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GLOBAL CONVERGENCE FOR THE
XOR BOOLEAN NETWORKS

Juei-Ling Ho

Abstract. Shih and Ho have proved a global convergent theorem for boolean
network: if a map from {0, 1}n to itself defines a boolean network has the
conditions: (1) each column of the discrete Jacobian matrix of each element of
{0, 1}n is either a unit vector or a zero vector; (2) all the boolean eigenvalues
of the discrete Jacobian matrix of this map evaluated at each element of {0, 1}n
are zero, then it has a unique fixed point and this boolean network is global
convergent to the fixed point. The purpose of this paper is to give a global
convergent theorem for XOR boolean network, it is a counterpart of the global
convergent theorem for boolean network.

1. INTRODUCTION

In 1999, Shih and Ho proved a global convergent theorem for boolean network
as the following. We propose in this paper a proof of a counterpart of it for the
XOR boolean networks.

Theorem 1.1. [6, Theorem 3.1]. Suppose the map F from {0, 1}n to itself
defines a boolean network has the conditions:

(1) F (Vx) ⊂ VF (x) for all x ∈ {0, 1}n;
(2) ρ(F ′(x)) = 0 for all x ∈ {0, 1}n.

Then F has a unique fixed point and the boolean network is global convergent
to this fixed point.

Here {0, 1}n denotes the set of all 01-strings of length n and is equipped with a
boolean structure, and ρ(A) denotes the boolean spectral radius of a boolean matrix
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A. For x ∈ {0, 1}n, Vx and VF (x) denote the von Neumann neighborhood of x and
F (x) respectively. For x ∈ {0, 1}n, F ′(x) stands for the discrete Jacobian matrix
of F evaluated at x. We will explain these notion concerning the von Neumann
neighborhood, the discrete Jacobian matrix and the boolean spectral radius in next
section.

Let us remark that in Theorem 1.1 the boolean network F : {0, 1}n → {0, 1}n is
global convergent to a fixed point ξ if ξ is a global attractor for the boolean network,
that is, the trajectory xt+1 = F (xt) tends forward to ξ for any starting at x0 of
{0, 1}n; i.e., there exists a positive integer p(≤ 2n) such that F p(x0) = xp = ξ

for any starting x0 ∈ {0, 1}n(see[8, p.66]). Concerning Theorem 1.1, remark also
that the condition “F (Vx) ⊂ VF (x)” is equivalent to the condition “each column
of F ′(x) is either a unit vector or a zero vector”(see[8, Lemma 4.1]). For the
boolean network, the condition“ρ(F ′(x)) = 0” is equivalent to the condition “all
the boolean eigenvalues of F ′(x) are zero”, because σ(F ′(x)) �= φ for the boolean
network F : {0, 1}n → {0, 1}n(see[6, p.48]). We will explain σ(F ′(x)) may be
empty for the XOR boolean network F : {0, 1}n → {0, 1}n in the section 3.

2. PRELIMINARIES

In order to provide the main theorem, we state some notations, notions and
results concerning the discrete Jacobian matrix and the boolean eigenvalues. The
material can be found in the fundamental paper by Robert[1], [2] and [3], and also
in the book by Robert[4], [5] and [6].

Let {0, 1} be with operations +, ⊕, and · defined as follows,

0 + 0 = 0 ⊕ 0 = 1⊕ 1 = 1 · 0 = 0 · 1 = 0 · 0 = 0,

1 + 1 = 1 + 0 = 0 + 1 = 1 ⊕ 0 = 0 ⊕ 1 = 1 · 1 = 1, 0̄ = 1, and 1̄ = 0.

For a, b ∈ {0, 1}, ab is the abbreviation of a · b. For each positive integer n, let
{0, 1}n be the set of ordered n-tuples,

x =




x1
...

xn


,

with components xi ∈ {0, 1} (i = 1, . . . , n). We may think of x as a bit string of
length n, thus we may write x = x1x2 · · ·xn. We also write x = (x1, x2, · · · , xn).
The zero element of {0, 1}n is the n-tuple 0 = (0, 0, · · · , 0). For j ∈ {1, . . . , n}, the
j-th unit vector ej is the element of {0, 1}n, all of whose coordinates are 0 except
for the j-th component is 1. The order “≤” in {0, 1} is given by 0 ≤ 0 ≤ 1 ≤ 1.
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For x, y ∈ {0, 1}n, x ≤ y is meant that.xi ≤ yi (i = 1, . . . , n). For x, y ∈ {0, 1}n,
λ, γ ∈ {0, 1}, define

x + y =




max{x1, y1}
...

max{xn, yn}


, λx =




max{λ, x1}
...

max{λ, xn}


, and x ⊕ y =




γ1
...

