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MODULES WHOSE EC-CLOSED SUBMODULES ARE DIRECT
SUMMAND

Canan Celep Yücel and Adnan Tercan

Abstract. A module M is called ECS if every ec-closed submodule of M is
a direct summand. It was shown that the ECS property lies strictly between
CS and P-extending properties. We studied modules M such that every ho-
momorphism from an ec-closed submodule of M to M can be lifted to M .
Although such modules share some of the properties of ECS-modules, it is
shown that they form a substantially bigger class of modules.

0. INTRODUCTION

Throughout this paper, all rings are associative with unity and R denotes such
a ring. All modules are unital right R-modules. Recall that a module is said to
be extending or CS if every complement (or closed) submodule of M is a direct
summand (see [4]). By an ec-closed submodule N of a module M , we mean a
closed submodule N which contains essentially a cyclic submodule i.e., there exists
x ∈ N such that xR is essential in N (see [8]). Note that every direct summand of
an ec-closed submodule of M is ec-closed. Following [8], a module M is said to
be principally extending (for short P-extending) if every cyclic submodule of M is
essential in a direct summand.

Let M1 and M2 be modules. The module M2 is M1-c-injective (M1-cu-
injective) if every homomorphism α : K → M2, where K is a closed (closed
uniform) submodule of M1, can be extended to a homomorphism β : M1 → M2

(see [9] and [10]).
In this paper we are concerned with the study of modules M that every ec-closed

submodule is a direct summand. We call such a module as ECS-module. Note that
clearly CS-modules and (von Neumann) regular rings are ECS-modules.
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In Section 1, we consider connections between the ECS condition and various
other conditions. In particular, we give a counterexample which shows that the
classes of ECS and P-extending modules are not the same.

Following an idea of [9], in Section 2, we focus on self-ec-injective modules,
i.e., modules M such that every homomorphism from ec-closed submodules to
the module can be extended to the module itself. ECS-modules are an example of
modules with this property. We prove general properties of self-ec-injective modules
and provide an equivalent condition when M2 is M1-ec-injective for modules M1

and M2.
Let R be a ring and M a right R-module. If X ⊆ M then X ≤ M denotes

X is a submodule of M . Moreover End(M) and Mn(R) symbolize the ring of
endomorphism of M and the full ring of n-by-n matrices over R, respectively.
Other terminology and notation can be found in [1] and [4].

1. PRELIMINARY RESULTS

In this section, we study relationships between the extending condition, ECS
and P-extending conditions.

Proposition 1.1. Let M be a module. Consider the following statements.
(i) M is CS
(ii) M is ECS
(iii) M is P-extending.

Then (i) ⇒ (ii) ⇒ (iii). In general, the converses to these implications do not
hold.

Proof. (i) ⇒ (ii). This implication is clear.
(ii) ⇒ (iii). Let mR be any cyclic submodule of M . Then the closure of mR

in M , L say, is an ec-closed. By hypothesis, L is a direct summand of M . Thus
M is P-extending. Let M2(R) be the ring as in [7, Example 13.8]. Then M2(R)
is a von Neumann regular ring which is not a Baer ring. Hence it is neither left nor
right CS, by [2, Example 2.7]. Thus (ii) � (i). Finally, let R be the ring as in [3,
Example 3.2] i.e., R =

[
Z2 Z2
0 Z

]
. Then R is right P-extending. However, RR is not

CS, by [11]. Since RR has finite uniform dimension, RR has a maximal uniform
(and hence an ec-closed) submodule which is not a direct summand of RR. So R
is not right ECS-module.

Proposition 1.1 shows that classes of modules with CS, ECS and P-extending are
different from each other. In [8], authors assumed that ECS and P-extending condi-
tions are the same and proved several results for P-extending modules. However, the
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proof of Proposition 1.1 provides a counterexample to these assertions by exhibiting
a P-extending module RR which does not satisfy ECS condition. Actually, most of
the results in [8] which are stated for P-extending modules are remaining true only
for ECS-modules.

Since the ECS property lies strictly between the CS and P-extending properties,
it is natural to seek conditions which ensure that a P-extending module is ECS or
that a ECS-module is CS. Such conditions are illustrated in our next result.

