COMMON FIXED POINTS FROM BEST SIMULTANEOUS APPROXIMATIONS

A. R. Khan and F. Akbar

Abstract

We obtain some results on common fixed points from the set of best simultaneous approximations for a map T which is asymptotically (f, g) nonexpansive where (T, f) and (T, g) are not necessarily commuting pairs. Our results extend and generalize recent results of Chen and Li [1], Jungck and Sessa [8], Sahab et al. [13], Sahney and Singh [14], Singh [15, 16] and Vijayaraju [17] and many others.

1. Introduction and Preliminaries

We first review needed definitions. Let M be a subset of a normed space $(X,\|\cdot\|)$. The set $P_{M}(u)=\{x \in M:\|x-u\|=\operatorname{dist}(u, M)\}$ is called the set of best approximants to $u \in X$ out of M, where $\operatorname{dist}(u, M)=\inf \{\|y-u\|: y \in M\}$. Suppose that A and G are bounded subsets of X. Then we write

$$
\begin{gathered}
r_{G}(A)=\inf _{g \in G} \sup _{a \in A}\|a-g\| \\
\operatorname{cent}_{G}(A)=\left\{g_{0} \in G: \sup _{a \in A}\left\|a-g_{0}\right\|=r_{G}(A)\right\} .
\end{gathered}
$$

The number $r_{G}(A)$ is called the Chebyshev radius of A w.r.t. G and an element $y_{0} \in \operatorname{cent}_{G}(A)$ is called a best simultaneous approximation of A w.r.t. G. If $A=$ $\{u\}$, then $r_{G}(A)=\operatorname{dist}(u, G)$ and $\operatorname{cent}_{G}(A)$ is the set of all best approximations, $P_{G}(u)$, of u out of G. We also refer the reader to Milman [12] and Vijayaraju [17] for further details. We denote by $\mathrm{IN}, \operatorname{cl}(M)$ and $w c l(M)$ the set of positive integers, closure of M and weak closure of M, respectively. Let $I: M \rightarrow M$ be a mapping. A mapping $T: M \rightarrow M$ is called an (f, g)-contraction if there exists $0 \leq k<1$ such that $\|T x-T y\| \leq k\|f x-g y\|$ for any $x, y \in M$. If $k=1$, then T is called

[^0](f, g)-nonexpansive. The map T is called asymptotically (f, g)-nonexpansive if there exists a sequence $\left\{k_{n}\right\}$ of real numbers with $k_{n} \geq 1$ and $\lim _{n} k_{n}=1$ such that $\left\|T^{n} x-T^{n} y\right\| \leq k_{n}\|f x-g y\|$ for all $x, y \in M$ and $n=1,2,3, \ldots$; if $g=f$, then T is called asymptotically f-nonexpansive [17]. The map T is called uniformly asymptotically regular [17] on M, if for each $\eta>0$, there exists $N(\eta)=N$ such that $\left\|T^{n} x-T^{n+1} x\right\|<\eta$ for all $n \geq N$ and all $x \in M$. The set of fixed points of T is denoted by $F(T)$. A point $x \in M$ is a coincidence point (common fixed point) of f and T if $f x=T x(x=f x=T x)$. The set of coincidence points of f and T is denoted by $C(f, T)$. The pair $\{f, T\}$ is called: (1) commuting if $T f x=f T x$ for all $x \in M$, (2) compatible (see [7]) if $\lim _{n}\left\|T f x_{n}-f T x_{n}\right\|=0$ whenever $\left\{x_{n}\right\}$ is a sequence such that $\lim _{n} T x_{n}=\lim _{n} f x_{n}=t$ for some t in M; (3) weakly compatible if they commute at their coincidence points, i.e.,if $f T x=T f x$ whenever $f x=T x$. The set M is called q-starshaped with $q \in M$, if the segment $[q, x]=\{(1-k) q+k x: 0 \leq k \leq 1\}$ joining q to x is contained in M for all $x \in M$. The map f defined on a q-starshaped set M is called affine if
$$
f((1-k) q+k x)=(1-k) f q+k f x, \quad \text { for all } x \in M .
$$

A Banach space X satisfies Opial's condition if for every sequence $\left\{x_{n}\right\}$ in X weakly convergent to $x \in X$, the inequality

$$
\liminf _{n \rightarrow \infty}\left\|x_{n}-x\right\|<\liminf _{n \rightarrow \infty}\left\|x_{n}-y\right\|
$$

holds for all $y \neq x$. Every Hilbert space and the space $l_{p}(1<p<\infty)$ satisfy Opial's condition. The map $T: M \rightarrow X$ is said to be demiclosed at 0 if for every sequence $\left\{x_{n}\right\}$ in M converging weakly to x and $\left\{T x_{n}\right\}$ convergent to $0 \in X$, then we have $0=T x$.