γn


,

where γi = 0 if x1 = y1; otherwise, γi = 1 (i = 1, . . . , n). Hence

x + y =




x1 + y1
...

xn + yn


, cx =




c + x1
...

c + xn


, and x ⊕ y =




x1 ⊕ y1
...

xn ⊕ yn


.

Boolean network of n elements is a mapping F : {0, 1}n → {0, 1}n(see [9,
p.20]). XOR Boolean network is a boolean network that replace the operation +
with ⊕. Throughout this paper, a boolean matrix is meant to be a matrix over
{0, 1}. The set of n × n boolean matrix is denoted by Mn. For any A ∈ Mn,
denote the j-th column of A by Aj . The symbol I stands for the identity matrix
in Mn. Let α be a nonempty subset of {1, 2, · · · , n}. For any A ∈ Mn, A(α)
stands for the principal submatrix of A that lies in rows and columns indexed by α.
Boolean matrix multiplication is the same as in the case of complex matrices but the
concerned products of entries are boolean. For a boolean network, boolean matrix
addition is the operation +, it is the same as in the case of complex matrices but
the concerned sums of entries are boolean. For an XOR boolean network, boolean
matrix addition is the operation ⊕ instead of the operation +. Let Σ

j∈α
Aj denote the

summation of columns of A with the operation +. The summation of columns of A

with the operation ⊕ is denoted by ⊕
j∈α

Aj and we denote
n⊕

j=1
Aj = A1⊕A2⊕· · ·⊕An.

A non-zero element u ∈ {0, 1}n is called a (boolean) eigenvector of A ∈ Mn if
there exists λ in {0, 1} such that Au = λu; λ is called the (boolean) eigenvalue
associated with eigenvector. For A ∈ Mn, the symbol σ(A) denote the (boolean)
spectrum of A, it is the set of all eigenvalues of A, so that σ(A) ⊂ {0, 1}. The
(boolean) spectral radius of A, which is denoted by ρ(A), is defined to be the
largest eigenvalue of A. For A ∈ Mn in boolean network, since σ(A) �= φ(see[6,
p.48]), ρ(A) = 0 if and only if 1 /∈ σ(A). But for A ∈ Mn in XOR boolean
network, we will show σ(A) may be empty in the next section. For an element
x of {0, 1}n, the von Neumann neighborhood of x is the set Vx = {x, x̃1, · · ·
, x̃n}. Here x̃j (i = 1, . . . , n) is the j-th neighbor of x, which is defined to be
the element (x1, · · · , x̄j, · · · , xn). According to Robert(see[6, p.97]), the boolean
Jacobian matrix of the map F from {0, 1}n to itself evaluated at x is defined by
F ′(x) = (fij(x)), where
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fij(x) =

{
1 if fi(x) �= fi(x̃j)

0 otherwise

Robert usually called the boolean Jacobian matrix of a map as the boolean derivative
of a map.

We now state some basic results concerning the characterizations of the eigen-
values in boolean networks.

Proposition 2.1. [6]. Let A ∈ Mn. Then 0 ∈ σ(A) if and only if A has one
or more zero columns.

Proposition 2.2. [6]. Let A ∈ Mn. Then 1 ∈ σ(A) if and only if A contains
a principal sub-matrix having no zero rows.

Proposition 2.3. [8]. Let A ∈ Mn. Then 1 ∈ σ(A) if and only if A contains
a principal sub-matrix having no zero columns.

3. CHARACTERIZATIONS OF EIGENVALUES IN XOR BOOLEAN NETWORKS

In this section, we characterize the eigenvalues and the boolean Jacobian matrix
in the XOR boolean networks needed to formulate the main result. Here we state
and prove these lemmas with the boolean matrix addition ⊕.