Proposition 1.2.

(i) Let MR be a nonsingular module. Then M is P-extending if and only if M
is ECS.

(ii) Let M be a right R-module such that a direct sum of an ec-closed with a
direct summand of M is a complement in M . Then M is P-extending if and
only if M is ECS.

(iii) Let M be a module with finite uniform dimension. Then M is CS if and only
if M is ECS.

Proof.

(i) Assume M is right P-extending R-module. Let X be any ec-closed submodule
of M . Then xR is essential in X for some x ∈ X . By hypothesis, there
exists a direct summand L of M which contains xR as an essential submodule.
Since MR is nonsingular, X = L. Thus M is ECS. The converse follows
from Proposition 1.1.

(ii) Assume M is P-extending. Let C be an ec-closed submodule of M with cR

is essential in C. By hypothesis, there are submodules D, D
′ of M such that

cR is essential in D and M = D⊕D
′ . It follows that C ⊕D

′ is essential in
M . By hypothesis, M = C ⊕ D′. Hence M is ECS. The converse follows
from Proposition 1.1.

(iii) Assume M is a ECS-module. Let N be any maximal uniform submodule of
M . Clearly N is an ec-closed in M . By hypothesis, N is a direct summand
of M . Hence M is CS. The converse is clear by Proposition 1.1.

The following definition is needed in our next two results. Let M be a module.
Let K, L be two direct summands of M . If K ∩ L is also a direct summand of
M , then M is said to have summand intersection property, SIP (see, for example
[12]). Note that the extending version of the following result is appeared in [3].

Theorem 1.3. Let M be a P-extending module.

(i) If M is distributive then every submodule of M is P-extending.
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(ii) If X is a submodule of M such that e(X) ⊆ X for every e 2 = e ∈ End(M)
then X is P-extending.

(iii) If M has SIP then every direct summand of M is P-extending.
(iv) If X is a submodule of M such that the intersection of X with any direct

summand of M is a direct summand of X , then X is P-extending.

Proof.

(i) Let X be any submodule of M and xR be a cyclic submodule of X . Then
there exists a direct summand D of M such that xR is essential in D. Hence
xR is essential in D ∩X . Since X = X ∩ (D⊕D

′
) = (X ∩D)⊕ (X ∩D

′
)

where D
′ is a submodule of M , then X ∩ D is a direct summand of X . So,

X is P-extending.
(ii) Let X be a submodule of M . Let D be any direct summand of M and

e : M → D be the projection with e(X) ⊆ X . Then e(X) = D ∩ X which
is a direct summand of X . By (iv), X is P-extending.

(iii) Let M1 be a direct summand of M . Then M = M1⊕M2 for some submodule
M2 of M . Let xR be any cyclic submodule of M1. Then there exists a
direct summand D of M such that xR is essential in D. So M = D ⊕ D

′

for some submodule D
′ of M . Therefore xR is essential in D ∩ M1. By

SIP, M = (D ∩ M1) ⊕ U for some submodule U of M . Since M1 =
M1 ∩ [(D ∩ M1)⊕ U ] = (D ∩ M1) ⊕ (M1 ∩ U) then M1 is P-extending.

(iv) Let A be any cyclic submodule of X . Then A = xR for some x ∈ X . Then
there exists a direct summand D of M such that A is essential in D. So A

is essential in D ∩ X and D ∩ X is a direct summand of X . Thus X is a
P-extending module.

By adapting the proof of [5, Lemma 1], we have the following corollary.

Corollary 1.4. Let R be any ring and M a projective P-extending module
which has SIP. Then there exists an index set I such that M is a direct sum
⊕i∈IMi of submodules Mi (i ∈ I) of M such that each submodule M i is ec-closed
in M .

