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THE C∗-ALGEBRAS OF SOME SOLVABLE LIE GROUPS INVOLVING
CYCLIC SYMMETRIES

Takahiro Sudo

Abstract. In this paper we consider the group C∗-algebras of some solv-
able Lie groups involving cyclic symmetries and obtain some results on their
structure, stable rank, and connected stable rank for C∗-algebras.

0. INTRODUCTION

Group C∗-algebras have been of interest in some topics of C∗-algebras such
as their representation theory, structure theory, and K-theory. For instance, see
Dixmier [6] and Pedersen [12] for the general theory and the representation theory
of C∗-algebras as well as group C∗-algebras, and see Blackadar [1] for K-theory
for C∗-algebras.

On the other hand, in the unitary representation theory of Lie groups their irre-
ducible unitary representations are crucial, and they correspond to primitive quotients
of their group C∗-algebras. In this direction some remarkable results about those
primitive quotient C∗-algebras have been obtained by Green [9] and Poguntke [13].

Furthermore, symmetries on C∗-algebras have also been studied. For this see
Blackadar [2], Bratteli, Elliott, Evans and Kishimoto [3, 4] and [5], in which
they considered symmetries on irrational or rational rotation C∗-algebras that play
important roles in the C∗-algebra theory.

Moreover, the stable rank (and connected stable rank) theory for C∗-algebras was
initiated by Rieffel [14], in which he proposed an interesting question of describing
the stable rank of Lie group C∗-algebras in terms of Lie groups. For this question
some results are obtained by Sheu [18] for certain simply connected nilpotent Lie
groups, Takai and Sudo [26, 27] for all simply connected nilpotent Lie groups and
solvable Lie groups of type I, and the author [19] for connected Lie groups of
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type I as well as [20-22] for certain simply connected solvable Lie groups of non
type I. Those results suggest that the stable rank of (simply) connected solvable
Lie group C∗-algebras can be estimated by the covering dimension of the spaces
of their 1-dimensional representations. Moreover, that of the group C∗-algebras of
some disconnected solvable Lie groups by the integers Z has been considered by
the author [23-25]. It is found that their estimation becomes more complicated than
the connected cases since they may have homogeneous subquotients that need to be
considered in estimation.

In this paper we consider the C∗-algebras of some disconnected solvable Lie
groups involving actions by the cyclic groups Zn (and we call the actions cyclic
symmetries) and obtain some results on their (algebraic) structure, stable rank, and
connected stable rank. In Section 1 we consider the examples analogous to the real
2-dimensional ax + b group C∗-algebra, i.e., the group C∗-algebra of the complex
ax + b group involving a cyclic symmetry and its generalization, and obtain some
results on their structure, stable rank, and connected stable rank. In Section 2 we
consider the examples analogous to the real 4-dimensional split oscillator group C∗-
algebra, i.e., the group C∗-algebra of the complex split oscillator group involvling
a cyclic symmetry and its generalization, and obtain some results on their structure,
stable rank, and connected stable rank. In Section 3 we consider the examples
analogous to the real 5-dimensional Mautner group C∗-algebra, i.e., the group C∗-
algebra of the complex Mautner group by Z involvling a cyclic (and free) symmetry
and its generalization, and obtain some results on the same items as before.

Roughly speaking, we find that the stable rank as well as the connected stable
rank of those group C∗-algebras involving cyclic symmetries can be estimated by the
covering dimension of the spaces of finite dimensional irreducible representations
of homogeneous subquotients of the group C∗-algebras that depend on the cyclic
symmetries themselves. Moreover, from the structure theorem obtained for the
group C∗-algebra of the complex Mautner group by Z involvling a cyclic (and
free) symmetry and its generalization we find that in general, disconnected solvable
Lie group C∗-algebras involvling cyclic (and free) symmetries may have simple
subquotients that are not isomorphic to noncommutative tori, and even not stably
isomorphic (or Morita equivalent) to them. This phenomenon is different from that
for the cases of connected solvable Lie groups and some disconnected solvable Lie
groups by Z considered in [23-25]. In fact, see [9] and [13] for the connected
case, in which it is shown that connected solvable Lie group C∗-algebras just have
simple noncommutative tori, matrix algebras over C, the C∗-algebra of compact
operators, or their tensor product C∗-algebras as simple subquotients. Furthermore,
the particular cases considered here could be helpful for understanding the algebraic
structure, stable rank, and connected stable rank for disconnected solvable Lie group
C∗-algebras in more general cases.
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Notation and facts. Let G be a Lie group. Denote by C∗(G) the (full) group
C∗-algebra of G. Let A be a C∗-algebra. Denote by A �α G the (full) crossed
product of A by an action α of G by automorphisms of A ([12]). Let X be a
locally compact Hausdorff space. Denote by C0(X) the C∗-algebra of all complex-
valued continuous functions on X vanishing at infinity. Set C(X) = C0(X) if X

is compact. Note that C∗(G) is nonunital if G is not compact.
The spectrum of a C∗-algebra A is the space A∧ of equivalence classes of ir-

reducible representations of A equipped with the hull kernel topology via the map
from a class [π] ∈ A∧ to the kernel ker(π), that is called a primitive ideal of A.
This correspondence is a homeomorphism if and only if A is of type I (see [6] or
[12]). In particular, C0(X)∧ consists of 1-dimensional representations of C0(X)
(characters) and is homeomorphic to X , where a point x of X is identified with
the (maximal) closed ideal of the elements of C0(X) vanishing at x, and the cor-
responding character χx is the evaluation at x, i.e., χx(f) = f(x) for f ∈ C0(X).
Also, (C0(X)⊗Mn(C))∧ consists of the classes of n-dimensional irreducible rep-
resentations of C0(X)⊗Mn(C) (tensor product) and is homeomorphic to X via
the map from x ∈ X to χx ⊗ idMn(C) (tensor representation), where idMn(C) is
the identity representation of the n × n matrix algebra Mn(C) over C. Note that
C∗(G)∧ is identified with G∧ the unitary dual of G consisting of equivalence classes
of irreducible unitary representations of G (see [6]).

Denote by sr(A) the stable rank of a C∗-algebra A and by csr(A) the connected
stable rank of A. Recall that sr(A) for a unital C∗-algebra A is defined to be
the smallest positive integer n such that the set Ln(A) of all (aj)n

j=1 ∈ An with∑n
j=1 Aaj = A is dense in An, and csr(A) is defined to be the smallest positive

integer n such that for any integer m ≥ n, Lm(A) is connected. The stable rank
and connected stable rank for a nonunital C∗-algebra A are defined to be those of
its unitization A+. We refer to Rieffel [14] about the ranks. For convenience to
readers, we give a list of formulae about the ranks, which are often used in what
follows:

First of all, note that sr(A ⊕ B) = max{sr(A), sr(B)} and csr(A ⊕ B) =
max{csr(A), csr(B)} for the direct sum A⊕B of C∗-algebras A, B.

For any short exact sequence 0→ I→ A→ A/I→ 0 of C∗-algebras,

(F1) : max{sr(I), sr(A/I)} ≤ sr(A) ≤ max{sr(I), sr(A/I), csr(A/I)},
csr(A) ≤ max{csr(I), csr(A/I)}

([14, Theorems 4.3, 4,4 and 4.11] and Sheu [18, Theorem 3.9]).

(F2) : sr(C0(X)) = �dim X+/2�+ 1, csr(C0(X)) ≤ �(dimX+ + 1)/2�+ 1,

where X+ is the one point compactification of X , dim(·) is the covering
dimension for spaces, �x� is the integer part of x, and C0(X)+ ∼= C(X+)
([14, Proposition 1.7] and Nistor [11]).



1308 Takahiro Sudo

(F3) : sr(Mn(A)) = 
(sr(A)−1)/n�+1, csr(Mn(A)) ≤ 
(csr(A)−1)/n�+1,

where Mn(A) is the n × n matrix algebra over a C∗-algebra A, and 
x� is
equal to �x�+ 1 for x non-integers, and 
x� = x for x integers (Rieffel [14,
Theorem 6.1] and [15, Theorem 4.7]).