Lemma 3.1. Let A ∈ Mn. Then 0 ∈ σ(A) if and only if there exists a
nonempty subset α ⊂ {1, 2, · · · , n} such that ⊕

j∈α
Aj = 0.

Proof. Let u be the eigenvector of A associated with the eigenvalue 0, and let
u = ⊕

j∈α
ej for a nonempty subset α ⊂ {1, 2, · · · , n}; then

⊕
j∈α

Aj = ⊕
j∈α

(Aej) = A

(
⊕

j∈α
ej

)
= Au = 0 · u = 0.

Conversely, suppose α is a nonempty subset of {1, 2, · · · , n} such that ⊕
j∈α

Aj =

0. Put u = ⊕
j∈α

ej . Then u �= 0 and it follows that

Au = A

(
⊕

j∈α
ej

)
= ⊕

j∈α
Aej = ⊕

j∈α
Aj = 0 = 0 · u.

Thus 0 ∈ σ(A)
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Lemma 3.2. Let A ∈ Mn. Then 1 ∈ σ(A) if and only if there exists a
nonempty subset α ⊂ {1, 2, · · · , n} such that ⊕

j∈α
(A ⊕ I)j = 0.

Proof. Let u be the eigenvector of A associated with the eigenvalue 1. Then
Au = 1 · u = u; hence (A ⊕ I)u = Au ⊕ u = 0 = 0 · u; hence 0 ∈ σ(A ⊕ I). By
Lemma 3.1, there exists a nonempty set α ⊂ {1, 2, · · · , n}, such that ⊕

j∈α
(A⊕I)j =

0.
Conversely, if α is a nonempty subset of {1, 2, · · · , n} such that ⊕

j∈α
(A⊕ I)j =

0, then Lemma 3.1 shows that 0 ∈ σ(A ⊕ I); hence there exists u �= 0 such that
Au ⊕ u = (A ⊕ I)u = 0 · u = 0. Hence Au = u = 1 · u, that is, 1 ∈ σ(A).

Finally, the following example shows σ(A) = φ for some A ∈ Mn in the XOR
boolean networks. Hence we can not define ρ(F ′(x)) for the XOR boolean network
F : {0, 1}n → {0, 1}n, so that we will use the condition “1 /∈ σ(F ′(x))” to instead
of the condition“ρ(F ′(x)) = 0” in our main result.

Example 3.1. Let

A =
(

1 1
1 0

)
,

and let α = {1, 2}; then A ∈ M2 and

⊕
j∈α

Aj = A1 ⊕ A2 =
(

1
1

)
⊕

(
1
0

)
=

(
0
1

)
�= 0

and
⊕

j∈α
(A ⊕ I)j =

(
0
1

)
⊕

(
1
1

)
=

(
1
0

)
�= 0.

By Lemma 3.1 and Lemma 3.2, σ(A) = φ.

4. MAIN RESULT

Let the map G from {0, 1}n to itself defines a XOR boolean network and let
F be a map from {0, 1}n to itself defines a boolean network with F (x) = G(x)
for all x ∈ {0, 1}n. Note that the spectrum of the boolean Jacobian matrix F ′(x)
evaluated at x may not equal to the spectrum of G′(x). For example, let G and F

be the maps from {0, 1}2 to itself, defined by

G(x) =
(

x1 ⊕ x2

x1x2

)
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and
F (x) =

(
x1x2 + x1x2

x1x2

)
.

Then F (x) = G(x) for all x ∈ {0, 1}2, and they are given by Table 4.1. Put
x0 = (0, 0). Then

F ′(x0) = G′(x0) =
(

1 1
1 1

)

By Proposition 2.1 and Proposition 2.3, we have σ(G′(x0)) = {0}. But by
Lemma 3.1 and Lemma 3.2, σ(F ′(x0)) = {1}.

Table 4.1.
——————————————————–

Bit string x 00 01 10 11

Bit string F (x) 11 00 00 10
——————————————————–

In order to prove the main result we shall employ the following lemma.

Lemma 4.1. Suppose x ∈ {0, 1}n, and suppose the map F from {0, 1}n to
itself defines a XOR boolean network has the conditions:

(1) F (Vx) ⊂ VF (x);
(2) 1 /∈ σ(F ′(x)).

