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SOME FIXED POINT THEOREMS FOR WEAKLY COMPATIBLE
MAPPINGS SATISFYING AN IMPLICIT RELATION

Ishak Altun and Duran Turkoglu

Abstract. In this paper, we prove a common fixed point theorem for weakly
compatible mappings satisfying an implicit relation. Our theorem generalizes
many fixed point theorems.

1. INTRODUCTION AND PRELIMINARIES

It is well known that the Banach contraction principle is a fundamental result
in fixed point theory. After this classical result, many fixed point results have been
developed (see [15, 17, 22, 23]). In [5] Branciari proved the following interesting
result for fixed point theory.

Theorem 1. Let (X, d) be a complete metric space, λ ∈ (0, 1) and T : X → X
be mapping such that for each x, y ∈ X one has

∫ d(Tx,T y)

0
f(t)dt ≤ λ

∫ d(x,y)

0
f(t)dt

where f : [0,∞) → [0,∞] is a Lebesque integrable mapping which is finite integral
on each compact subset of [0,∞), non-negative and such that for each t > 0,∫ t
0 f(s)ds > 0, then T has a unique fixed point z ∈ X such that for each x ∈ X,

limn→∞ T nx = z.

Theorem 1 has been generalized in [4, 21] and [31]. Again in [2], Aliouche
proved a fixed point theorem using a general contractive condition of integral type
on symmetric spaces.
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Sessa [25] generalized the concept of commuting mappings by calling self-
mappings A and S of metric space (X, d) a weakly commuting pair if and only if
d(ASx, SAx) ≤ d(Ax, Sx) for all x ∈ X, and he and others gave some common
fixed point theorems of weakly commuting mappings [24-27]. Then, Jungck [11]
introduced the concept of compatibility and he and others proved some common
fixed point theorems using this concept [9, 11, 12, 14, 30].

Clearly, commuting mappings are weakly commuting and weakly commuting
mappings are compatible; examples in [25] and [11] show that neither converse is
true.

Recently, Jungck [10] gave the concept of weak compatibility the following way.

Definition 2. ([10, 13]). Two maps A, S : X → X are said to be weakly
compatible if they commute at their coincidence points.

Again, it is obvious that compatible mappings are weakly compatible; giving
examples in [13] and [28] shows that neither converse is true. Many fixed point
results have been obtained using weakly compatible mappings (see [1, 4, 6, 7, 13, 18]
and [28]).

2. IMPLICIT RELATION

Implicit relation on metric spaces have been used in many articles. (see [3, 8,
19, 20, 29]).

Let R+ denote the non-negative real numbers and let F be the set of all
continuous functions F : R

6
+ → R satisfying the following conditions:

F1 F (t1, ..., t6) is non-increasing in variables t5 and t6.

F2 there exists an upper semi-continuous function f : R+ → R+, f(0) =
0, f(t) < t for t > 0, such that for u, v ≥ 0,

F (u, v, v, u, 0, u+ v) ≤ 0

or
F (u, v, u, v, u+ v, 0) ≤ 0

implies u ≤ f(v).

F3 F (u, u, 0, 0, u, u)> 0, ∀u > 0.

Example 1. F (t1, ..., t6) = t1 −αmax{t2, t3, t4}− (1−α)[at5 + bt6], where
0 ≤ α < 1, 0 ≤ a < 1

2 , 0 ≤ b < 1
2 .

F1 Obviously.
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F2 Let u > 0 and F (u, v, v, u, 0, u+v) = u−αmax{u, v}−(1−α)b(u+v) ≤ 0.
If u ≥ v, then u ≤ [α+2b(1−α)] u < u which is a contradiction. Thus u < v
and so u ≤ [α+2b(1−α)]v. Similarly, let u > 0 and F (u, v, u, v, u+v, 0)≤
0. If u ≥ v, then u ≤ [α+ 2a(1− α)]u < u which is a contradiction. Thus
u < v and so u ≤ [α+ 2a(1 − α)]v. If u = 0 then u ≤ max{[α+ 2a(1 −
α)], [α+ 2b(1− α)]}v. Thus F2 is satisfied with f(t) = max{[α+ 2a(1 −
α)], [α+ 2b(1− α)]}t.