(F4) : sr(A⊗K) = min{sr(A), 2}, csr(A⊗K) ≤ min{csr(A), 2}
for any C∗-algebra A, where K is the C∗-algebra of all compact operators on
a separable infinite dimensional Hilbert space ([14, Theorems 3.6 and 6.4],
[18, Theorem 3.10], and [11]).

(F5) : For a unital C∗-algebra A, if sr(A) ≤ n, then the canonical map from
GLn(A)/GLn(A)0 to GLn+1(A)/GLn+1(A)0 (for GLn(A) the group of
invertible elements of Mn(A) and its connected component GLn(A)0 with
the identity matrix) is an isomorphism, so that the K1-group K1(A) ∼=
GLn(A)/GLn(A)0 (Rieffel [15, Theorem 2.10]), where by definition K1(A) =
GL∞(A)/GL∞(A)0 for GL∞(A) the union of GLn(A) (n ≥ 1) with the
canonical inclusion (see [1]). Note that K1(A) ∼= K1(A+) for any C∗-
algebra A. For a nonunital C∗-algebra A, we write GLn(A)/GLn(A)0 for
GLn(A+)/GLn(A+)0. Also, GLn(A) and GLn(A)0 can be replaced with
Un(A) the group of unitaries of Mn(A) and its connected component Un(A)0
with the identity matrix, respectively.
If a C∗-algebra A has connected stable rank 1, then K1(A) ∼= 0 (by (F3)).
Hence, if K1(A) �∼= 0, then csr(A) ≥ 2.

1. THE COMPLEX (GENERALIZED) ax + b GROUPS INVOLVING CYCLIC SYMMETRIES

Let C �α Zn be the semi-direct product of C by an action α of Zn defined by
α1(z) = e2πi/nz for z ∈ C and 1 ∈ Zn. We call it an n-cyclic symmetry on C. Let
C∗(C �α Zn) be the group C∗-algebra of C �α Zn. Then it is isomorphic to the
crossed product C∗-algebra C∗(C) �α Zn, where the action α of Zn on C∗(C) is
induced from that on C. We also call it an n-cyclic symmetry on C∗(C).

Note also that the semi-direct product C �α Zn can be identified with the group
of all the following matrices:

A1,n =
{(

e2πit/n z

0 1

)
for t ∈ Zn, z ∈ C

}

Thus we call A1,n = C �α Zn the complex ax + b group involving the n-cyclic
symmetry α.

Now consider the structure for C∗(C)�αZn. By the Fourier transform, C∗(C)�α

Zn is isomorphic to C0(C) �α∧ Zn, where C0(C) is the C∗-algebra of all complex-
valued continuous functions on C vanishing at infinity and the dual action α∧ is
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induced from the duality between C and its dual group C. Since the origin of C is
fixed under α∧, we have the following short exact sequence:

0→ C0(C \ {0}) �α∧ Zn → C0(C) �α∧ Zn → C∗(Zn)→ 0,

and C∗(Zn) ∼= C
n. Furthermore, since the action of Zn is trivial on the radius

direction in C \ {0},

C0(C \ {0}) �α∧ Zn
∼= C0(R+)⊗ (C(T) � Zn)

where R+ is the space of all positive real numbers, and

C(T) � Zn
∼= C(T/Zn)⊗ (Cn

� Zn) ∼= C(T)⊗Mn(C)

since the action on T is n-cyclic, where T/Zn is the orbit space under the action
of Zn on T.

Summing up the above argument we obtain

Theorem 1.1. Let A1,n = C �α Zn be the complex ax + b group involving the
n-cyclic symmetry α. For the group C ∗-algebra C∗(A1,n) of A1,n, we have the
following exact sequence:

0→ C0(R+)⊗C(T) ⊗Mn(C)→ C∗(A1,n)→ C
n → 0.

Using the structure theorem above we obtain

Theorem 1.2. The group C∗-algebra C∗(A1,n) of A1,n has stable rank 2, and

sr(C∗(A1,n)) = 2 = dimC∗(A1,n)∧n ,

where C∗(A1,n)∧n means the space of all n-dimensional irreducible representations
of C∗(A1,n) up to unitary equivalence, and is homeomorphic to R + × T.

Moreover, we obtain csr(C∗(A1,n)) ≤ 2 and K1(C∗(A1,n)) ∼= 0 and

GLk(C∗(A1,n))/GLk(C∗(A1,n))0 ∼= 0 (k ≥ 2).

Proof. Using the structure of Theorem 1.1 and the formula (F1) we have

max{sr(C0(R+ × T) ⊗Mn(C)), sr(Cn)}
≤ sr(C∗(A1,n)) ≤ max{sr(C0(R+ × T)⊗Mn(C)), sr(Cn), csr(Cn)}.

Furthermore, we have sr(Cn) = 1, csr(Cn) = 1 and

sr(C0(R× T)⊗Mn(C)) = 
�2/2�/n� + 1 = 2
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by the formulae (F2) and (F3). On the other hand,

csr(C∗(A1,n)) ≤ max{csr(C0(R+ × T)⊗Mn(C)), csr(Cn)}
by (F1), and csr(C0(R+ × T) ⊗Mn(C)) ≤ 
�(2 + 1)/2�/n�+ 1 = 2 by (F2) and
(F3). Hence csr(C∗(A1,n)) ≤ 2.

On the other hand, using the fundamental result of the equivariant K-theory
for crossed products by Zn and the Bott periodicity (see [1, Theorems 11.7.1 and
11.9.4]) we compute the K1-group K1(C∗(A1,n)) of C∗(A1,n) as follows:

K1(C∗(A1,n)) ∼= K1(C0(C) � Zn) ∼= KZn
1 (C0(C))

∼= KZn
1 (C) ∼= K1(C∗(Zn)) ∼= ⊕nK1(C) ∼= 0,

where KZn
1 (·) means the equivariant K-theory by Zn. By (F5), we obtain GLk(C∗

(A1,n))/GLk(C∗(A1,n))0 ∼= 0 for k ≥ 2 as sr(C∗(A1,n)) = 2.

Remark. It is very likely that csr(C∗(A1,n)) = 1.

Its generalization. Let C
m

�α Zn be the semi-direct product of C
m by an

action α of Zn defined by α1((zj)) = (e2πi/nzj) for (zj) ∈ Cm and 1 ∈ Zn. We
call it an n-cyclic symmetry on C

m. Let C∗(Cm
�α Zn) be the group C∗-algebra of

Cm�α Zn. Then it is isomorphic to the crossed product C∗-algebra C∗(Cm)�αZn,
where the action α of Zn on C∗(Cm) is induced from that on C

m. We also call it
an n-cyclic symmetry on C∗(Cm).

Note also that the semi-direct product C
m

�α Zn can be identified with the
group Am,n of all the following (m + 1)× (m + 1) matrices:

Am,n =







e2πit/n z1

. . . ...
e2πit/n zm

0 1


 for t ∈ Zn, zj ∈ C(1 ≤ j ≤ m)




Thus we call it the complex m-dimensional generalized ax + b group involving the
n-cyclic symmetry α.

Now consider the structure for C∗(Cm) �α Zn. Using the same method as
before, we have that:

0→ C0(Cm \ {0m}) �α∧ Zn → C0(Cm) �α∧ Zn → C∗(Zn)→ 0,

where 0m ≡ {0} × · · · × {0} is the origin of Cm, and C∗(Zn) ∼= Cn. Moreover,
since the following n subspaces X1j (1 ≤ j ≤ m):

X11 = (C \ {0})× {0} × · · · × {0}, · · · , X1m = {0} × · · · × {0} × (C \ {0})
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are invariant under α∧ and disjoint and closed in Cm \ {0m}, we have

0→ C0(X2)�α∧Zn → C0(Cm\{0m})�α∧Zn → ⊕m
j=1(C0(C\{0})�α∧Zn)→ 0,

where X2 is the complement of �m
j=1X1j in C

m \ {0m}. Inductively, we can
construct the following:

0→ C0(Xk+1) �α∧ Zn → C0(Xk) �α∧ Zn → ⊕mCk
j=1 (C0(Xkj) �α∧ Zn)→ 0

for 2 ≤ k ≤ m − 1, where mCk means the combination of k from m, and the
subspaces Xkj are defined by

Xk1 = (C \ {0})k × ({0})m−k, · · · , XkmCk
= ({0})m−k × (C \ {0})k.