Proof. By Kaplansky’s Theorem (see [6, p.120]), the module M is a direct
sum of countably generated submodules. By Theorem 1.3 (iii), we may suppose
that M is countably generated. There exists a countably set of elements m1, m2, ...
in M such that M =

∑
i miR. By hypothesis, there exists submodules M1, N1 of

M such that M = M1 ⊕ N1 and m1R is essential in M1. Suppose that ni is the
projection of mi in N1 for all i ≥ 2. By Theorem 1.3 (iii) again, there exists a direct
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summand M2 of N1 which contains n2R as an essential submodule. Continuing
in this manner we obtain a direct sum M1 ⊕ M2 ⊕ M3 ⊕ ... of submodules in the
module M such that m1R + m2R + ... + mkR ⊆ M1 ⊕ M2 ⊕ ... ⊕ Mk , for all
positive integers k. It follows that M = ⊕iMi. Moreover, by construction, each
submodule Mi is ec-closed in M .

2. EC-INJECTIVITY

Motivated by lifting homomorphisms in [9] and [10] for closed uniform sub-
modules and complement submodules respectively, we study lifting property for
ec-closed submodules. Let M1 and M2 be modules. The module M2 is M1-ec-
injective if every homomorphism ϕ : K → M2, where K is an ec-closed submodule
of M1, can be extended to a homomorphism θ : M1 → M2 (see [8]). Clearly, if
M2 is M1-c-injective (or M1-injective), then M2 is M1-ec-injective. A module M

is called self-ec-injective when it is M -ec-injective. Recall that extending modules
can be characterized by the lifting of homomorphisms from certain submodules to
the module itself, as was shown in [10]. We begin by mentioning analogous fact
about ECS-modules.

Lemma 2.1. Let M be a module. Then M is ECS if and only if for each ec-
closed submodule K of M there exists a complement L of K in M such that every
homomorphism ϕ : K ⊕ L → M can be lifted to a homomorphism θ : M → M .

Proof. This is a direct consequence of [10, Lemma 2]

Lemma 2.2. Let M be a module and let K be an ec-closed submodule of M .
If K is M -ec-injective, then K is a direct summand of M .

Proof. By hypothesis, there exists a homomorphism θ : M → K that extends
the identity i : K → K. It is easy to see that M = K⊕Kerθ, so that K is a direct
summand of M .

Proposition 2.3. The following are equivalent for a module M .

(i) M is ECS.

(ii) Every module is M -ec-injective.

(iii) Every ec-closed submodule of M is M -ec-injective.

Proof. It is clear that (i) implies (ii) and, obviously (ii) implies that (iii). The
implication (iii) ⇒ (i) follows by Lemma 2.2.
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In particular, by proposition 2.3, every ECS-module is self-ec-injective. How-
ever, our next example shows that not every self-ec-injective module is ECS. Note
that this example also shows that the condition in [8] which is supposed to be
equivalent to [8, Definition 2.2] is not valid. The cited assumption states that, if
M = M1 ⊕ M2, then M2 is M1-ec-injective if and only if for every ec-(closed)
submodule N of M such that N∩M2 = 0, there exists N

′ ≤ M such that N ≤ N
′ ,

and M = N
′ ⊕ M2.

Example 2.4. Let p be any prime integer and let R denote the local ring Zp.
Let M denote the Z-module Q⊕ (Z/Zp). Then M is self-ec-injective but not ECS.
Moreover M does not have the condition mentioned above.

Proof. Recall that MZ is not extending, by [10, Example 10]. Since MZ has
finite uniform dimension, MZ is not ECS-module from Proposition 1.2 and self-ec-
injective, by [10]. For the last part, let M1 = Q ⊕ 0 and M2 = 0 ⊕ Z/Zp. Since
M1, M2 are uniform modules, M2 is M1-ec-injective. Let N = R(1, 1+Zp). Note
that N is an ec-closed submodule of M = M1 ⊕ M2. By [10, Example 10], N
is not a direct summand of M and N ∩ M2 = 0. Assume there exists N

′ ≤ M

such that N ≤ N
′ and M = N

′ ⊕ M2. Since N is a maximal uniform in M ,
N ′ has uniform dimension 2, which yields a contradiction. Thus there is no such
submodule N

′ .