F3 F (u, u, 0, 0, u, u) = u(1 − α)(1− a− b) > 0, ∀u > 0.

Thus F ∈ F .

Example 2. F (t1, ..., t6)=t1 − kmax{t2, t3, t4, 1
2 [t5 + t6]}, where k∈(0, 1).

F1 Obviously.
F2 Let u > 0 and F (u, v, v, u, 0, u+ v) = u− kmax{u, v} ≤ 0. If u ≥ v, then

u ≤ ku, which is a contradiction. Thus u < v and so u ≤ kv. Similarly, let
u > 0 and F (u, v, u, v, u+ v, 0) ≤ 0 then we have u ≤ kv. If u = 0, then
u ≤ kv. Thus F2 is satisfied with f(t) = kt.

F3 F (u, u, 0, 0, u, u) = u− ku > 0, ∀u > 0.

Thus F ∈ F .

Example 3. F (t1, ..., t6) = t1 − ψ(max{t2, t3, t4, 1
2 [t5 + t6]}), where ψ :

R+ → R+ right continuous and ψ(0) = 0, ψ(t) < t for t > 0.

F1 Obviously.
F2 Let u > 0 and F (u, v, v, u, 0, u+ v) = u − ψ(max{u, v}) ≤ 0. If u ≥ v,

then u − ψ(u) ≤ 0, which is a contradiction. Thus u < v and so u ≤ ψ(v).
Similarly, let u > 0 and F (u, v, u, v, u+ v, 0) ≤ 0 then we have u ≤ ψ(v).
If u = 0 then u ≤ ψ(v). Thus F2 is satisfied with f = ψ.

F3 F (u, u, 0, 0, u, u) = u− ψ(u) > 0, ∀u > 0.

Thus F ∈ F .

Example 4. F (t1, ..., t6) = t21 − t1(at2 + bt3 + ct4) − dt5t6, where a > 0,
b, c, d≥ 0, a+ b+ c < 1 and a+ b+ d < 1.

F1 Obviously.
F2 Let u > 0 and F (u, v, v, u, 0, u+ v) = u2 − u(av + bv + cu) ≤ 0. Then

u ≤ (a+b
1−c )v. Similarly, let u > 0 and F (u, v, u, v, u+ v, 0) ≤ 0 then we

have u ≤ (a+c
1−b)v. If u = 0, then u ≤ (a+c

1−b)v. Thus F2 is satisfied with
f(t) = max{(a+b

1−c ), (
a+c
1−b)}t.

F3 F (u, u, 0, 0, u, u) = u2(1− a− d) > 0, ∀u > 0.
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Thus F ∈ F .

Example 5. F (t1, ..., t6) = t31 − α
t23t

2
4 + t25t

2
6

t2 + t3 + t4 + 1
, where α ∈ (0, 1).

F1 Obviously.

F2 Let u > 0 and F (u, v, v, u, 0, u+ v) = u3 − αv2u2

u+ 2v + 1
≤ 0, which implies

u ≤ αv2

u+ 2v + 1
. But

αv2

u+ 2v + 1
≤ αv, thus u ≤ αv. Similarly, let u > 0

and F (u, v, u, v, u+v, 0)≤ 0, then we have u ≤ αv. If u = 0, then u ≤ αv.

Thus F2 is satisfied with f(t) = αt.

F3 F (u, u, 0, 0, u, u) =
u4(1− α) + u3

u+ 1
> 0, ∀u > 0.

Thus F ∈ F .

3. COMMON FIXED POINT THEOREMS

We need the following lemma for the proof of our main theorem.

Lemma 1. ([16]). Let f : R+ → R+ be an upper semi-continuous function
such that f(t) < t for every t > 0, then lim

n→∞f
n(t) = 0, where fn denotes the

composition of f , n-times with itself.

Now we give our main theorem.