Indeed, note that the subspaces Xkj are invariant under α∧ and disjoint and closed in
Xk so that Xk+1 is defined to be the complement of �mCk

j=1 Xkj in Xk. In particular,
we have Xm = Xm1 = (C \ {0})m.

Furthermore, since the action of Zn is trivial on the radius direction in C \ {0}
of each Xkj ,

C0(Xkj) �α∧ Zn
∼= C0((C \ {0})k) �α∧ Zn

∼= C0((R+)k)⊗ (C(Tk) � Zn),

where R+ is the space of all positive real numbers, and

C(Tk) � Zn
∼= C(Tk/Zn)⊗ (Cn

� Zn) ∼= C(Tk)⊗Mn(C)

since the action on Tk is n-cyclic, where Tk/Zn is the orbit space under the action
of Zn on T

k.
Summing up the above argument we obtain

Theorem 1.3. Let Am,n = Cm �α Zn be the complex m-dimensional general-
ized ax + b group involving the n-cyclic symmetry α. For the group C ∗-algebra
C∗(Am,n) of Am,n, we have the following exact sequences:

0→ Ik+1 → Ik → Ik/Ik+1 → 0 for 0 ≤ k ≤ m

of its closed ideals such that I 0 = C∗(Am,n), Im+1 = {0}, I0/I1
∼= Cn and

Ik/Ik+1
∼= ⊕mCk

j=1 [C0((R+)k)⊗ C(Tk)⊗Mn(C)] for 1 ≤ k ≤ m.

Using the structure theorem above we obtain
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Theorem 1.4. For the group C∗-algebra C∗(Am,n) of Am,n,

sr(C∗(Am,n)) = 
m/n�+ 1 = sr(C0(Rm
+ × T

m)⊗Mn(C)),

where m = dim(Rm
+ × T

m)/2, and 2m is the (maximum) dimension of the spaces
Rk

+ × Tk (1 ≤ k ≤ m) of n-dimensional irreducible representations of C ∗(Am,n)
up to unitary equivalence. If n ≥ m, then sr(C ∗(Am,n)) = 2.

Moreover, we have

csr(C∗(Am,n)) ≤ 
m/n�+ 1,

and K1(C∗(Am,n)) ∼= 0, and if n ≥ m, then

GLk(C∗(Am,n))/GLk(C∗(Am,n))0 ∼= 0 (k ≥ 2).

Proof. Using the structure of Theorem 1.3 and the formula (F1) we have

max{sr(I1), sr(Cn)} ≤ sr(C∗(Am,n)) ≤ max{sr(I1), sr(Cn), csr(Cn)},
max{sr(Ik+1), sr(Ik/Ik+1)} ≤ sr(Ik)

≤ max{sr(Ik+1), sr(Ik/Ik+1), csr(Ik/Ik+1)}.
Furthermore, we have sr(Cn) = 1, csr(Cn) = 1, and

sr(Ik/Ik+1) = sr(C0((R+)k)⊗ C(Tk)⊗Mn(C))

= 
�2k/2�/n�+ 1 = 
k/n� + 1,

csr(Ik/Ik+1) = csr(C0((R+)k)⊗C(Tk)⊗Mn(C))

≤ 
�(2k + 1)/2�/n�+ 1 = 
k/n�+ 1

using the formulae (F2) and (F3). Therefore, we obtain

sr(C∗(Am,n)) = sr(Im) = 
m/n�+ 1.

Moreover, by (F1) we obtain

csr(Ik) ≤ max{csr(Ik+1), csr(Ik/Ik+1)}

for 0 ≤ k ≤ m. Hence, it follows that

csr(C∗(Am,n)) = csr(I0) ≤ max
0≤k≤m

csr(Ik/Ik+1),

and csr(C∗(Am,n)) ≤ 
m/n� + 1.



The C∗-Algebras of Some Solvable Lie Groups Involving Cyclic Symmetries 1313

On the other hand, using the fundamental result of the equivariant K-theory
for crossed products by Zn and the Bott periodicity (see [1, Theorems 11.7.1 and
11.9.4]) we compute the K1-group K1(C∗(Am,n)) of C∗(Am,n) as follows:

K1(C∗(Am,n)) ∼= K1(C0(Cm) � Zn) ∼= KZn
1 (C0(Cm))

∼= KZn
1 (C) ∼= K1(C∗(Zn)) ∼= ⊕nK1(C) ∼= 0.

If m ≤ n, then sr(C∗(Am,n)) = 2. Thus, using (F5) we imply the last isomorphism
in the statement.

2. THE COMPLEX (GENERALIZED) SPLIT OSCILLATOR GROUPS

INVOLVING CYCLIC SYMMETRIES

We define the complex 3-dimensional split oscillator group S3,n involving an
n-cyclic symmetry to be the group consisting of all the following matrices:

S3,n =





1 z1 z3

0 e2πit/n z2

0 0 1


 = (z3, z2, z1, t) for t ∈ Zn, z1, z2, z3 ∈ C




Note that it is isomorphic to the semi-direct product H C
3 �α Zn, where HC

3 is the
complex 3-dimensional Heisenberg group defined by the matrices (z3, z2, z1, 0) =
(z3, z2, z1) for z1, z2, z3 ∈ C, and the action α of Zn is defined by

αt(z3, z2, z1) = t(z3, z2, z1)(−t) = (z3, e
2πit/nz2, e

−2πit/nz1)

for (0, 0, 0, t) = t ∈ Zn. Note also that HC
3 is isomorphic to the semi-direct product

C2 �β C, where the action β of C is defined by βz1(z3, z2) = (z3 + z1z2, z2) for
z1, z2, z3 ∈ C.

Let C∗(S3,n) be the group C∗-algebra of S3,n. Then it is isomorphic to the
crossed product C∗-algebra C∗(HC

3 )�α Zn, where C∗(HC
3 ) is the group C∗-algebra

of HC
3 . Since HC

3
∼= C

2
�β C, we have C∗(HC

3 ) ∼= C∗(C2) �β C. By the Fourier
transform, C∗(C2) �β C is isomorphic to C0(C2) �β∧ C, where the action β∧ is
defined by β∧

z1
(w3, w2) = (w3, w2 + z1w3) ∈ C

2 via C
2 ∼= (C2)∧ (the dual group

of C2). Since {0} × C is fixed under the action of C, we have the following short
exact sequence:

0→ C0((C \ {0})×C) � C→ C0(C2) � C→ C0(C)⊗ C∗(C)→ 0,

and C0(C)⊗ C∗(C) ∼= C0(C2). Moreover, since the above quotient C∗-algebra is
invariant under the dual action α∧ of Zn, we have

0→ C0((C \ {0})× C) � C � Zn → C0(C2) � C � Zn → C0(C2) � Zn → 0.
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Furthermore, since the action of C on each {z}×C for z ∈ C \ {0} is the shift, we
have

C0((C \ {0})× C) � C ∼= C0(C \ {0})⊗K,

where K is the C∗-algebra of all compact operators. Since the action of Zn on K

is implemented by the adjoint action of unitaries,

C0(C \ {0})⊗ K � Zn
∼= C0(C \ {0})⊗ K⊗ C∗(Zn) ∼= ⊕n(C0(C \ {0})⊗ K),

where C∗(Zn) ∼= ⊕n
C by the Fourier transform. For the above quotient C∗-

algebra C0(C2) � Zn, from the orbit structure for α∧ on C2 we have the following
decompositions:

0→ C0(C2 \ {(0, 0)}) � Zn → C0(C2) � Zn → C � Zn → 0,

0→ C0((C \ {0})2) � Zn → C0(C2 \ {(0, 0)}) � Zn → ⊕2(C0(C \ {0}) � Zn)→ 0,

and C � Zn = C∗(Zn) ∼= C
n. Furthermore, by the same method as before,

C0(C \ {0}) � Zn
∼= C0(R+)⊗ (C(T) � Zn) ∼= C0(R+)⊗ C(T)⊗Mn(C),

C0((C \ {0})2) � Zn
∼= C0(R2

+)⊗ (C(T2) � Zn),

and C(T2) � Zn
∼= C(T2/Zn)⊗ (Cn � Zn) ∼= C(T2)⊗Mn(C).