Then

(a) Each entry in the diagonal of boolean Jacobian matrix F ′(x) is 0;
(b) Each principal submatrix of F ′(x) contains a zero row;
(c) 0 is a boolean eigenvalue of F ′(x).

Proof. By (1), each column of F ′(x) is either a unit vector or a zero vec-
tor(see[8, Lemma 4.1]). Hence for each i in {1, 2, · · · , n} there exists k in {1, 2, · · · , n}
such that either (F ′(x))i = ek or (F ′(x))i = 0.

We claim that k �= i.
If not, then the i-th column of F ′(x) ⊕ I equals zero. Put α = {i}. Then

⊕
j∈α

(F ′(x)⊕I)j = (F ′(x)⊕I)i = 0. By Lemma 3.2, 1 ∈ σ(F′(x)), a contradiction

with (2).
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Thus k �= i, that is, each entry in the diagonal of F ′(x) is 0. which proves (a)

Let F ′(x) = (fij(x))n×n. Assume, on the contrary, that α is a nonempty subset
of {1, 2, · · · , n} such that the principal submatrix

(4.1) F ′(x)(α) has no zero rows.

Let ω be the number of 1 in F ′(x)(α), and let c be the cardinal number of α.
Then ω ≥ c, since F ′(x)(α) has no zero rows. By (1), each column of F′(x)(α)
is either a unit vector or a zero vector; hence the inequality is reversed, and the
equality is proved, that is,

(4.2) ω = c.

Combining (a), (4.1) and (4.2), we see that for any i in α, fii(x) = 0 and there
exists a unique k in α with k �= i such that f ik(x) = 1. Hence

(4.3) ⊕
j∈α

(
F ′(x)(α)⊕ I(α)

)
j
= 0.

Similarly, combining (a) and (4.2), we obtain that for any i in α, there exists a
unique k in α with k �= i such that fki(x) = 1. It follows that

(4.4) F ′(x)(α)has no zero columns.

Hence for any j in α, if k ∈ {1, 2, · · · , n} and k /∈ α, then fkj(x) = 0 , by
(1) and (4.4). It now follows from (4.3) that

(4.5) ⊕
j∈α

(F ′(x)⊕ I)j = 0.

By Lemma 3.2 and (4.5), 1 ∈ σ(F ′(x)). But this contradicts (2). Thus (b)
follows.

Next, we claim that 0 ∈ σ(F ′(x)). Otherwise, Lemma 3.1 shows that F ′(x)
has no zero column and every column is different from the other column. Thus by
(1), we obtain that all columns of F ′(x) are unit vectors and they are not the same
each other. Now (a) shows

(4.6)
n⊕

j=1
(F ′(x) ⊕ I)j = 0.

Put α = {1, 2, · · · , n}. Hence, by Lemma 3.2 and (4.6) we obtain 1 ∈
σ(F ′(x)), a contradiction with (2).

Thus 0 ∈ σ(F ′(x)), which proves (c) and the proof is complete.

The aim of this paper is to prove the following theorem.

Theorem 4.1. Suppose the map F from {0, 1}n to itself defines a XOR boolean
network has the conditions:
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(1) F (Vx) ⊂ VF (x) for all x ∈ {0, 1}n;
(2) 1 /∈ σ(F ′(x)) for all x ∈ {0, 1}n.

Then F has a unique fixed point and F is global convergent to this fixed point.

Proof. Let G be a map from {0, 1}n to itself defines a boolean network with
G(x) = F (x) for all x ∈ {0, 1}n. Then by (1), we can obtain the following result
directly

(4.7) G(Vx) = F (Vx) ⊂ VF (x) = VG(x) for all x ∈ {0, 1}n.

By the construction of G, the boolean Jacobian matrices G′(x) = F ′(x) for all
x ∈ {0, 1}n; hence now follows from Lemma 4.1(b) that each principal submatrix
of G′(x) contains a zero row. By Proposition 2.2, 1 /∈ σ(G′(x)) for all x ∈ {0, 1}n.
Since σ(G′(x)) �= φ(see[6, p. 48]), we have

(4.8) ρ(G′(x)) = 0 for all x ∈ {0, 1}n.