The class of asymptotically nonexpansive mappings was introduced by Goeble and Kirk [2] and further studied by various authors (see [17] and references therein). Recently, Chen and Li [1] introduced the class of Banach operator pairs, as a new class of noncommuting maps which is further investigated by Hussain [3]. In this paper, we improve and extend invariant approximation results of Chen and Li [1] and Vijayaraju [17] to the class of asymptotically (f, g)-nonexpansive map T where (T, f) and (T, g) are Banach operator pairs without the condition of linearity or affinity of f and g which is a key assumption in the results obtained in of $[4-8$, $11,13,16,17]$.

2. Main Results

The ordered pair (T, f) of two selfmaps of a metric space (X, d) is called a Banach operator pair, if the set $F(f)$ is T-invariant, namely, $T(F(f)) \subseteq F(f)$.

Obviously, commuting pair (T, f) is a Banach operator pair but not conversely, in general; see [1,3] and Example 2.8 below. If (T, f) is a Banach operator pair, then (f, T) need not be Banach operator pair(cf. Example 1[1]). If the selfmaps T and f of X satisfy

$$
d(f T x, T x) \leq k d(f x, x)
$$

for all $x \in X$ and $k \geq 0$, then (T, f) is a Banach operator pair; in particular, when $f=T$ and X is a normed space, the above inequality can be rewritten as

$$
\left\|T^{2} x-T x\right\| \leq k\|T x-x\| \text { for all } x \in X
$$

The following recent result will be needed.
Lemma 2.1. ([3], Lemma 2.10). Let C be a nonempty subset of a metric space (X, d), and (T, f) and (T, g) be Banach operator pairs on C. Assume that $c l(T(C))$ is complete, and T, f and g satisfy for all $x, y \in C$ and $0 \leq h<1$,

$$
\begin{equation*}
d(T x, T y) \leq h \max \{d(f x, g y), d(T x, f x), d(T y, g y), d(T x, g y), d(T y, f x)\} \tag{2.1}
\end{equation*}
$$

If f and g are continuous, $F(f) \cap F(g)$ is nonempty, then there is a unique common fixed point of T, f and g.

The following result extends Theorem 2.3 due to Vijayaraju [17] and approximation results in [13, 14, 15, 16] to noncommuting pairs.

Theorem 2.2. Let K be a nonempty subset of a normed space X and $y_{1}, y_{2} \in$ X. Suppose that T, f and g are selfmaps of K such that T is asymptotically (f, g)-nonexpansive. Suppose that the set $F(f) \cap F(g)$ is nonempty. Let the set D, of best simultaneous K-approximants to y_{1} and y_{2}, is nonempty compact and starshaped with respect to an element q in $F(f) \cap F(g)$ and D is invariant under T, f and g. Assume further that (T, f) and (T, g) are Banach operator pairs on $D, F(f)$ and $F(g)$ are q-starshaped with $q \in F(f) \cap F(g), f$ and g are continuous and T is uniformly asymptotically regular on D. Then D contains a T-, f - and g-invariant point.

Proof. For each $n \geq 1$, define a mapping T_{n} from D to D by

$$
T_{n} x=\left(1-\mu_{n}\right) q+\mu_{n} T^{n} x
$$

where $\mu_{n}=\frac{\lambda_{n}}{k_{n}}$ and $\left\{\lambda_{n}\right\}$ is a sequence of numbers in $(0,1)$ such that $\lim _{n} \lambda_{n}=1$. Since $T(D) \subset D$ and D is q-starshaped, it follows that T_{n} maps D into D. As (T, f) is a Banach operator pair, $T(F(f)) \subseteq F(f)$ implies that $T^{n}(F(f)) \subseteq F(f)$ for each $n \geq 1$. On utilizing q-starshapedness of $F(f)$ we see that for each $x \in$
$F(f), T_{n} x=\left(1-\mu_{n}\right) q+\mu_{n} T^{n} x \in F(f)$, since $T^{n} x \in F(f)$ for each $x \in F(f)$. Thus $\left(T_{n}, f\right)$ is a Banach operator pair on D for each $n \geq 1$. Similarly, $\left(T_{n}, g\right)$ is a Banach operator pair on D for each $n \geq 1$. For each $x, y \in D$, we have

$$
\begin{aligned}
\left\|T_{n} x-T_{n} y\right\| & =\mu_{n}\left\|T^{n} x-T^{n} y\right\| \\
& \leq \lambda_{n}\|f x-g y\|
\end{aligned}
$$