Theorem 2. Let A,B, S and T be self-maps defined on a metric space (X, d)
satisfying the following conditions:

(i) S(X) ⊆ B(X), T (X) ⊆ A(X),
(ii) for all x, y ∈ X,

F

(∫ d(Sx,T y)

0
ϕ(t)dt,

∫ d(Ax,By)

0
ϕ(t)dt,

∫ d(Sx,Ax)

0
ϕ(t)dt,

∫ d(Ty,By)

0
ϕ(t)dt,

∫ d(Sx,By)

0
ϕ(t)dt,

∫ d(Ty,Ax)

0
ϕ(t)dt

)
≤ 0

where F ∈ F and ϕ : R+ → R+ is a Lebesque integrable mapping which is
summable,

(3.1)
∫ a+b

0
ϕ(t)dt ≤

∫ a

0
ϕ(t)dt+

∫ b

0
ϕ(t)dt
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for all a, b ∈ R+ and such that

(3.2)
∫ ε

0
ϕ(t)dt > 0 for each ε > 0.

If one of A(X), B(X), S(X) or T (X) is a complete subspace of X , then
(1) A and S have a coincidence point,or
(2) B and T have a coincidence point.

Further, if S and A as well as T and B are weakly compatible, then
(3) A,B, S and T have a unique common fixed point.

Proof. Let x0 ∈ X be an arbitrary point of X. From (i) we can construct a
sequence {yn} in X as follows:

y2n+1 = Sx2n = Bx2n+1 and y2n+2 = Tx2n+1 = Ax2n+2

for all n = 0, 1, .... Define dn = d(yn, yn+1). Suppose that d2n = 0 for some n.
Then y2n = y2n+1; that is, Tx2n−1 = Ax2n = Sx2n = Bx2n+1, and A and S have
a coincidence point. Similarly, if d2n+1 = 0, then B and T have a coincidence
point. Assume that dn �= 0 for each n. Then by (ii), we have

F

(∫ d(Sx2n,T x2n+1)

0
ϕ(t)dt,

∫ d(Ax2n,Bx2n+1)

0
ϕ(t)dt,

∫ d(Sx2n,Ax2n)

0
ϕ(t)dt,

∫ d(Tx2n+1,Bx2n+1)

0
ϕ(t)dt,

∫ d(Sx2n,Bx2n+1)

0
ϕ(t)dt,

∫ d(Tx2n+1,Ax2n)

0
ϕ(t)dt

)
≤ 0.

Thus we have

(3.3)
F

(∫ d2n+1

0
ϕ(t)dt,

∫ d2n

0
ϕ(t)dt,

∫ d2n

0
ϕ(t)dt,

∫ d2n+1

0
ϕ(t)dt, 0,

∫ d2n+d2n+1

0
ϕ(t)dt

)
≤ 0.

On the other hand, from (3.1) we have

(3.4)
∫ d2n+d2n+1

0
ϕ(t)dt ≤

∫ d2n

0
ϕ(t)dt+

∫ d2n+1

0
ϕ(t)dt.

Now from (3.3), (3.4) and F1, we have

F

(∫ d2n+1

0
ϕ(t)dt,

∫ d2n

0
ϕ(t)dt,

∫ d2n

0
ϕ(t)dt,

∫ d2n+1

0
ϕ(t)dt, 0,

∫ d2n

0
ϕ(t)dt+

∫ d2n+1

0
ϕ(t)dt

)
≤ 0.
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From F2, there exists an upper semi-continuous function f : R+ → R+, f(0) = 0,
f(t) < t for t > 0, such that∫ d2n+1

0

ϕ(t)dt ≤ f

(∫ d2n

0

ϕ(t)dt
)

Similarly we can have ∫ d2n

0
ϕ(t)dt ≤ f

(∫ d2n−1

0
ϕ(t)dt

)
.

In general, we have for all n = 1, 2, ...,

(3.5)
∫ dn

0
ϕ(t)dt ≤ f

(∫ dn−1

0
ϕ(t)dt

)
.

From (3.5), we have ∫ dn

0
ϕ(t)dt ≤ f

(∫ dn−1

0
ϕ(t)dt

)

≤ f2

(∫ dn−2

0
ϕ(t)dt

)
...

