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DEAD-CORE AT TIME INFINITY FOR A HEAT EQUATION
WITH STRONG ABSORPTION
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Dedicated to Prof. Masayasu Mimura on the occasion of his sixty-fifth birthday

Abstract. We study an initial boundary value problem for a heat equation
with strong absorption. We first prove that the solution of this problem stays
positive for any finite time and converges to the unique steady state for a
large class of initial data. This gives an example in which the dead-core is
developed in infinite time. Then some estimates of the dead-core rate(s) are
derived. Finally, we provide the uniformly exponential rate of convergence of
the solution to the unique steady state.

1. INTRODUCTION

We study the following initial boundary value problem (P) for the heat equation
with strong absorption:

ut = uxx − up, 0 < x < 1, t > 0,(1.1)

ux(0, t) = 0, u(1, t) = kp, t > 0,(1.2)

u(x, 0) = u0(x), 0 ≤ x ≤ 1,(1.3)

where p ∈ (0, 1), kp := [2α(2α − 1)]−α, α := 1/(1 − p), and u0 is a smooth
function defined on [0, 1] such that

(1.4) u′0(0) = 0, u0(1) = kp, u
′
0(x) ≥ 0, U(x) < u0(x) ≤ kp for x ∈ [0, 1).
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We note that the constant kp is chosen so that the unique steady state U(x) := kpx
2α

of (1.1)-(1.2) is positive for x �= 0 and U(0) = 0.
Problem (P) arises in the modelling of an isothermal reaction-diffusion process

[1, 10] and a description of thermal energy transport in plasma [8, 6]. In the first
example, the solution u of (P) represents the concentration of the reactant which is
injected with a fixed amount on the boundary x = ±1 (after a symmetric reflection),
and p is the order of reaction.

It is trivial that, for any u0 as above, problem (P) admits a unique global classical
solution. Also, it follows from the strong maximum principle that u > U and ux > 0
in (0, 1)× (0,∞).

The problem (P) with general boundary values (i.e., any k > 0) has been studied
extensively. We refer the reader to a recent work of one of the authors and Souplet
[4] and the references cited therein. Recall that the region where u = 0 is called the
dead-core, the first time when u reaches zero is called the dead-core time and the
rate of convergence to zero in time is called the dead-core rate. In [4], we studied
the case when the dead-core is developed in a finite time. In [4], it is proved that
the finite time dead-core rate is always non-self-similar. Indeed, it is shown in [5]
that there can be infinitely many different finite time dead-core rates depending on
the initial data.

By taking the special constant kp, we shall show that the solution of (P) is
always positive for all t > 0 and tends to the unique steady state U uniformly as
t → ∞. In particular, we have u(0, t) → 0 as t → ∞. This means that the dead-
core occurs at time infinity.

A natural question arises, namely, how the solution u tends to U . In particular,
we shall investigate the dead-core rate, i.e., the exact convergence rate of u(0, t) to
zero as t → ∞. For some related works, we refer the reader to [2, 3, 9]. We note
that there is a singularity in the sense that the reaction rate up−1 tends to infinity
when u tends to zero. This causes a certain difficulty in dealing with the problem
(P).

This paper is organized as follows. We first study some properties of the solution
of (P) in §2. In particular, we prove that the dead-core is developed at time infinity.
In §3, some properties of the associated steady states to (1.1) are given and some
further properties of the solution of (P) in terms of these steady states are also
derived. Section 4 is devoted to the spectrum analysis of the linearized operator
around the unique steady state U and the related approximated operators to this
linearized operator. Then, in §5, we give some estimates for the dead-core rate(s).
Unfortunately, we are unable to derive the exact dead-core rate. We suspect that the
dead-core rate might depend on the initial data. We leave this important question
as an open problem. Finally, the uniformly exponential rate of convergence of u to
U over the whole domain as t→ ∞ is given in §6.
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2. DEAD-CORE AT TIME INFINITY

In this section, we shall study some basic properties of the solution u of (P).
First, we have the following result of positivity of u. This also implies that the
dead-core can only be developed at time infinity.

Theorem 2.1. We have u > 0 for all 0 ≤ x ≤ 1 and t > 0.

Proof. For contradiction, we may assume that

T := sup{τ > 0 | u(x, t) > 0 ∀(x, t) ∈ [0, 1]× [0, τ ]} <∞.