Therefore we obtain

Theorem 2.1. Let S3,n = HC
3 �α Zn be the complex 3-dimensional split

oscillator group involving the n-cyclic symmetry α. For the group C ∗-algebra
C∗(S3,n) of S3,n, we have the following exact sequences:

0→ ⊕n(C0(C \ {0})⊗K)→ C∗(S3,n)→ C0(C2) � Zn → 0,

0→ C0(C2 \ {(0, 0)}) � Zn → C0(C2) � Zn → C
n → 0, and

0→ C0(R2
+ × T

2)⊗Mn(C)→ C0(C2 \ {(0, 0)}) � Zn

→ ⊕2(C0(R+ × T) ⊗Mn(C))→ 0.

Using the structure theorem above we obtain

Theorem 2.2. The group C∗-algebra C∗(S3,n) of S3,n has stable rank 2, and

sr(C∗(S3,n)) = 2 = sr(C0(R2
+ × T

2)⊗Mn(C)), but

�=
{

dim C∗(S3,n)∧n = 4,

�dim C∗(S3,n)∧n/2�+ 1 = 3,
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where C∗(S3,n)∧n means the space of all n-dimensional irreducible representations
of C∗(S3,n) up to unitary equivalence, and has an open subset homeomorphic to
R2

+ × T2 whose complement is the disjoint union of two closed subsets R + × T.
Moreover, we obtain csr(C∗(S3,n)) ≤ 2 and K1(C∗(S3,n)) ∼= 0 and

GLk(C∗(S3,n))/GLk(C∗(S3,n))0 ∼= 0 (k ≥ 2).

Proof. Using the structure of Theorem 2.1 and the formula (F1) we have

max{sr(C0(C \ {0})⊗ K), sr(C0(C2) � Zn)} ≤ sr(C∗(S3,n))

≤ max{sr(C0(C \ {0})⊗K), sr(C0(C2) � Zn), csr(C0(C2) � Zn)}, and

max{sr(C0(C2 \ {(0, 0)}) � Zn), sr(Cn)} ≤ sr(C0(C2) � Zn)

≤ max{sr(C0(C2 \ {(0, 0)}) � Zn), sr(Cn), csr(Cn)}, and

max{sr(C0(R2
+ × T

2)⊗Mn(C)), sr(C0(R+ × T) ⊗Mn(C))}
≤ sr(C0(C2 \ {(0, 0)}) � Zn)

≤ max{sr(C0(R2
+ × T

2)⊗Mn(C)), sr(C0(R+ × T)⊗Mn(C)),

csr(C0(R+ × T)⊗Mn(C))}.

By (F1) we have

csr(C0(C2) � Zn) ≤ max{csr(C0(C2 \ {(0, 0)}) � Zn), csr(Cn)}
≤ max{csr(C0(R2

+ × T2)⊗Mn(C)), csr(C0(R+ × T)⊗Mn(C))}.
By (F4)

sr(C0(C \ {0})⊗K) = min{2, sr(C0(C \ {0}))} = 2.

Therefore, we obtain

sr(C0(R2
+ × T

2)⊗Mn(C)) = 
�4/2�/n�+ 1

= 2 ≤ sr(C∗(S3,n)) ≤
csr(C0(R2

+ × T
2)⊗Mn(C)) ≤ 
�5/2�/n�+ 1 = 2

by (F2) and (F3).
Moreover, by (F1) we have

csr(C∗(S3,n)) ≤ max{csr(C0(C \ {0})⊗K), csr(C0(C2) � Zn)}.
By (F4) we obtain csr(C0(C\{0})⊗K)≤ 2. Thus, it follows that csr(C∗(S3,n)) ≤
2.
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We next compute the K1-group of C∗(S3,n). Namely,

K1(C∗(S3,n)) ∼= K1(C∗(HC
3 ) � Zn) ∼= KZn

1 (C∗(HC
3 ))

([1, Theorem 11.7.1]). Since we have

0→ C0(C \ {0})⊗K→ C∗(HC
3 )→ C0(C2)→ 0,

its six term exact sequence of equivariant K-groups by Zn is given by

KZn
0 (C0(C \ {0})⊗K) −−−−→ KZn

0 (C∗(HC
3 )) −−−−→ KZn

0 (C0(C2))� �∂Zn

KZn
1 (C0(C2)) ←−−−− KZn

1 (C∗(HC
3 )) ←−−−− KZn

1 (C0(C \ {0})⊗K)

since the closed ideal C0(C \ {0})⊗ K is invariant under the action of Zn, where
∂Zn means the index map (one of two) ([1, Theorem 11.9.6]). Furthermore,

KZn
1 (C0(C2)) ∼= KZn

1 (C) ∼= K1(C∗(Zn)) ∼= 0,

KZn
0 (C0(C2)) ∼= KZn

0 (C) ∼= K0(C∗(Zn)) ∼= ⊕n
Z

by the Bott periodicity ([1, Theorem 11.9.4]), and

KZn
1 (C0(C \ {0})⊗ K) ∼= KZn

1 (C0(C \ {0}))
∼= K1(C0(R)⊗ C(T)⊗C∗(Zn)) ∼= K0(C(T)⊗C

n) ∼= ⊕n
Z,

KZn
0 (C0(C \ {0})⊗ K) ∼= KZn

0 (C0(C \ {0}))
∼= K0(C0(R)⊗ C(T)⊗C∗(Zn)) ∼= K1(C(T)⊗C

n) ∼= ⊕n
Z.

since Kj(C(T)) ∼= Z for j = 0, 1, where C\{0} ≈ R+×T ≈ R×T (homeomorphic)
and the restriction of the action of Zn to C \ {0} is trivial. On the other hand, the
six term exact sequence of K-groups of the above exact sequence is given by

K0(C0(C \ {0})⊗ K) −−−−→ K0(C∗(HC
3 )) −−−−→ K0(C0(C2)) ∼= Z� �∂

K1(C0(C2)) ∼= 0 ←−−−− K1(C∗(HC
3 )) ←−−−− K1(C0(C \ {0})⊗ K)

([1, Theorem 9.3.1]) and Kj(C0(C\{0})⊗K)∼= Z (j = 0, 1) and K0(C∗(HC
3 )) ∼=

Z, K1(C∗(HC
3 )) ∼= 0 by using Connes’ Thom isomorphism for crossed products

of C∗-algebras by R ([1, Theorem 10.2.2]) since C∗(HC
3 ) ∼= C0(C2) � C2 ∼=

C0(C2)�R2 �R2. Therefore, the index map ∂ is an isomorphism so that the index
map ∂Z is an isomorphism since ∂Zn is induced from ∂ in this setting. Hence the
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map from KZn

1 (C0(C \ {0})⊗ K) to KZn
1 (C∗(HC

3 )) is zero. Therefore, it follows
that KZn

1 (C∗(HC
3 )) ∼= 0. Thus, K1(C∗(S3,n)) ∼= 0.

As we showed sr(C∗(S3,n)) = 2 and K1(C∗(S3,n)) ∼= 0, the last isomorphism
in the statement follows from (F5).

Remark. It is very likely that csr(C∗(S3,n)) = 1.