Apply Theorem 1.1 with (4.7) and (4.8), we obtain that G has a unique fixed
point ξ and G is global convergent to ξ. Since F and G have the same orbits, then ξ
is the unique fixed point of F and F is global convergent to ξ, which is the desired
conclusion.

Remark 4.1. The conditions of main theorem are essential.

The next two examples will show the Theorem 4.1 fails to hold if just possesses
with one condition.

Example 4.1. Let F : {0, 1}2 −→ {0, 1}2 be defined by

F (x) =
(

x1

x2

)

Then F is given by Table 4.2. and the boolean Jacobian matrices of F are the
following:

F ′(0, 0) = F ′(1, 0) = F ′(0, 1) = F ′(1, 1) =
(

1 0
0 1

)
.

Hence each column of the boolean Jacobian matrix of each element of {0, 1}n
is a unit vector, we obtain F (Vx) ⊂ VF (x) for all x in {0, 1}2. Hence F possesses
with the condition (1) of Theorem 4.1. Since there is no fixed point, Theorem 4.1
fails to hold. That is, condition (2) is essential for the result.
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Table 4.2.
——————————————————–

Bit string x 00 01 10 11

Bit string F (x) 01 00 11 10
——————————————————–

Example 4.2. Let F : {0, 1}2 −→ {0, 1}2 be defined by

F (x) =
(

x1 ⊕ x2

x1

)

Then F is given by Table 4.3. and the boolean Jacobian matrices of F are the
following:

F ′(0, 0) = F ′(1, 0) = F ′(0, 1) = F ′(1, 1) =
(

1 1
1 0

)
.

Hence for any nonempty subset α ⊂ {1, 2}, we obtain Σ
j∈α

(F ′(x)⊕ I)j �= 0 for

all x in {0, 1}2. By Lemma 3.2, 1 /∈ σ(F′(x)) for all x in {0, 1}2; hence F just
possesses with the condition(2) of Theorem 4.1. Note that now (0, 0) is the fixed
point of F . Put x0 = (0, 1). Then the trajectory xt+1 = F (xt) doesn’t tend forward
to (0, 0). Thus Theorem 4.1.fails in this case. In other words, the condition(1) is
necessary for Theorem 4.1.

Table 4.3.
——————————————————–

Bit string x 00 01 10 11

Bit string F (x) 00 10 11 01
——————————————————–

5. CONCLUDING REMARKS

Shih and Dong proved the combinatorial fixed point theorem over {0, 1}n[7]: if
the map G from {0, 1}n to itself defines a boolean network is such that ρ(G ′(x)) = 0
for all x ∈ {0, 1}n, then G has a fixed point. It is nature to ask the following
question: if the map F from {0, 1}n to itself defines a XOR boolean network is
such that 1 /∈ σ(F ′(x)) for all x ∈ {0, 1}n, does it has a fixed point? That is false
as the following example shows.
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Example 5.1. Let F : {0, 1}3 −→ {0, 1}3 be defined by

F (x) =




x2 ⊕ x1x̄3 ⊕ x2x1x̄3

x1x̄2 ⊕ x3(x1 ⊕ x2) ⊕ x1x̄2x3(x1 ⊕ x2)
x2x3(x1 ⊕ x2 ⊕ x3)




Then F is given by Table 5.1. The the boolean Jacobian matrices of F are the
following:

F ′(0, 0, 0) =


 1 1 0

1 0 1
1 1 1


, F ′(1, 0, 0) =


 1 0 1

1 1 0
1 1 1


,

F ′(0, 1, 0) =


 0 1 0

0 0 0
1 1 0


, F ′(0, 0, 1) =


 0 1 0

0 1 1
1 0 1


,

F ′(1, 1, 0) =


 0 0 0

0 1 1
1 1 1


, F ′(1, 0, 1) =


 0 1 1

0 0 0
1 1 1


,

F ′(0, 1, 1) =


 0 1 0

1 1 0
0 0 0


, F ′(1, 1, 1) =


 0 1 0

1 0 1
0 1 1


.

It follows that for any nonempty subset α ⊂ {1, 2, 3}, Σ
j∈α

(F ′(x)⊕ I)j �= 0 for

all x in {0, 1}3; hence by Lemma 3.2, 1 /∈ σ(F ′(x)) for all x in {0, 1}3. But F

has no fixed point.