By the maximum principle, we have u > U in (0, 1)× [0, T ]. In particular,

(2.1) u(1/2, t) > U(1/2) ∀t ∈ [0, T ].

Let {un}n≥1 be a sequence of functions defined on [0, 1] such that

u′′n = up
n on [0, 1]; un(0) = 0, u′n(0) = 1/n.

It is easy to see that un ≥ un+1 ≥ U on [0, 1] for all n ≥ 1. Furthermore, un → U
uniformly on [0, 1] as n→ ∞. It follows from (2.1) that u(1/2, t) > UN (1/2) for
all t ∈ [0, T ] for some sufficiently large N . By choosing N larger (if necessary),
we also have

u0(x) > UN (x) ∀x ∈ [0, 1/2].

It follows from the maximum principle that u ≥ uN on [0, 1/2] × [0, T ]. Since
u(0, T ) = 0, we obtain that ux(0, T ) ≥ u′N (0) > 0, a contradiction. Hence the
theorem is proved.

The next theorem shows that u converges to the unique steady state U as t→ ∞.
As a consequence, the dead-core does occur at time infinity.

Theorem 2.2. There holds u(x, t) → U(x) uniformly for x ∈ [0, 1] as t→ ∞.
Proof. First, we show that u, ux, ut are bounded on [0, 1]× [0,∞). Indeed, the

boundedness of u follows from the maximum principle. Since the function v := ut

satisfies

vt = vxx − pup−1v, 0 < x < 1, t > 0,

vx(0, t) = 0, v(1, t) = 0, t > 0,

v(x, 0) = u′′0(x) − up
0(x), 0 ≤ x ≤ 1.
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It follows from the maximum principle that v (and so ut) is bounded on [0, 1] ×
[0,∞). Now, from (1.1) we see that uxx is bounded on [0, 1]×[0,∞). Consequently,
ux is also bounded, since ux(0, t) = 0 for all t > 0.

Now, we take any sequence {tj} with tj → ∞ as j → ∞. We define uj(x, t) :=
u(x, t+ tj) for any j ∈ N. From the boundedness of u and ux it follows that {uj}
is uniformly bounded and equi-continuous on [0, 1]× [0,∞). It follows from the
Arzela-Ascoli Theorem that there exists a subsequence, still denoted by uj , such
that uj → w uniformly on [0, 1] as j → ∞ for some function w satisfying

wt = wxx −wp, 0 < x < 1, t > 0,

wx(0, t) = 0, w(1, t) = kp, t > 0.

We claim that wt ≡ 0. To do this, we introduce the energy functional

E(t) :=
1
2

∫ 1

0
u2

xdx+
1

p+ 1

∫ 1

0
up+1dx.

By a simple computation, we have

E ′(t) = −
∫ 1

0

u2
t dx.

For any fixed T > 0, an integration yields∫ T

0

∫ 1

0
u2

tdxdt = E(0)−E(T ) ≤ E(0) <∞.

It follows that ∫ ∞

0

∫ 1

0

u2
t dxdt <∞.

This implies that∫ ∞

0

∫ 1

0
u2

j,tdxdt =
∫ ∞

tj

∫ 1

0
u2

tdxdt→ 0 as j → ∞.

On the other hand, for any T > 0, since {uj,t}j∈N is uniformly bounded in
L2([0, 1]× [0, T ]), it follows that uj,t converges weakly to wt in L2([0, 1]× [0, T ]).
This implies that

∫ T

0

∫ 1

0
w2

t dxdt ≤ lim inf
j→∞

∫ T

0

∫ 1

0
u2

j,tdxdt = 0.

Hence wt ≡ 0 and so w = U .
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Since the sequence {tj} is arbitrary, the theorem follows.

The following theorem implies that the convergence of u(0, t) to zero is at least
exponentially fast.

Theorem 2.3. There exist positive constants C and β such that

(2.2) 0 < u(0, t) ≤ Ce−βt

for all t > 0.
Proof. First, following an idea from [9], we derive the following estimate

(2.3)
∫ 1

0
[u(x, t)− U(x)]2dx ≤ Ce−γt

for all t > 0 for some positive constants C and γ . To this end, we set w = u−U .
Then w satisfies

wt = wxx + Up − up ≤ wxx, 0 < x < 1, t > 0,

wx(0, t) = 0 = w(1, t), t > 0.

It then follows that ∫ 1

0
wwtdx ≤

∫ 1

0
wwxxdx.