≤ fn

(∫ d0

0
ϕ(t)dt

)

and taking the limit as n→ ∞ we have, from Lemma 1, for d0 > 0,

lim
n→∞

∫ dn

0
ϕ(t)dt ≤ lim

n→∞ fn

(∫ d0

0
ϕ(t)dt

)
= 0,

which from (3.2) implies that

lim
n→∞ dn = lim

n→∞ d(yn, yn+1) = 0.

We now show that {yn} is Cauchy sequence. For this it is sufficient to show that
{y2n} is a Cauchy sequence. suppose that {y2n} is not Cauchy sequence. Then
there exists an ε > 0 such that for an even integer 2k there exist even integers
2m(k) > 2n(k) > 2k such that

(3.6) d(y2n(k), y2m(k)) ≥ ε.

For every even integer 2k, let 2m(k) be the least positive integer exceeding 2n(k)
satisfying (3.6) such that

(3.7) d(y2n(k), y2m(k)−2) < ε.
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Now

0 < δ :=
∫ ε

0
ϕ(t)dt

≤
∫ d(y2n(k) ,y2m(k))

0
ϕ(t)dt

≤
∫ d(y2n(k) ,y2m(k)−2)+d2m(k)−2+d2m(k)−1

0
ϕ(t)dt.

Then by (3.6) and (3.7) it follows that

(3.8) lim
k→∞

∫ d(y2n(k) ,y2m(k))

0

ϕ(t)dt = δ.

Also, by the triangular inequality, we have∣∣d(y2n(k), y2m(k)−1)− d(y2n(k), y2m(k))
∣∣ ≤ d2m(k)−1

and ∣∣d(y2n(k)+1, y2m(k)−1) − d(y2n(k), y2m(k))
∣∣ ≤ d2m(k)−1 + d2n(k).

Thus we have∫ |d(y2n(k),y2m(k)−1)−d(y2n(k) ,y2m(k))|
0

ϕ(t)dt ≤
∫ d2m(k)−1

0
ϕ(t)dt

and ∫ |d(y2n(k)+1,y2m(k)−1)−d(y2n(k) ,y2m(k))|
0

ϕ(t)dt ≤
∫ d2m(k)−1+d2n(k)

0
ϕ(t)dt.

By using (3.8) we get

(3.9)
∫ d(y2n(k),y2m(k)−1)

0
ϕ(t)dt→ δ

and

(3.10)
∫ d(y2n(k)+1 ,y2m(k)−1)

0
ϕ(t)dt→ δ

as k → ∞. Now we get

d(y2n(k), y2m(k)) ≤ d2n(k) + d(y2n(k)+1, y2m(k))
≤ d2n(k) + d(Sx2n(k), Tx2m(k)−1)
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and so ∫ d(y2n(k) ,y2m(k))

0
ϕ(t)dt ≤

∫ d2n(k)+d(Sx2n(k) ,T x2m(k)−1)

0
ϕ(t)dt.

Letting k → ∞ both of the last inequality, we have

(3.11)

δ ≤ lim
k→∞

∫ d(Sx2n(k),T x2m(k)−1)

0
ϕ(t)dt

= lim
k→∞

∫ d(y2n(k)+1,y2m(k))

0
ϕ(t)dt

≤ lim
k→∞

∫ d(y2n(k)+1,y2m(k)−1)+d2m(k)−1

0
ϕ(t)dt

= δ.