Its generalization. We define the complex (2m + 1)-dimensional generalized
split oscillator group S2m+1,n involving an n-cyclic symmetry to be the group of
all the following matrices:

S2m+1,n =







1 z1 · · · zm z2m+1

0 e2πit/n zm+1

. . . ...
e2πit/n z2m

0 0 1


 = (z2m+1, · · · , z1, t)




for t ∈ Zn, z1, · · · , z2m+1 ∈ C. Note that S2m+1,n is isomorphic to the semi-
direct product HC

2m+1 �α Zn, where HC
2m+1 is the complex (2m + 1)-dimensional

Heisenberg group defined by the matrices (z2m+1, · · · , z1, 0) for z1, · · · , z2m+1 ∈
C, and the action α of Zn is defined by

αt(z2m+1, (zm+j)m
j=1, (zj)m

j=1) = (z2m+1, (e2πit/nzm+j)m
j=1, (e

−2πit/nzj)m
j=1)

for t ∈ Zn. Note also that HC
2m+1 is isomorphic to the semi-direct product C

m+1
�β

Cm, where the action β of Cm is defined by

β(zj)
m
j=1

(z2m+1, (zj)2m
j=m+1) = (z2m+1 +

m∑
j=1

zjzm+j , (zj)2m
j=m+1)

for (zj)m
j=1 ∈ C

m, z2m+1 ∈ C, and (zj)2m
j=m+1 ∈ C

m.
Let C∗(S2m+1,n) be the group C∗-algebra of S2m+1,n. Then it is isomorphic to

the crossed product C∗-algebra C∗(HC
2m+1)�α Zn, where C∗(HC

2m+1) is the group
C∗-algebra of HC

2m+1. Since HC
2m+1

∼= Cm+1 �β Cm, we have C∗(HC
2m+1) ∼=

C∗(Cm+1) � C
m. By the Fourier transform, C∗(Cm+1) �β∧ C

m is isomorphic to
C0(Cm+1) � Cm, where the dual action β∧ of β via the isomorphism Cm+1 ∼=
(Cm+1)∧ (the dual group of C

m+1) is defined by

β∧
(zj)m

j=1
(w2m+1, (wm+j)m

j=1) = (w2m+1, (wm+j + zjw2m+1)m
j=1) ∈ C×C

m.

Since {0}×Cm is fixed under the action of Cm, we have the following short exact
sequence:

0→ C0((C \ {0})× C
m) � C

m → C0(Cm+1) � C
m → C0(Cm)⊗C∗(Cm)→ 0,
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and C0(Cm)⊗C∗(Cm) ∼= C0(C2m). Moreover, since the above quotient C∗-algebra
is invariant under the action α∧ of Zn, we have

0→ C0((C\{0})×C
m)�C

m
�Zn → C0(Cm+1)�C

m
�Zn → C0(C2m)�Zn → 0.

Furthermore, since the action of C
m on each {z} × C

m for z ∈ C \ {0} is the
shift, we have

C0((C \ {0})× C
m) � C

m ∼= C0(C \ {0})⊗ K.

Since the action of Zn on K is implemented by the adjoint action of unitaries,

C0(C \ {0})⊗ K � Zn
∼= C0(C \ {0})⊗ K⊗ C∗(Zn) ∼= ⊕n(C0(C \ {0})⊗ K).

For the above quotient C∗-algebra C0(C2m) � Zn, from the orbit structure for α∧

on C2m and by the same method as before we have the following decompositions:

0→ C0(C2m \ {(0m)}) � Zn → C0(C2m) � Zn → C � Zn → 0,

0→ C0(X2) � Zn → C0(C2m \ {(0m)}) � Zn → ⊕2m(C0(C \ {0}) � Zn)→ 0,

0→ C0(Xk+1) � Zn → C0(Xk) � Zn → ⊕2mCk
j=1 (C0((C \ {0})k) � Zn)→ 0

for 2 ≤ k ≤ 2m − 1, and X2m = (C \ {0})2m. Furthermore, by the same method
as before,

C0((C \ {0})k) � Zn
∼= C0(Rk

+)⊗ (C(Tk) � Zn),

and C(Tk) � Zn
∼= C(Tk/Zn)⊗ (Cn

� Zn) ∼= C(Tk)⊗Mn(C).
Therefore we obtain

Theorem 2.3. Let S2m+1,n = HC
2m+1 �α Zn be the complex (2m + 1)-

dimensional generalized split oscillator group involving the n-cyclic symmetry α.
For the group C∗-algebra C∗(S2m+1,n) of S2m+1,n, we have the following exact
sequence:

0→ ⊕n(C0(C \ {0})⊗K)→ C∗(S2m+1,n)→ C0(C2m) �α∧ Zn → 0,

and the above quotient C ∗-algebra has the following exact sequences:

0→ Ik+1 → Ik → Ik/Ik+1 → 0 for 0 ≤ k ≤ 2m

of its closed ideals such that I 0 = C0(C2m) �α∧ Zn, I2m+1 = {0}, I0/I1
∼= Cn

and
Ik/Ik+1

∼= ⊕2mCk
j=1 [C0((R+)k)⊗ C(Tk)⊗Mn(C)]

for 1 ≤ k ≤ 2m.
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Using the structure theorem above we obtain

Theorem 2.4. For the group C∗-algebra C∗(S2m+1,n) of S2m+1,n,

sr(C∗(S2m+1,n)) = 
2m/n� + 1 = sr(C0(R2m
+ × T

2m)⊗Mn(C)),

where 2m = dim(R2m
+ × T

2m)/2, and 4m is the (maximum) dimension of the
spaces Rk

+ × Tk (1 ≤ k ≤ 2m) of n-dimensional irreducible representations of
C∗(S2m+1,n) up to unitary equivalence. If n ≥ 2m, then sr(C ∗(S2m+1,n)) = 2.

Moreover, we have

csr(C∗(S2m+1,n)) ≤ 
2m/n�+ 1,

and K1(C∗(S2m+1,n)) ∼= 0, and if n ≥ 2m, then

GLk(C∗(S2m+1,n))/GLk(C∗(S2m+1,n))0 ∼= 0 (k ≥ 2).

Proof. Using the structure of Theorem 2.3 and the formula (F1) we have

max{sr(C0(C \ {0})⊗K), sr(C0(C2m) � Zn)} ≤ sr(C∗(S2m+1,n))

≤ max{sr(C0(C \ {0})⊗K), sr(C0(C2m) � Zn), csr(C0(C2m) � Zn)},

and

max{sr(I1), sr(Cn)} ≤ sr(C0(C2m) � Zn)

≤ max{sr(I1), sr(Cn), csr(Cn)}, and

max{sr(Ik+1), sr(Ik/Ik+1)} ≤ sr(Ik)

≤ max{sr(Ik+1), sr(Ik/Ik+1), csr(Ik/Ik+1)} (1 ≤ k ≤ 2m− 1).

Furthermore, using (F2) and (F3) we have

sr(Ik/Ik+1) = sr(C0((R+)k)⊗ C(Tk)⊗Mn(C))

= 
�2k/2�/n�+ 1 = 
k/n� + 1,

csr(Ik/Ik+1) = csr(C0((R+)k)⊗C(Tk)⊗Mn(C))

≤ 
�(2k + 1)/2�/n�+ 1 = 
k/n�+ 1

for 1 ≤ k ≤ 2m. Therefore, we obtain

sr(C∗(S2m+1,n)) = sr(I2m) = 
2m/n�+ 1.
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Moreover, by (F1) we obtain

csr(Ik) ≤ max{csr(Ik+1), csr(Ik/Ik+1)}

for 0 ≤ k ≤ 2m. Hence, it follows that

csr(C0(C2m) � Zn) = csr(I0) ≤ max
0≤k≤m

csr(Ik/Ik+1) ≤ 
2m/n�+ 1

and csr(C∗(S2m+1,n)) ≤ max{2, 
2m/n�+ 1} = 
2m/n�+ 1 by (F4).
We next compute the K1-group of C∗(S2m+1,n):

K1(C∗(S2m+1,n)) ∼= K1(C∗(HC
2m+1) � Zn) ∼= KZn

1 (C∗(HC
2m+1))

([1, Theorem 11.7.1]). Since we have

0→ C0(C \ {0})⊗ K→ C∗(HC
2m+1)→ C0(C2m)→ 0,

its six term exact sequence of equivariant K-groups by Zn is given by

KZn
0 (C0(C \ {0})⊗ K) −−−−→ KZn

0 (C∗(HC
2m+1)) −−−−→ KZn

0 (C0(C2m))� �∂Zn

KZn
1 (C0(C2m)) ←−−−− KZn

1 (C∗(HC
2m+1)) ←−−−− KZn

1 (C0(C\{0})⊗K)

since the closed ideal C0(C \ {0}) ⊗ K is invariant under the action of Zn ([1,
Theorem 11.9.6]). Furthermore,

