851-861.
- 5. N. Hussain, D. O'Regan and R. P. Agarwal, Common fixed point and invarient approximation results on non-starshaped domain, *Georgian Math. J.*, **12** (2005), 659-669.
- N. Hussain and B. E. Rhoades, C_q-commuting maps and invarient approximations, Fixed point Theory and Appl., vol. 2006, Article ID 24543, 9 pp.
- G. Jungck and N. Hussain, Compatible maps and invariant approximations, J. Math. Anal. Appl., 325 (2007), 1003-1012.
- G. Jungck and S. Sessa, Fixed point theorems in best approximation theory, *Math. Japon.*, 42 (1995), 249-252.
- 9. A. R. Khan, N. Hussain and A. B. Thaheem, Applications of fixed point theorems to invariant approximation, *Approx. Theory and Appl.*, **16** (2000), 48-55.
- 10. L. A. Khan and A. R. Khan, An extention of Brosowski-Meinardus theorem on invariant approximations, *Approx. Theory and Appl.*, **11** (1995), 1-5.
- A. Latif, A result on best approximation in *p*-normed spaces, *Arch. Math. (Brno)*, 37 (2001), 71-75.
- P. D. Milman, On best simultaneous approximation in normed linear spaces, J. Approximation Theory, 20 (1977), 223-238.
- S. A. Sahab, M. S. Khan and S. Sessa, A result in best approximation theory, J. Approx. Theory, 55 (1988), 349-351.
- 14. B. N. Sahney and S. P. Singh, On best simultaneous approximation, *Approximation Theory III*, Academic Press (1980), 783-789.
- 15. S. P. Singh, Application of fixed point theorems in approximation theory, *Applied Nonlinear Analysis*, Academic Press (1979), 389-394.

- 16. S. P. Singh, An application of fixed point theorem to approximation theory, *J. Approx. Theory*, **25** (1979), 89-90.
- 17. P. Vijayraju, Applications of fixed point theorem to best simultaneous approximations, *Indian J. Pure Appl. Math.*, **24(1)** (1993), 21-26.

A. R. Khan Department of Mathematics and Statistics, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia E-mail: arahim@kfupm.edu.sa

F. Akbar Department of Mathematics, University of Sargodha, Sargodha, Pakistan E-mail: ridaf75@yahoo.com

1386