On the other hand, from (ii), we have

F

(∫ d(Sx2n(k) ,T x2m(k)−1)

0
ϕ(t)dt,

∫ d(Ax2n(k) ,Bx2m(k)−1)

0
ϕ(t)dt,

∫ d(Sx2n(k),Ax2n(k))

0

ϕ(t)dt,
∫ d(Tx2m(k)−1,Bx2m(k)−1)

0

ϕ(t)dt,

∫ d(Sx2n(k),Bx2m(k)−1)

0
ϕ(t)dt,

∫ d(Tx2m(k)−1,Ax2n(k))

0
ϕ(t)dt

)
≤ 0

and so

(3.12)

F

(∫ d(y2n(k)+1,y2m(k))

0
ϕ(t)dt,

∫ d(y2n(k) ,y2m(k)−1)

0
ϕ(t)dt,

∫ d2n(k)

0
ϕ(t)dt,

∫ d2m(k)−1

0
ϕ(t)dt,

∫ d(y2n(k)+1 ,y2m(k)−1)

0 ϕ(t)dt,

∫ d(y2n(k),y2m(k)−2)

0
ϕ(t)dt

)
≤ 0

From (3.12), considering F1, (3.6), (3.7), (3.8), (3.9), (3.10) and (3.11), letting
k → ∞ we have the following,

F (δ, δ, 0, 0, δ, δ)≤ 0

which is a contradiction with F3. Thus {y2n} is a Cauchy sequence and so {yn} is
a Cauchy sequence.
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Now, suppose that A(X) is complete. Note that the sequence {y2n} is contained
in A(X) and has a limit in A(X). Call it u. Let v ∈ A−1u. Then Av = u. We
shall use the fact that the sequence {y2n−1} also converges to u. To prove that
Sv = u, let r = d(Sv, u)> 0. Then taking x = v and y = x2n−1 in (ii),

F

(∫ d(Sv,Tx2n−1)

0
ϕ(t)dt,

∫ d(Av,Bx2n−1)

0
ϕ(t)dt,

∫ d(Sv,Av)

0
ϕ(t)dt,

∫ d(Tx2n−1,Bx2n−1)

0
ϕ(t)dt,

∫ d(Sv,Bx2n−1)

0
ϕ(t)dt,

∫ d(Tx2n−1,Av)

0
ϕ(t)dt

)
≤ 0

and so

(3.13)
F (
∫ d(Sv,y2n)

0
ϕ(t)dt,

∫ d(u,y2n−1)

0
ϕ(t)dt,

∫ d(Sv,u)

0
ϕ(t)dt,

∫ d(y2n,y2n−1)

0

ϕ(t)dt,
∫ d(Sv,y2n−1)

0

ϕ(t)dt,
∫ d(y2n,u)

0

ϕ(t)dt) ≤ 0

Since limn→∞ d(Sv, y2n) = limn→∞ d(Sv, y2n−1) = r and limn→∞ d(u, y2n−1) =
limn→∞ d(y2n, y2n−1) = limn→∞ d(y2n, u) = 0, we have from (3.13)

F

(∫ r

0
ϕ(t)dt, 0,

∫ r

0
ϕ(t)dt, 0,

∫ r

0
ϕ(t)dt, 0

)
≤ 0

which is a contradiction with F2. Hence from (3.2) we have Sv = u. This proves
(1)

Since S(X) ⊆ B(X), Sv = u implies that u ∈ B(X). Let w ∈ B−1u. Then
Bw = u. Hence by using the argument of the previous section, it can be easily
verified that Tw = u. This proves (2).

The same result holds if we assume that B(X) is complete instead of A(X).
Now if T (X) is complete, then by (i), u ∈ T (X) ⊆ A(X). Similarly if S(X)

is complete, then u ∈ S(X) ⊆ B(X). Thus (1) and (2) are completely established.
To prove (3), note that S, A and T , B are weakly compatible and

(3.14) u = Sv = Av = Tw = Bw

then

(3.15) Au = ASv = SAv = Su

(3.16) Bu = BTw = TBw = Tu.
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If Tu �= u, then from (ii), (3.14), (3.15) and (3.16) we have

F

(∫ d(Sv,Tu)

0

ϕ(t)dt,
∫ d(Av,Bu)

0

ϕ(t)dt,
∫ d(Sv,Av)

0

ϕ(t)dt,

∫ d(Tu,Bu)

0
ϕ(t)dt,

∫ d(Sv,Bu)

0
ϕ(t)dt,

∫ d(Tu,Av)

0
ϕ(t)dt

)
≤ 0

and so

F

(∫ d(u,Tu)

0
ϕ(t)dt,

∫ d(u,Tu)

0
ϕ(t)dt, 0, 0,

∫ d(u,Tu)

0
ϕ(t)dt,

∫ d(Tu,u)

0
ϕ(t)dt

)
≤0

which is a contradiction with F3. So Tu = u. Similarly Su = u. Then, evidently
from (3.15) and (3.16), u is a common fixed point of A,B, S and T.