Table 5.1.
———————————————————————————–

Bit string x 000 001 010 011 100 101 110 111

Bit string F (x) 001 010 100 100 110 011 101 110

———————————————————————————–

Actually, the spectrum of the map F in Example 5.1 is empty. It is shown
by Lemma 3.1 and for any nonempty subset α ⊂ {1, 2, 3}, Σ

j∈α
(F ′(x))j �= 0 for

all x in {0, 1}3. If we want to avoid the empty spectrum situation, then we can
replace the condition“1 /∈ σ(F ′(x))” by “σ(F ′(x)) = {0}”. Hence we will ask
the following question: if the map F from {0, 1}n to itself defines a XOR boolean
network is such that σ(F ′(x)) = {0} for all x ∈ {0, 1}n, does it has a fixed point?
But it still fails to be true as shown by the following example.
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Example 5.2. Let F : {0, 1}3 −→ {0, 1}3 be defined by

F (x) =




x̄1x̄2 ⊕ x3(x1 ⊕ x2) ⊕ x̄1x̄2x3(x1 ⊕ x2)

x̄1(x2 ⊕ x3 ⊕ x2x3)

x1x2 ⊕ x̄3(x1 ⊕ x2) ⊕ x1x2x̄3(x1 ⊕ x2)




Then F is given by Table 5.2 and the boolean Jacobian matrices of F are the
following:

F ′(0, 0, 0) =


 1 1 0

0 1 1
1 1 0


, F ′(1, 0, 0) =


 1 0 1

0 0 0
1 0 1


,

F ′(0, 1, 0) =


 0 1 1

1 1 0
0 1 1


, F ′(0, 0, 1) =


 0 0 0

1 0 1
0 0 0


,

F ′(1, 1, 0) =


 0 0 0

1 0 0
0 0 0


, F ′(1, 0, 1) =


 0 1 1

1 0 0
0 1 1


,

F ′(0, 1, 1) =


 1 0 1

1 0 0
1 0 1


, F ′(1, 1, 1) =


 1 1 0

1 0 0
1 1 0


.

Given a nonempty subset α ⊂ {1, 2, 3} Then Σ
j∈α

(F ′(x)⊕ I)j �= 0 for all x in

{0, 1}3. Since α was arbitrary and by Lemma 3.2, we conclude that 1 /∈ σ(F ′(x))
for all x in {0, 1}3. Now, we set a rule to choose a subset β of {1, 2, 3} as following:

Put β =




{1, 2, 3} if x ∈ {(0, 0, 0), (0, 0, 1), (1, 0, 0), (0, 1, 0)}
{2, 3} if x ∈ {(1, 0, 1), (1, 1, 0)}
{2} if x = (0, 1, 1)

{3} if x = (1, 1, 1)

Table 5.2.
———————————————————————————

Bit string x 000 001 010 011 100 101 110 111

Bit string F (x) 100 110 011 110 001 100 001 001

———————————————————————————
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1 1 0


.

Given a nonempty subset α ⊂ {1, 2, 3} Then Σ
j∈α

(F ′(x)⊕ I)j �= 0 for all x in

{0, 1}3. Since α was arbitrary and by Lemma 3.2, we conclude that 1 /∈ σ(F ′(x))
for all x in {0, 1}3. Now, we set a rule to choose a subset β of {1, 2, 3} as following:

Put β =




{1, 2, 3} if x ∈ {(0, 0, 0), (0, 0, 1), (1, 0, 0), (0, 1, 0)}
{2, 3} if x ∈ {(1, 0, 1), (1, 1, 0)}
{2} if x = (0, 1, 1)

{3} if x = (1, 1, 1)

Table 5.2.
———————————————————————————

Bit string x 000 001 010 011 100 101 110 111

Bit string F (x) 100 110 011 110 001 100 001 001

———————————————————————————
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Then, for any x in {0, 1}3, there is a nonempty subset β of {1, 2, 3} such that
Σ

j∈β
(F ′(x))j = 0; hence by Lemma3.1, 0 ∈ σ(F ′(x)) for all x in {0, 1}3; hence

σ(F ′(x)) = {0} for all x in {0, 1}3. But F has no fixed point.
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