By Lemma 2.1, for each $n \geq 1$, there exists $x_{n} \in D$ such that $x_{n}=f x_{n}=g x_{n}=$ $T_{n} x_{n}$. As $T(D)$ is bounded, so $\left\|x_{n}-T^{n} x_{n}\right\|=\left(1-\mu_{n}\right)\left\|T^{n} x_{n}-q\right\| \rightarrow 0$ as $n \rightarrow \infty$. Since (T, f) is a Banach operator pair and $f x_{n}=x_{n}$, so $f T^{n} x_{n}=T^{n} f x_{n}=T^{n} x_{n}$. Thus we have

$$
\begin{aligned}
\left\|x_{n}-T x_{n}\right\| & =\left\|x_{n}-T^{n} x_{n}\right\|+\left\|T^{n} x_{n}-T^{n+1} x_{n}\right\|+\left\|T^{n+1} x_{n}-T x_{n}\right\| \\
& \leq\left\|x_{n}-T^{n} x_{n}\right\|+\left\|T^{n} x_{n}-T^{n+1} x_{n}\right\|+k_{1}\left\|f T^{n} x_{n}-g x_{n}\right\| \\
& =\left\|x_{n}-T^{n} x_{n}\right\|+\left\|T^{n} x_{n}-T^{n+1} x_{n}\right\|+k_{1}\left\|T^{n} x_{n}-x_{n}\right\|
\end{aligned}
$$

Since T is uniformly asymptotically regular on D, it follows that

$$
T^{n} x_{n}-T^{n+1} x_{n} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
$$

Thus we have

$$
\left\|x_{n}-T x_{n}\right\| \leq\left\|x_{n}-T^{n} x_{n}\right\|+\left\|T^{n} x_{n}-T^{n+1} x_{n}\right\|+k_{1}\left\|T^{n} x_{n}-x_{n}\right\| \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

. Since D is compact, there exists a subsequence $\left\{x_{m}\right\}$ of $\left\{x_{n}\right\}$ such that $x_{m} \rightarrow y$ as $m \rightarrow \infty$. By the continuity of $I-T$, we have $(I-T) x_{m} \rightarrow(I-T) y$. But $(I-T) x_{m} \rightarrow 0$, so we have $(I-T) y=0$. Since f and g are continuous, it follows that

$$
\begin{aligned}
f y & =f\left(\lim _{m} x_{m}\right)=\lim _{m} f x_{m}=\lim _{m} x_{m}=y \\
\text { and } g y & =g\left(\lim _{m} x_{m}\right)=\lim _{m} g x_{m}=\lim _{m} x_{m}=y
\end{aligned}
$$

This completes the proof.
The following corollary follows from Theorem 2.2 as condition (i) implies that D is T-invariant.

Corollary 2.3. Let X, K, y_{1}, y_{2}, f, g and T be as in Theorem 2.2. Assume that T satisfies the following condition:
(i) $\left\|T x-y_{i}\right\| \leq\left\|x-y_{i}\right\|$ for all $x \in X$ and $i=1,2$.

Suppose that the set D, of best simultaneous K-approximants to y_{1} and y_{2}, is nonempty compact and starshaped with respect to an element q in $F(f) \cap F(g)$. Then D contains a T-, f - and g-invariant point.

Take $g=f$ in Theorem 2.2 to get:
Corollary 2.4. Let K be a nonempty subset of a normed space X and $y_{1}, y_{2} \in X$. Suppose that T and f are selfmaps of K such that T is asymptotically f-nonexpansive. Suppose that the set $F(f)$ is nonempty. Let the set D, of best simultaneous K-approximants to y_{1} and y_{2}, is nonempty compact and starshaped with respect to an element q in $F(f)$ and D is invariant under T and f. Assume further that (T, f) is a Banach operator pair on $D, F(f)$ is q-starshaped with $q \in F(f), f$ is continuous and T is uniformly asymptotically regular on D. Then D contains a T - and f-invariant point.