Now let u and v be two common fixed points of A,B, S and T. Then from
(ii), we have

F

(∫ d(Su,T v)

0

ϕ(t)dt,
∫ d(Au,Bv)

0

ϕ(t)dt,
∫ d(Su,Au)

0

ϕ(t)dt,

∫ d(Tv,Bv)

0

ϕ(t)dt,
∫ d(Su,Bv)

0

ϕ(t)dt,
∫ d(Tv,Au)

0

ϕ(t)dt

)
≤ 0

and so

F

(∫ d(u,v)

0

ϕ(t)dt,
∫ d(u,v)

0

ϕ(t)dt, 0, 0,
∫ d(u,v)

0

ϕ(t)dt,
∫ d(v,u)

0

ϕ(t)dt

)
≤ 0

which is a contradiction with F3. Thus u = v. This completes the proof.

If ϕ(t) = 1 in Theorem 2, we obtain Theorem 2.1 of [8] and a generalization
of Theorem 1 of [20].

If we combine Example 1 with Theorem 2 we obtain the following result.

Corollary 1. Let A,B, S and T be self-maps defined on a metric space (X, d)
satisfying the following conditions:

(i) S(X) ⊆ B(X), T (X) ⊆ A(X),

(ii) for all x, y ∈ X,
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∫ d(Sx,T y)

0
ϕ(t)dt ≤ α

∫ max{d(Ax,By),d(Sx,Ax),d(Ty,By)}

0
ϕ(t)dt

+(1 − α)

[
a

∫ d(Sx,By)

0

ϕ(t)dt+ b

∫ d(Ty,Ax)

0

ϕ(t)dt

]

where 0 ≤ α < 1, 0 ≤ a < 1
2 , 0 ≤ b < 1

2 and ϕ is as in Theorem 2.
If one of A(X), B(X), S(X) or T (X) is a complete subspace of X , then

(1) A and S have a coincidence point, or
(2) B and T have a coincidence point.

Further, if S and A as well as T and B are weakly compatible, then
(3) A,B, S and T have a unique common fixed point.

If ϕ(t) = 1 in Corollary 1, we get Theorem 2.1 of [1] for single-valued map-
pings.

If we combine Example 2 with Theorem 2 we obtain the following result.

Corollary 2. Let A,B, S and T be self-maps defined on a metric space (X, d)
satisfying the following conditions:

(i) S(X) ⊆ B(X), T (X) ⊆ A(X),
(ii) for all x, y ∈ X,

∫ d(Sx,T y)
0 ϕ(t)dt ≤ kmax{∫max{d(Ax,By),d(Sx,Ax),d(Ty,By)}

0 ϕ(t)dt,

1
2 [
∫ d(Sx,By)
0 ϕ(t)dt+

∫ d(Ty,Ax)
0 ϕ(t)dt]}

where 0 < k < 1 and ϕ is as in Theorem 2.
If one of A(X), B(X), S(X) or T (X) is a complete subspace of X , then

(1) A and S have a coincidence point, or
(2) B and T have a coincidence point.

Further, if S and A as well as T and B are weakly compatible, then
(3) A,B, S and T have a unique common fixed point.

By Corollary 2, we have a generalized version of Theorem 1 in this paper.
If we combine Example 3 with Theorem 2 we obtain Theorem 2.1 of [4].
If ϕ(t) = 1 in Theorem 2 and combine with Example 3, we have Theorem 1 of

[9] and Theorem 2.1 of [28]. Also by Theorem 2, we have a different version of
Theorem 3.1 of [6].
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Remark 1. We can have some new fixed point results if we combine Theorem
2 with some examples of F.
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