KZn
1 (C0(C2m)) ∼= KZn

1 (C) ∼= K1(C∗(Zn)) ∼= 0,

KZn
0 (C0(C2m)) ∼= KZn

0 (C) ∼= K0(C∗(Zn)) ∼= ⊕n
Z

by the Bott periodicity ([1, Theorem 11.9.4]), and KZn
1 (C0(C\{0})⊗K) ∼= ⊕n

Z as
shown in the proof of Theorem 2.2. On the other hand, the six term exact sequence
of K-groups of the above exact sequence is given by

Z −−−−→ K0(C∗(HC
2m+1)) −−−−→ K0(C0(C2m)) ∼= Z� �∂

K1(C0(C2m)) ∼= 0 ←−−−− K1(C∗(HC
2m+1)) ←−−−− Z

([1, Theorem 9.3.1]) and K0(C∗(HC
2m+1)) ∼= Z, K1(C∗(HC

2m+1)) ∼= 0 by us-
ing Connes’ Thom isomorphism for crossed products of C∗-algebras by R since
C∗(HC

2m+1)) ∼= C0(Cm+1) � Cm ∼= C0(Cm+1) � R · · ·� R (2m-times) ([1, Theo-
rem 10.2.2]). Therefore, the index map ∂ is an isomorphism so that the index map
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∂Z is an isomorphism since ∂Zn is induced from ∂ in this setting. Hence the map
from KZn

1 (C0(C \ {0}) ⊗ K) to KZn
1 (C∗(HZ

2m+1)) is zero. Therefore, it follows
that KZn

1 (C∗(HC
2m+1)) ∼= 0. Thus, K1(C∗(S2m+1,n)) ∼= 0.

As we showed, sr(C∗(S2m+1,n)) = 2 if n ≥ 2m. Hence, the last isomorphism
in the statement follows from (F5).

3. THE COMPLEX (GENERALIZED) MAUTNER GROUPS INVOLVING

CYCLIC (AND FREE) SYMMETRIES

We define the complex 2-dimensional Mautner group M2,n involving an n-cyclic
(and free) symmetry to be the group of the following matrices:

M2,n =





e2πiθt 0 z1

0 e2πit/n z2

0 0 1


 = (z1, z2, t) for t ∈ Z, z1, z2 ∈ C




where θ is an irrational number. Note that M2,n is isomorphic to the semi-
direct product C

2
�α Z, where the action α of Z is defined by αt(z1, z2) =

(e2πiθtz1, e
2πit/nz2) for t ∈ Z. Note that this action is not cyclic but cyclic on

{0} ×C and (almost) free on its complement in the sense as given below. We call
α an n-cyclic (and free) symmetry.

Let C∗(M2,n) be the group C∗-algebra of M2,n. Then C∗(M2,n) is isomor-
phic to the crossed product C∗-algebra C∗(C2) �α Z. By the Fourier transform,
C∗(C2) �α Z is isomorphic to C0(C2) �α∧ Z, where the action α∧ is defined by
α∧

t (w1, w2) = (e−2πiθtw1, e
−2πit/nw2) ∈ C

2 via C
2 ∼= (C2)∧.

Since {0} × {0} is fixed under the action of Z, we have the following short
exact sequence:

0→ C0(C2 \ {(0, 0)}) � Z→ C0(C2) � Z→ C∗(Z)→ 0,

and C∗(Z) ∼= C(T). Since the spaces {0} × (C \ {0}), (C \ {0})× {0} are closed
in C

2 \ {(0, 0)} and invariant under the action of Z, we have

0→ C0((C \ {0})2) � Z→ C0(C2 \ {(0, 0)}) � Z

→ (C0(C \ {0}) �α∧,2 Z)⊕ (C0(C \ {0}) �α∧,1 Z)→ 0,

where α∧,2, α∧,1 are the restrictions of α∧ to the above invariant spaces respec-
tively. Set Dj = C0(C \ {0}) �α∧,j Z for j = 1, 2. Then D2 has the following
decomposition:

0→ C0(R)⊗ (C0(C \ {0}) �α∧,2 Zn)→ D2 → C0(C \ {0}) �α∧,2 Zn → 0
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because D2 can be viewed as the mapping torus on C0(C \ {0}) �α∧,2 Zn since
the action α∧,2 is n-cyclic (see [1, Section 10.3]). By the analysis for C∗(A1,n) in
Section 1, we have

C0((C \ {0}) �α∧,2 Zn
∼= C0(R+)⊗ C(T)⊗Mn(C).

Since the action of Z on the radius direction in C \ {0} is trivial,

C0((C \ {0})2) � Z ∼= C0(R2
+)⊗ (C(T2) �θ Z),

C0(C \ {0}) �α∧,1 Z ∼= C0(R+)⊗ (C(T) �θ Z),

where the actions θ mean the restrictions of α∧ to T2, and to T respectively, and the
crossed product C∗-algebra C(T) �θ Z is the simple irrational rotation C∗-algebra
corresponding to θ. For the crossed product C∗-algebra C(T2) �θ Z, we have

C(T2) �θ Z ∼= C(T) ⊗ ((C(T)⊗ C
n) �θ Z) ∼= C(T) ⊗ ((⊕nC(T)) �θ Z)

since each subspace T × {pj}nj=1 for an orbit {pj}nj=1 (as the n-th roots of unity)
in T = {0} × T ⊂ T2 by Z is invariant under the action of Z, and

C(T × {pj}nj=1) �θ Z ∼= (C(T)⊗ C
n) �θ Z,

and note that the orbit space T/Z for the second T in T2 is homeomorphic to T, and
the action by Z on each T×{pj}nj=1 is free. Since each orbit by Z in T×{pj}nj=1

is dense in it, the crossed product C∗-algebra (C(T) ⊗ Cn) �θ Z is simple, but
not isomorphic to any noncommutative torus, and even not stably isomorphic to it.
Indeed, the claims follow from considering their generators and relations (with or
without orthogonality) and using universality (and also (in part) from computing
their K-groups via the Pimsner-Voiculescu exact sequence for K-groups of crossed
products by Z ([1, Theorem 10.2.1])). Note that a noncommutative k-torus is defined
to be the universal C∗-algebra generated by k unitaries Uj (1 ≤ j ≤ k) such that
UjUi = e2πiθij UiUj , where (θij)k

i,j=1 is a skew adjoint k × k matrix over R, and
its K0 and K1-groups are both isomorphic to Z2k−1 (see Rieffel [16]).

Summing up the above argument we obtain

Theorem 3.1. Let M2,n = C
2

�α Z be the complex 2-dimensional Mautner
group involving the n-cyclic (and free) symmetry α corresponding to an irrational
number θ. For the group C ∗-algebra C∗(M2,n) of M2,n, we have the following
exact sequences:

0→ C0(C2 \ {(0, 0)}) �α∧ Z→ C∗(M2,n)→ C(T)→ 0,

0→ C0(R2
+)⊗C(T) ⊗ ((C(T)⊗C

n) �θ Z)→ C0(C2 \ {(0, 0)}) �α∧ Z

→ D2 ⊕ (C0(R+)⊗ (C(T) �θ Z))→ 0, and

0→ C0(R× R+)⊗ C(T)⊗Mn(C)→ D2 → C0(R+)⊗ C(T)⊗Mn(C)→ 0,
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where C(T) �θ Z is the irrational rotation C ∗-algebra corresponding to θ and
(C(T)⊗C

n) �θ Z is the n-cyclic irrational rotation C ∗-algebra corresponding to
θ (where we call it so) and is simple but not isomorphic to any noncommutative
torus, and even not stably isomorphic to it.

Using the structure theorem above we obtain

Theorem 3.2. The group C∗-algebra C∗(M2,n) of M2,n has stable rank 2,
and

sr(C∗(M2,n)) = 2 = �dim C∗(M2,n)∧n/2�+ 1, but

�= dim C∗(M2,n)∧n = 3,

where C∗(M2,n)∧n means the space of all n-dimensional irreducible representations
of C∗(M2,n) up to unitary equivalence, and has an open subset homeomorphic to
R× R+ × T whose complement is R+ × T.