A commuting pair (T, f) is a Banach operator pair and affineness of f implies that $F(f)$ is q-starshaped; hence we get the following from Corollary 2.4.

Corollary 2.5. ([17], Theorem 2.3). Let K be a nonempty subset of a normed space X and $y_{1}, y_{2} \in X$. Suppose that T and f are selfmaps of K such that T is asymptotically f-nonexpansive. Suppose that the set $F(f)$ is nonempty. Let the set D, of best simultaneous K-approximants to y_{1} and y_{2}, is nonempty compact and starshaped with respect to an element q in $F(f)$ and D is invariant under T and f. Assume further that T and f are commuting, T is uniformly asymptotically regular on D and f is affine. Then D contains $a T$ - and f-invariant point.

Remark 2.6. Note that the condition " $f(D)=D "$ in Theorem 2.3 of Vijayaraju [17] is not needed in our work.

Theorem 2.7. Let K be a nonempty subset of a Banach space X and $y_{1}, y_{2} \in$ X. Suppose that T, f and g are selfmaps of K such that T is asymptotically (f, g)-nonexpansive. Suppose that the set $F(f) \cap F(g)$ is nonempty. Let the set D, of best simultaneous K-approximants to y_{1} and y_{2}, is nonempty weakly compact and starshaped with respect to an element q of $F(f) \cap F(g)$ and D is invariant under T, f and g. Assume further that (T, f) and (T, g) are Banach operator pairs on $D, F(f)$ and $F(g)$ are q-starshaped with $q \in F(f) \cap F(g), f$ and g are continuous under weak and strong topologies and T is uniformly asymptotically regular on D. Then D contains a $T-f-$ and g-invariant point provided $f-T$ is demiclosed at 0 .

Proof. Let $\left\{T_{n}\right\}$ be defined as in the proof of Theorem 2.2. The weak compactness of $w c l T(D)$ implies that $w c l T_{n}(D)$ is weakly compact and hence complete by the completeness of X (see [3, 7]). The analysis in Theorem 2.2, guarantees that there exists an $x_{n} \in D$ such that $x_{n}=f x_{n}=g x_{n}=T_{n} x_{n}$ and $\left\|x_{n}-T x_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$. The weak compactness of $w \operatorname{clT}(D)$ implies that there is a subsequence $\left\{x_{m}\right\}$ of $\left\{x_{n}\right\}$ converging weakly to $z \in D$ as
$m \rightarrow \infty$. Weak continuity of f and g implies that $f z=z=g z$. Also, we have, $f x_{m}-T x_{m}=x_{m}-T x_{m} \rightarrow 0$ as $m \rightarrow \infty$. As so $f-T$ is demiclosed at 0 , then $f z=T z$. Thus $D \cap F(T) \cap F(f) \cap F(g) \neq \emptyset$. This completes the proof.

Theorem 2.7 extends and improves the results due to Jungck and Sessa [8], Latif [11], Sahab et al. [13], Sahney and Singh [14], Singh [15, 16] and Vijayaraju [17].

Following example exhibits an important fact: $F(f)$ may be q-starshaped without the affineness of f.

Example 2.8. Consider $X=\mathbb{R}^{2}$ with the norm $\|(x, y)\|=|x|+|y|,(x, y) \in$ \mathbb{R}^{2}. Define T and f on X as follows:

$$
\begin{aligned}
T(x, y) & =\left(\frac{1}{2}(x-2), \frac{1}{2}\left(x^{2}+y-4\right)\right) \\
f(x, y) & =\left(\frac{1}{2}(x-2), x^{2}+y-4\right)
\end{aligned}
$$

Obviously, T being f-nonexpansive is asymptotically f-nonexpansive but f is not affine. Moreover, $F(T)=\{-2,0\}, F(f)=\{(-2, y): y \in R\}$ and $C(f, T)=$ $\left\{(x, y): y=4-x^{2}, x \in R\right\}$. Thus (T, f) is a continuous Banach operator pair which is not a compatible pair [1,3],F(f) is q-starshaped for any $q \in F(f)$ and $(-2,0)$ is a common fixed point of f and T.

Definition 2.9. A subset M of a linear space X is said to have the property (N) with respect to $T[5,6]$ if,
(i) $T: M \rightarrow M$,
(ii) $\left(1-k_{n}\right) q+k_{n} T x \in M$, for some $q \in M$ and a fixed sequence of real numbers $k_{n}\left(0<k_{n}<1\right)$ converging to 1 and for each $x \in M$.