Using an integration by parts and applying the Poincaré Inequality, we get

1
2
d

dt

∫ 1

0

w2dx ≤ −
∫ 1

0

w2
xdx ≤ −π

2

4

∫ 1

0

w2dx.

Hence (2.3) follows with γ = π2/2.
By a comparison, it suffices to consider the case when u0(x) ≡ kp. Recall that

ux > 0 on (0, 1)× (0,∞). It implies that

(2.4) u(x, t) ≥ u(0, t) ≥ U(x) = kpx
2α ∀x ∈ [0, h(t)],

where h(t) := [u(0, t)/kp]1/(2α) ≤ 1 for t > 0. Then it follows from (2.3) and
(2.4) that

Ce−γt ≥
∫ 1

0
[u(x, t)− U(x)]2dx

≥
∫ h(t)

0

[u(0, t)− U(x)]2dx

=
∫ h(t)

0
k2

p[h(t)
2α − x2α]2dx

= k2
ph(t)

4α+1

∫ 1

0
(1 − s2α)2ds,
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by a change of variable s := x/h(t).
Hence the theorem follows by taking β = 2αγ/(4α+ 1).

3. RELATIONS OF THE SOLUTION TO STEADY STATES

Now, for any η ≥ 0, let Uη be the solution of

(3.1) u′′ = up, u > 0 ∀y > 0; u(0) = η, u′(0) = 0.

In particular, U0(y) = U(y) = kpy
2α for y ≥ 0. Note that, by a re-scaling, we have

(3.2) Uη(y) = ηU1(η(p−1)/2y) ∀η > 0.

Also, by a simple comparison, we have Uη1 > Uη2 if η1 > η2 ≥ 0. Moreover,
Uη → U0 as η → 0+.

Concerning the asymptotic behavior of Uη as η → 0+, we recall from [5] that

Lemma 3.1. As η → 0+,

Uη(x) = U0(x) + aη(1−p)/2x2α−1(1 + o(1))

for any x > 0, where a is a positive constant.

In the sequel, for convenience we denote σ(t) := u(0, t). The proof of the
following lemma is based on a zero number argument (see also Theorem 4.1 of
[9]).

Lemma 3.2. For all t sufficiently large, σ(t) is strictly decreasing and

(3.3) u(x, t) < Uσ(t)(x) in (0, 1].

Proof. Define zη(x, t) := u(x, t)− Uη(x). Then zη satisfies

(zη)t = (zη)xx + cη(x, t)zη

for some function cη. Since zη(1, t) < 0 and (zη)x(0, t) = 0 for all t > 0, we see
that the zero number Jη(t) of zη defined by Jη(t) := #{x ∈ [0, 1] | zη(x, t) = 0}
is non-increasing in t.

We first claim that there exists η∗ > 0 such that Jη(1) = 1 for all η ∈ (0, η∗].
Indeed, since z0,x(1, 1) < 0, there exists δ > 0 such that z0,x(x, 1) < 0 for all
x ∈ [1 − δ, 1]. Since zη,x(x, 1) → z0,x(x, 1) uniformly on [0, 1] as η → 0+, there
is η0 > 0 such that

(3.4) zη,x(x, 1) < 0 ∀x ∈ [1 − δ, 1] ∀η ∈ (0, η0].
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On the other hand, since u(x, 1) > U(x) on [0, 1− δ] and Uη → U uniformly on
[0, 1− δ] as η → 0+, there exists an η∗ ∈ (0, η0) such that

(3.5) zη(x, 1) > 0 ∀x ∈ [0, 1− δ] ∀η ∈ (0, η∗].

Recall that zη(1, 1) < 0 for all η > 0. We conclude from (3.4) and (3.5) that
Jη(1) = 1 for all η ∈ (0, η∗].