Moreover, we obtain csr(C∗(M2,n)) = 2 and

K1(C∗(M2,n)) ∼= Z ∼= GLk(C∗(M2,n)))/GLk(C∗(M2,n)))0 (k ≥ 2).

Proof. Using the structure of Theorem 3.1 and the formula (F1) we have

max{sr(C0(C2 \ {(0, 0)}) �α∧ Z), sr(C(T))} ≤ sr(C∗(M2,n))

≤ max{sr(C0(C2 \ {(0, 0)}) �α∧ Z), sr(C(T)), csr(C(T))}, and

max{sr(C0(R2
+)⊗C(T) ⊗ ((C(T)⊗ C

n) �θ Z)),

sr(D2), sr(C0(R+)⊗ (C(T) �θ Z))}
≤ sr(C0(C2 \ {(0, 0)}) �α∧ Z)

≤ max{sr(C0(R2
+)⊗C(T) ⊗ ((C(T)⊗ C

n) �θ Z)), sr(D2), csr(D2),

sr(C0(R+)⊗ (C(T) �θ Z)), csr(C0(R+)⊗ (C(T) �θ Z))}, and

max{sr(C0(R2 × T)⊗Mn(C)), sr(C0(R× T)⊗Mn(C))}
≤ sr(D2) ≤ max{sr(C0(R2 × T)⊗Mn(C)),

sr(C0(R× T)⊗Mn(C)), csr(C0(R× T)⊗Mn(C))}
where R

2 ≈ R × R+ (homeomorphic). Note that sr(C(T)) = 1 by (F2) and
csr(C(T)) = 2 by [18, p. 381]. By (F2) and (F3)

sr(C0(Rs × T)⊗Mn(C)) = 
�(s + 1)/2�/n�+ 1 = 2, (s = 1, 2)

csr(C0(R× T) ⊗Mn(C)) ≤ 
�(2 + 1)/2�/n�+ 1 = 2.
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It is known that the irrational rotation C∗-algebra C(T) �θ Z is an AT-algebra,
i.e., an inductive limit of finite direct sums of matrix algebras over C(T) (see
Elliott and Evans [7]) so that we have C0(R+) ⊗ (C(T) �θ Z) is an inductive
limit of finite direct sums of matrix algebras over C0(R+ × T). Hence, we obtain
sr(C0(R+)⊗(C(T)�θ Z)) ≤ 2 and csr(C0(R+)⊗(C(T)�θ Z)) ≤ 2. Furthermore,
we can show that (C(T)⊗C

n)�θ Z is also an AT-algebra since each C∗-subalgebra
of the form (C(T)⊗ (C⊕0 · · ·⊕0))�θ′ nZ in (C(T)⊗Cn)�θ Z is an AT-algebra,
where the action θ′ is the restriction of θ to nZ (cf. [8]). Thus, it follows that

sr(C0(R2
+)⊗ C(T)⊗ ((C(T)⊗ C

n) �θ Z)) ≤ 2,

csr(C0(R2
+)⊗ C(T)⊗ ((C(T)⊗C

n) �θ Z)) ≤ 2

by [14, Theorem 5.1] for the stable rank of inductive limits of C∗-algebras and its
connected stable rank version. Therefore, we obtain sr(C∗(M2,n)) = 2.

Moreover, by (F1) we have

csr(C∗(M2,n)) ≤ max{csr(C0(C2 \ {(0, 0)}) �α∧ Z), csr(C(T))}
≤ max{csr(C0(R2

+)⊗ C(T)⊗ ((C(T)⊗C
n) �θ Z)),

csr(C0(R× R+ × T)⊗Mn(C)), csr(C0(R+ × T)⊗Mn(C)),

csr(C0(R+)⊗ (C(T) �θ Z)), csr(C(T)) = 2} ≤ 2.

To determine csr(C∗(M2,n)) we compute the K1-group of C∗(M2,n). Since
C∗(M2,n) ∼= C0(C2) �α∧ Z, we use Pimsner-Voiculescu six term exact sequence
for crossed products of C∗-algebras by Z given by

K0(C0(C2))
1−α∧∗−−−−→ K0(C0(C2)) −−−−→ K0(C0(C2) �α∧ Z)� �

K1(C0(C2) �α∧ Z) ←−−−− K1(C0(C2)) ←−−−− K1(C0(C2))

([1, Theorem 10.2.1]) and K0(C0(C2)) ∼= K0(C) ∼= Z and K1(C0(C2))∼= K1(C)∼=
0 by the Bott periodicity ([1, Theorem 9.2.1]). Since the map 1−α∧∗ on K0(C0(C2))
is trivial, it follows that K1(C0(C2) �α∧ Z) ∼= Z. Thus, we have csr(C∗(M2,n)) ≥
2. Hence, csr(C∗(M2,n)) = 2. Use also (F5).

Its generalization. We define the complex m-dimensional generalized Mautner
group Mm,n involving an n-cyclic (and free) symmetry to be the group of all the
following matrices:
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Mm,n =







e2πiθ1t z1

. . . ...
e2πiθm−1t 0 zm−1

e2πit/n zm

0 0 1


 = (z1, · · · , zm, t)




for t ∈ Z, z1, · · · , zm ∈ C, where θ1, · · · , θm−1 are mutually rationally independent
irrational numbers. Note that Mm,n is isomorphic to the semi-direct product Cm �α

Z, where the action α of Z is defined by αt(zj)m
j=1 = ((e2πiθjtzj)m−1

j=1 , e2πit/nzm)
for t ∈ Z. Note that this action is not cyclic but cyclic on {0}× · · ·× {0}×C and
(almost) free on its complement in the sense as given below. We call α an n-cyclic
(and free) symmetry.

Let C∗(Mm,n) be the group C∗-algebra of Mm,n. Then it is isomorphic to the
crossed product C∗-algebra C∗(Cm)�α Z. By the Fourier transform, C∗(Cm)�α Z

is isomorphic to C0(Cm) �α∧ Z, where the action α∧ is defined by α∧
t (wj)m

j=1 =
((e−2πiθj twj)m−1

j=1 , e−2πit/nwm) ∈ Cm via Cm ∼= (Cm)∧.
Since 0m ≡ {0}×· · ·×{0} is fixed under the action of Z, we have the following

short exact sequence:

0→ C0(Cm \ {0m}) � Z→ C0(Cm) �α∧ Z→ C∗(Z)→ 0,

and C∗(Z) ∼= C(T). Since the following m subspaces X1j (1 ≤ j ≤ m):

X11 = (C \ {0})× {0} × · · · × {0}, · · · , X1m = {0} × · · · × {0} × (C \ {0})
are invariant under α∧ and disjoint and closed in C

m \ {0m}, we have

0→ C0(X2) � Z→ C0(Cm \ {0m}) � Z→ ⊕m
j=1(C0(C \ {0}) � Z)→ 0,

where X2 is the complement of �m
j=1X1j in C

m\{0m}. Inductively, we can construct
the following:

0→ C0(Xk+1) �α∧ Z→ C0(Xk) �α∧ Z→ ⊕mCk
j=1 (C0(Xkj) �α∧ Z)→ 0

for 2 ≤ k ≤ m− 1, where the subspaces Xkj are defined by

Xk1 = (C \ {0})k × ({0})m−k, · · · , Xk(mCk) = ({0})m−k × (C \ {0})k.

Indeed, note that the subspaces Xkj are invariant under α∧ and disjoint and closed in
Xk so that Xk+1 is defined to be the complement of �mCk

j=1 Xkj in Xk. In particular,
we have Xm = Xm1 = (C \ {0})m.