In conjunction with Example 2.4, we provide a condition in our next Theorem
which is equivalent to M2 is M1-ec-injective. First note that we use πi to denote
the projections from M = M1 ⊕ M2 to Mi for i = 1, 2. Compare the following
result with [4, Lemma 7.5] and [9, Lemma 2.3].

Theorem 2.5. Let M1 and M2 be modules and let M = M1 ⊕ M2. Then M2

is M1-ec-injective if and only if for every ec-closed submodule N of M such that
N ∩ M2 = 0 and π1(N ) is ec-closed in M1, there exists a submodule N

′ of M
such that N ≤ N

′ and M = N
′ ⊕ M2.

Proof. Assume that M2 is M1-ec-injective and let N be an ec-closed submodule
of M such that N ∩ M2 = 0 and π1(N ) is ec-closed in M1. As N ∩ M2 = 0, the
restriction of π1 to N is an isomorphism between N and π1(N ). Let α : π1(N ) →
M2 be the homomorphism defined by α(x) = π2(π1|N)−1(x), where x ∈ π1(N ).
The map α can be extended to a homomorphism θ : M1 → M2, since M2 is M1-
ec-injective and π1(N ) is ec-closed in M1. Define N

′
= {x + θ(x) : x ∈ M1}.

Clearly, N
′ is a submodule of M and M = N

′ ⊕ M2. For any x ∈ N , θπ1(x) =
απ1(x) = π2(x) and hence x = π1(x) + θπ1(x) ∈ N ′. Thus N ≤ N

′ .
Conversely, suppose that, for every ec-closed submodule N of M such that
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N ∩ M2 = 0 and π1(N ) is ec-closed in M1, there exists a submodule N
′ of M

such that N ≤ N ′ and M = N
′ ⊕ M2. Let K be an ec-closed submodule of M1

and let α : K → M2 be a homomorphism. Let N = {x − α(x) : x ∈ K}. It is
clear that N is a submodule of M and N ∩ M2 = 0. Since π1(N ) = K , π1(N )
is ec-closed in M1. By hypothesis, there exists a submodule N

′ of M such that
N ≤ N

′ and M = N
′ ⊕ M2. Let π : M → M2 be the projection with kernel

N ′ and let θ : M1 → M2 be the restriction of π to M1. Now, for any x ∈ K,
θ(x) = π(x) = π(x − α(x) + α(x)) = α(x). Hence θ extends α. So, M2 is
M1-ec-injective.

Lemma 2.6. Let M1 and M2 be modules. If M2 is M1-ec-injective, then,
for every ec-closed submodule N of M1, M2 is N -ec-injective and (M1/N )-ec-
injective.

Proof. Let N be an ec-closed in M1. Since every ec-closed submodule of N is
also an ec-closed submodule of M1, M2 is N -ec-injective. Now, let K/N be an ec-
closed submodule of M1/N and let α : K/N → M2 be a homomorphism. It is easy
to see that K is an ec-closed submodule of M1 (see, [4]). Let π : M1 → M1/N

and π
′
: K → K/N be the canonical epimorphisms. Since M2 is M1-ec-injective,

there exists a homomorphism θ : M1 → M2 that extends απ
′ . Now N ≤ Kerθ

gives that there exists a homomorphism γ : M1/N → M2 such that γπ = θ. For
any a ∈ K, γ(a + N ) = γπ(a) = θ(a) = απ

′
(a) = α(a + N ). Hence M2 is

(M1/N )-ec-injective.

Lemma 2.7. Let M be any self-ec-injective module. Then a direct summand
of M is also self-ec-injective.

Proof. Let L be any direct summand of M . Hence M = L ⊕ L′′ for some
submodule L

′ of M . Let X be an ec-closed in L and ϕ : X → L be any ho-
momorphism. Since X is an ec-closed in M , then there exists a homomorphism
θ : M → M such that θ|X = ϕ. Let π : M → L be the projection. Define
α : L → L by α(l) = π(θ(l)), for any l ∈ L. It is clear that α|X = ϕ. Hence L is
self-ec-injective.