Hussain et al. [5] noted that each q-starshaped set M has the property (N) but converse does not hold, in general. A mapping f is said to be affine on a set M with property (N) if $f\left(\left(1-k_{n}\right) q+k_{n} T x\right)=\left(1-k_{n}\right) f q+k_{n} f T x$ for each $x \in M$ and $n \in \mathbb{N}$.

Remark 2.10. The results (2.2-2.5 and 2.7) of this paper remain valid, provided the q-starshapedness of the set $D, F(f)$ and $F(g)$ is replaced by the property (N). Consequently, recent results due to Hussain, O'Regan and Agarwal [5], Hussain and Rhoades [6], Khan et al. [9] and Khan and Khan [10] are extended to asymptotically (f, g)-nonexpansive map T where (T, f) and (T, g) are Banach operator pairs which are different from C_{q}-commuting and R-subweakly commuting maps (see Remark 2.15(ii) [3]).

Acknowledgment

The author A. R. Khan is grateful to King Fahd University of Petroleum \& Minerals and SABIC for supporting FAST TRACK RESEARCH PROJECT SB070016.

References

1. J. Chen and Z. Li, Common fixed points for Banach operator pairs in best approximation, J. Math. Anal. Appl., 336 (2007), 1466-1475.
2. K. Goeble and W. A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc., 35 (1972), 171-174.
3. N. Hussain, Common fixed points in best approximation for Banach operator pairs with Ciric Type I-contractions, J. Math. Anal. Appl., 338 (2008), 1351-1363.
4. N. Hussain and G. Jungck, Common fixed point and invariant approximation results for noncommuting generalized (f, g)-nonexpansive maps, J. Math. Anal. Appl., 321 (2006), 851-861.
5. N. Hussain, D. O'Regan and R. P. Agarwal, Common fixed point and invarient approximation results on non-starshaped domain, Georgian Math. J., 12 (2005), 659-669.
6. N. Hussain and B. E. Rhoades, C_{q}-commuting maps and invarient approximations, Fixed point Theory and Appl., vol. 2006, Article ID 24543, 9 pp.
7. G. Jungck and N. Hussain, Compatible maps and invariant approximations, J. Math. Anal. Appl., 325 (2007), 1003-1012.
8. G. Jungck and S. Sessa, Fixed point theorems in best approximation theory, Math. Japon., 42 (1995), 249-252.
9. A. R. Khan, N. Hussain and A. B. Thaheem, Applications of fixed point theorems to invariant approximation, Approx. Theory and Appl., 16 (2000), 48-55.
10. L. A. Khan and A. R. Khan, An extention of Brosowski-Meinardus theorem on invariant approximations, Approx. Theory and Appl., 11 (1995), 1-5.
11. A. Latif, A result on best approximation in p-normed spaces, Arch. Math. (Brno), 37 (2001), 71-75.
12. P. D. Milman, On best simultaneous approximation in normed linear spaces, J. Approximation Theory, 20 (1977), 223-238.
13. S. A. Sahab, M. S. Khan and S. Sessa, A result in best approximation theory, J. Approx. Theory, 55 (1988), 349-351.
14. B. N. Sahney and S. P. Singh, On best simultaneous approximation, Approximation Theory III, Academic Press (1980), 783-789.
15. S. P. Singh, Application of fixed point theorems in approximation theory, Applied Nonlinear Analysis, Academic Press (1979), 389-394.
16. S. P. Singh, An application of fixed point theorem to approximation theory, J. Approx. Theory, 25 (1979), 89-90.
17. P. Vijayraju, Applications of fixed point theorem to best simultaneous approximations, Indian J. Pure Appl. Math., 24(1) (1993), 21-26.

A. R. Khan
Department of Mathematics and Statistics, King Fahd University of Petroleum \& Minerals, Dhahran, 31261,
Saudi Arabia
E-mail: arahim@kfupm.edu.sa
F. Akbar
Department of Mathematics, University of Sargodha,
Sargodha,
Pakistan
E-mail: ridaf75@yahoo.com

[^0]: Received July 27, 2007, accepted December 8, 2007.
 Communicated by Jen-Chih Yao.
 2000 Mathematics Subject Classification: 41A65, 47H10, 54H25.
 Key words and phrases: Banach operator pair, Asymptotically (f, g)-nonexpansive maps, Best simultaneous approximation.