Furthermore, since the action of Z is trivial on the radius direction in C \ {0}
of each Xkj ,

C0(Xkj) �α∧ Z ∼= C0((C \ {0})k) �α∧ Z ∼= C0((R+)k)⊗ (C(Tk) � Z),
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where C(Tk)�Z is the simple noncommutative (k+1)-torus corresponding to Θk =
(θj)

sk
j=s1

if 1 ≤ s1 < · · · < sk ≤ m− 1 and is not isomorphic to a noncommutative
(k + 1)-torus if sk = m. Indeed, this follows from considering their generators and
relations, and using universality. For the former case, let C(Tk) � Z = T

k+1
Θk

. For
the latter case, we have

C(Tk) �α∧ Z ∼= C(T)⊗ ((C(Tk−1)⊗C
n) �Θk−1

Z)

∼= C(T)⊗ ((⊕nC(Tk−1)) �Θk−1
Z),

where Θk−1 = (θj)
sk−1

j=s1
for 1 ≤ s1 < · · · < sk−1 ≤ m − 1. Then the crossed

product C∗-algebra (C(Tk−1)⊗C
n) �Θk−1

Z is simple but not isomorphic to any
noncommutative torus, and even not stably isomorphic to it as shown before Theorem
3.1.

Summing up the above argument we obtain

Theorem 3.3. Let Mm,n = Cm �α Z be the complex m-dimensional general-
ized Mautner group involving the n-cyclic (and free) symmetry α. For the group
C∗-algebra C∗(Mm,n) of Mm,n, we have the following exact sequences:

0→ Ik+1 → Ik → Ik/Ik+1 → 0 for 0 ≤ k ≤ m

of its closed ideals such that I 0 = C∗(Mm,n), Im+1 = {0}, I0/I1
∼= C(T), and

Ik/Ik+1
∼= ⊕mCk

j=1 [C0((R+)k)⊗ (C(Tk) � Z)]

for 1 ≤ k ≤ m, where for k = 1 and each 1 ≤ j ≤ mC1 − 1 = m − 1,
C(T) � Z is the simple irrational rotation C ∗-algebra corresponding to given θ j

(1 ≤ j ≤ m− 1), and for j = m, C(T) � Z is the mapping torus on C(T) � Zn,
i.e., we have the decomposition:

0→ C0(R)⊗ (C(T) � Zn)→ C(T) � Z→ C(T) � Zn → 0, and

C(T) � Zn
∼= C(T/Zn)⊗ (Cn

� Zn) ∼= C(T) ⊗Mn(C),

and for k ≥ 2, C(Tk) � Z = T
k+1
Θk

is the simple noncommutative (k + 1)-torus
corresponding to Θk = (θj)

sk
j=s1

if 1 ≤ s1 < · · · < sk ≤ m − 1 and is not
isomorphic to a noncommutative (k + 1)-torus if s k = m, and then

C(Tk) �α∧ Z ∼= C(T)⊗ ((C(Tk−1)⊗C
n) �Θk−1

Z)

∼= C(T)⊗ ((⊕nC(Tk−1)) �Θk−1
Z),

where Θk−1 = (θj)
sk−1

j=s1
for 1 ≤ s1 < · · · < sk−1 ≤ m − 1, and (C(Tk−1) ⊗

C
n) �Θk−1

Z is the n-cyclic noncommutative k-torus (where we call it so) and



The C∗-Algebras of Some Solvable Lie Groups Involving Cyclic Symmetries 1327

is simple but not isomorphic to any noncommutative torus, and even not stably
isomorphic to it.

Using the structure theorem above we obtain

Theorem 3.4. The group C∗-algebra C∗(Mm,n) of Mm,n has stable rank 2,
and

sr(C∗(Mm,n)) = 2 = �dim C∗(Mm,n)∧n/2�+ 1, but

�= dim C∗(Mm,n)∧n = 3,

where C∗(Mm,n)∧n means the space of all n-dimensional irreducible representations
of C∗(Mm,n) up to unitary equivalence and has an open subset homeomorphic to
R× R+ × T whose complement is R+ × T.

Moreover, we obtain csr(C∗(Mm,n)) = 2 and

K1(C∗(Mm,n)) ∼= Z ∼= GLk(C∗(Mm,n))/GLk(C∗(Mm,n))0 (k ≥ 2).

Proof. Using the structure of Theorem 3.3 and (F1) we have

max{sr(I1), sr(C(T))}≤sr(C∗(Mm,n)) ≤ max{sr(I1), sr(C(T)), csr(C(T))},
max{sr(Ik+1), sr(Ik/Ik+1)} ≤ sr(Ik)

≤ max{sr(Ik+1), sr(Ik/Ik+1), csr(Ik/Ik+1)}.
Furthermore, we have sr(C(T)) = 1, csr(C(T)) = 2, and

sr(Ik/Ik+1) = sr(C0((R+)k)⊗ (C(Tk) � Z)) ≤ 2,

csr(Ik/Ik+1) = csr(C0((R+)k)⊗ (C(Tk) � Z)) ≤ 2

because if C(Tk) � Z = T
k+1
Θk

is a simple noncommutative (k + 1)-torus (k ≥ 1),
then it is an AT-algebra (see Elliott and Q. Lin [8]) so that C 0((R+)k)⊗(C(Tk)�Z)
is an inductive limit of finite direct sums of matrix algebras over C0(Rk

+×T), from
which the tensor product C∗-algebra has stable rank ≤ 2 and connected stable rank
≤ 2 ([14, Theorem 5.1] for the stable rank of inductive limits of C∗-algebras and
use its connected stable rank version), and if

C(Tk) �α∧ Z ∼= C(T)⊗ ((C(Tk−1)⊗C
n) �Θk−1

Z),

then we can show that (C(Tk−1)⊗Cn) �Θk−1
Z is an AT-algebra since each C∗-

subalgebra of the form (C(Tk−1)⊗ (C×{0} · · ·×{0})) �Θ′
k−1

nZ in (C(Tk−1)⊗
C

n) �Θk−1
Z is an AT-algebra, where the action Θ′

k−1 is the restriction of Θk−1

to nZ (cf. [8]). Hence, C0((R+)k) ⊗ (C(Tk) � Z) is an inductive limit of finite
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direct sums of matrix algebras over C0(Rk
+ × T2), from which the tensor product

C∗-algebra also has stable rank ≤ 2 and connected stable rank ≤ 2 ([14, Theorem
5.1]). Furthermore, by [10, Proposition 5.3] we obtain sr(C0((R+)k)⊗ T

k+1
Θk

) ≥ 2
for k ≥ 2 and

sr(C0((R+)k)⊗ C(T)⊗ ((C(Tk−1)⊗C
n) �Θk−1

Z)) ≥ 2

for k ≥ 1. As shown in the proof of Theorem 3.2, the mapping torus on C(T)�Zn

has stable rank 2 (and connected stable rank ≤ 2). Therefore, it follows that
sr(C∗(Mm,n)) = 2.

On the other hand, using Theorem 3.3 we deduce that the space C∗(Mm,n)∧n
has an open subset homeomorphic to R×R+ × T whose complement is R+ × T.

Moreover, by (F1) we obtain

csr(Ik) ≤ max{csr(Ik+1), csr(Ik/Ik+1)}

for 0 ≤ k ≤ m. Hence, it follows that

csr(C∗(Mm,n)) = csr(I0) ≤ max
0≤k≤m

csr(Ik/Ik+1) ≤ 2.

To determine csr(C∗(Mm,n)) we compute the K1-group of C∗(Mm,n). Since
C∗(Mm,n) ∼= C0(Cm) �α∧ Z, we use Pimsner-Voiculescu six term exact sequence
for crossed products of C∗-algebras by Z given by

K0(C0(Cm))
1−α∧∗−−−−→ K0(C0(Cm)) −−−−→ K0(C0(Cm) �α∧ Z)� �

K1(C0(Cm) �α∧ Z) ←−−−− K1(C0(Cm)) ←−−−− K1(C0(Cm))

([1, Theorem 10.2.1]) and K0(C0(Cm)) ∼= K0(C) ∼= Z and K1(C0(Cm)) ∼=
K1(C) ∼= 0 by the Bott periodicity ([1, Theorem 9.2.1]). Since the map 1 −
α∧∗ on K0(C0(Cm)) is trivial, it follows that K1(C0(Cm) �α∧ Z) ∼= Z. Thus,
csr(C∗(Mm,n)) ≥ 2. Hence, csr(C∗(Mm,n)) = 2. Use also (F5).
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