The converse of Lemma 2.7 is not true, in general. Let us consider for example,
the Z-modules M1 = Z and M2 = Z/Zp for a prime integer p. Then M1 and
M2 are uniform modules, so that they are self-ec-injective. However, since MZ has
finite uniform dimension, M is not self-ec-injective, because it is not self-c-injective
by [9, Corollary 3.5]. However we have the following observation.

Theorem 2.8. Let M = M1 ⊕ M2 be Z-module where M1 is torsion and M2

is infinite cyclic. If M is self-ec-injective then M 1 = pM1 for each prime p.
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Proof. Let M2 = Zm2 for some 0 	= m2 ∈ M2. Suppose M1 	= pM1 for some
prime p. Let m1 ∈ M1, m1 /∈ pM1. Let K = Z(m1, pm2). Suppose K is essential
in L for some L ≤ M . Then for any n ∈ Z, n(m1, pm2) = (nm1, npm2) = (0, 0)
implies that n = 0. Therefore K is infinite cyclic, and hence K is a uniform
Z-module. Let x ∈ L and a = (m1, pm2). Then K + Zx = Za + Zx is finitely
generated, so that K +Zx ≤ L, and is a direct sum of cyclic modules. But K +Zx
is uniform, hence K + Zx is cyclic. Then Za ⊆ K + Zx = Zy for some y ∈ M .
Suppose y = (m

′
1, km2) for some m

′
1 ∈ M1 and k ∈ Z. Then a = sy for some

s ∈ Z. Hence (m1, pm2) = s(m
′
1, km2), which gives m1 = sm

′
1, pm2 = skm2.

Since M2 is infinite cyclic, s = ±1 or k = ±1. If k = ±1 then s = ∓p, so that
m1 = ±pm

′
1 ∈ pM1, a contradiction. Thus s = ±1. Therefore y ∈ Za and hence

x ∈ Zy ⊆ Za, i.e., L ⊆ Za = K. Hence K = L, so K is a complement in M .
Since K is cyclic, K is ec-closed. Now define a homomorphism ϕ : K → M
by ϕ(m1, pm2) = (0, m2). Suppose that ϕ can be lifted to θ : M → M . Then
θ(m1, 0) = (u, 0) for some u ∈ M1 and θ(0, m2) = (v, tm2) for some v ∈ M1,
t ∈ Z. Hence (0, m2) = ϕ(m1, pm2) = θ(m1, pm2) = θ(m1, 0) + pθ(0, m2) =
(u, 0) + p(v, tm2). Then we obtain, 0 = u + pv, m2 = ptm2, so that 1 = pt, a
contradiction. Therefore ϕ cannot be lifted. It follows that M1 = pM1 for each
prime p.

We finish this section by showing that there are self-ec-injective modules which
are not self-c-injective. For our next result, first recall that the module M2 is
essentially M1-injective if every homomorphism α : A → M2, where A is a sub-
module of M1 and Kerα is essential in A, can be extended to a homomorphism,
β : M1 → M2 (see, [9]).

Proposition 2.9. Let M1 be an extending module and let M2 be a uniform
module such that M2 is essentially M1-injective. Then the following statements are
equivalent.

(i) M1 ⊕ M2 is self-c-injective.
(ii) M1 ⊕ M2 is self-ec-injective.
(iii) M1 ⊕ M2 is self-cu-injective.

Proof. (i) ⇒ (ii) and (ii) ⇒ (iii) are clear. (iii) ⇒ (i). By [9, Proposition
2.9].

Corollary 2.10. Let R be a Prüfer domain which is not a field. Then any
non-finitely generated free R-module is self-ec-injective, but not self-c-injective.

Proof. Let M be a free R-module with infinite basis {m i : i ∈ I}. Let U be
an ec-closed submodule of M . If U = 0 then nothing to prove. So, assume that
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U 	= 0. Hence there exists 0 	= x ∈ U such that xR is essential in U . There exists
a finite subset F of I such that x ∈ ⊕i∈F miR. Since U/xR is a torsion module,
it follows that U ⊆ ⊕i∈F miR. By [4, Corollary 12.10], U is a direct summand of
⊕i∈F miR and hence also of M . Thus M is self-ec-injective. By [9, Theorem 3.1],
M is not self-c-injective.
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