Next, we fix any η ∈ (0, η∗]. Note that Jη(t) ≤ 1 for all t > 1. We claim
that σ(t0) > η, if Jη(t0) = 1 for some t0 > 1. For contradiction, we suppose that
σ(t0) ≤ η, i.e., u(0, t0) ≤ Uη(0). Note that u(1, t) < Uη(1) for all t > 0. If
u(0, t0) = Uη(0), then u(x, t0) < Uη(x) for all x ∈ (0, 1], since Jη(t0) = 1. Since
Jη(t) = 1 for all t ∈ [1, t0], there exists x(t) ∈ [0, 1) such that u(x(t), t) = Uη(x(t))
and u(x, t) < Uη(x) for x ∈ (x(t), 1] for each t ∈ [1, t0]. By Hopf’s Lemma,
ux(0, t0) < U ′

η(0) = 0, a contradiction. On the other hand, if u(0, t0) < Uη(0),
then there exists t∗ ∈ (1, t0) such that u(0, s) < Uη(0) for all s ∈ [t∗, t0]. Since
u(1, s) < Uη(1), we can find x(s) ∈ (0, 1) such that u(x(s), s) = Uη(x(s)) and
u(x, s) < Uη(x) for x �= x(s) for all s ∈ [t∗, t0]. This is a contradiction to the
maximum principle. This proves that σ(t0) > η, if Jη(t0) = 1 for some t0 > 1.

Now, since σ(t) → 0 as t→ ∞, there is t1 sufficiently large such that σ(t) ≤ η∗

for all t ≥ t1. Hence Jσ(t)(t) = 0 for all t ≥ t1. This implies that

u(x, t) < Uσ(t)(x) on [0, 1]

for all t ≥ t1. Therefore, (3.3) follows. Moreover, Jσ(t)(s) = 0 for all s > t ≥ t1.
Then u(x, s) < Uσ(t)(x) for x ∈ [0, 1]. In particular,

σ(s) = u(0, s) < Uσ(t)(0) = σ(t)

and the lemma is proved.

Indeed, we have the convergence of u(x, t) to Uσ(t)(x) near x = 0 as t → ∞.
To prove this, we make the following transformations:

(3.6) u(x, t) := σ(t)θ(ξ, τ), ξ := σ(t)(p−1)/2x, τ :=
∫ t

0
σ(s)p−1ds.

Then it is easy to check that θ satisfies the equation

(3.7) θτ = θξξ − θp − g(τ)
(
θ − 1 − p

2
ξθξ

)
,

where g(τ) := σ′(t)σ(t)−p. Also, θ(0, τ) = 1 and θξ(0, τ) = 0 for all τ > 0.
Moreover, it follows from Lemma 3.2 and (3.2) that θ(ξ, τ) < U1(ξ).
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We shall study the stabilization of the solution θ of (3.7). First, by considering
the function

J(x, t) :=
1
2
u2

x −Cup+1

for some positive constant C and applying a maximum principle (cf. p. 660 of [4]),
we can also derive the following estimate

(3.8) 0 ≤ ux ≤ Cu(p+1)/2 ∀x ∈ [0, 1], t > 0,

where C is a positive constant. Consequently, by an integration, we deduce from
(3.8) that

(3.9) u(x, t) ≤ [σ(t)(1−p)/2 + cx]2α ∀x ∈ [0, 1], t > 0,

for some positive constant c.
Using (3.9), (3.6), and ux = σ(1+p)/2θξ , we obtain the following estimate for

the solution θ of (3.7):

(3.10) 0 ≤ ξθξ(ξ, τ), θ(ξ, τ) ≤ C(1 + ξ)2α ∀ ξ ∈ [0, σ(p−1)/2(t)], τ > 0,

for some positive constant C.
Next, it follows from the Hopf Lemma that uxx(0, t) > 0 and so ut(0, t) >

−up(0, t) by (1.1). Hence g(τ) > −1 for all τ > 0. We conclude from Lemma 3.2
that −1 < g(τ) < 0 for all τ 	 1. Note that∫ ∞

0
g(τ)dτ = −∞.

Nevertheless, we have the following lemma.

Lemma 3.3. There holds limτ→∞ g(τ) = 0.

Proof. Otherwise, there is a sequence {τn} → ∞ such that g(τn) → −γ as
n → ∞ for some constant γ > 0. By using (3.10) and the standard regularity
theory, we can show that there is a subsequence, still denote it by {τn}, such that

θ(ξ, τ + τn) → θ̃(ξ, τ) as n→ ∞

uniformly on any compact subsets, where θ̃ solves the equation

(3.11) θ̃τ = θ̃ξξ − θ̃p + γ(θ̃ − 1 − p

2
ξθ̃ξ), ξ > 0, τ > 0,

with θ̃(0, τ) = 1 and θ̃ξ(0, τ) = 0. Moreover, it is easily to check that θ̃ ≤ U1 and
θ̃ξ ≥ 0.
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Furthermore, it follows from the so-called energy argument (cf. the proof of
Proposition 3.1 in [4]) that θ̃(ξ, τ) → V (ξ) as τ → ∞ for some V satisfying

V ′′ − V p + γ(V − 1 − p

2
ξV ′) = 0, ξ > 0,

V ′(0) = 0, V (0) = 1.

Note that V ≤ U1 and V ′ ≥ 0. Set

W (y) :=
(γ
α

)α
V (
√
α

γ
y).

Then W satisfies

W ′′ −W p + α(W − 1 − p

2
yW ′) = 0, y > 0,

W ′(0) = 0, W (0) = (γ/α)α.

Since W > 0, W ′ ≥ 0 for y > 0, and V ≤ U1 gives the polynomial boundedness
of W , it follows from Proposition 3.3 of [4] that either W = U or W ≡ α−α. The
first case is impossible, since U(0) = 0. The second case is also impossible, since
θ is unbounded by Theorem 2.2. Hence the lemma follows.

Again, by the standard limiting process with the estimate (3.10) and Lemma 3.3,
for any given sequence {τn} → ∞, we can show that there is a limit θ̃ satisfying

θ̃τ = θ̃ξξ − θ̃p, ξ > 0, τ > 0,
θ̃(0, τ) = 1, θ̃ξ(0, τ) = 0,

such that θ(ξ, τ + τn) → θ̃(ξ, τ) as n → ∞ uniformly on compact subsets. Since
we also have

θ̃(ξ, τ) ≤ U1(ξ), θ̃(0, τ) = U1(0), θ̃ξ(0, τ) = (U1)ξ(0),

the Hopf Lemma implies that θ̃ ≡ U1. Since this limit is independent of the given
sequence {τn}, we see that θ(ξ, τ) → U1(ξ) as τ → ∞ uniformly on any compact
subsets. Returning to the original variables and using the relation (3.2), we thus
have proved the following so-called inner expansion.

Theorem 3.4. As t→ ∞, we have

u(x, t) = Uσ(t)(x)(1 + o(1))

uniformly in {0 ≤ σ (p−1)/2(t)x ≤ C} for any positive constant C.
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4. SPECTRUM ANALYSIS

In this section, we shall study the following linearized operator

Lv := −v′′ + b

x2
v, b := (2α− 1)(2α− 2)

which is from the linearization of (1.1) around the steady state U .
Consider the eigenvalue problem

(4.1) Lφ = λφ, 0 < x < 1; φ′(0) = 0, φ(1) = 0.

We introduce the following Hilbert space and quantities:

H := {φ ∈ H1([0, 1]) |
∫ 1

0

φ2(x)
x2

dx <∞, φ(1) = 0},

J(φ) :=
∫ 1

0
φ2

x(x)dx+ b

∫ 1

0

φ2(x)
x2

dx, I(φ) :=
∫ 1

0
φ2(x)dx.

Then the principal eigenvalue λ∗ of (4.1) can be characterized by

(4.2) λ∗ := inf{J(φ)/I(φ) | φ ∈ H, I(φ) > 0}.
It is easy to see that λ∗ > b > 0. Also, by taking a minimization sequence, we can
show that this λ∗ can be attained by a function φ∗ ∈ H which is the eigen-function
of (4.1) such that

φ∗ > 0 in (0, 1),
∫ 1

0
(φ∗(x))2dx = 1.

Note that φ∗(0) = 0. It is also easy to see that

(4.3) φ∗(x) = dx2α−1(1 + o(1)) as x→ 0

for some positive constant d.
On the other hand, it is easily seen that for any ε ∈ (0, 1) there exists the

principal eigen-pair (λε, φε) of the following eigenvalue problem 1

(4.4) Lεφε = λεφε, 0 < x < 1; φ′ε(0) = φε(1) = 0 < φε(x) ∀x ∈ (0, 1),

where
Lεv := −v′′ + b(1− ε)

x2
χ[ε,1](x)v

and χ is the indicator function. Note that φε is only a C1 function on [0, 1] and φ′′ε
has a jump discontinuity at x = ε.

This approximated eigenvalue problem was suggested by an anonymous referee which we would like
to acknowledge here.
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Lemma 4.1. There holds λε → λ∗ as ε→ 0+.

Proof. By the characterization of the principal eigenvalue λε of (4.4) and
I(φ∗) = 1, we have

λε ≤ Jε(φ∗),

where

Jε(φ) :=
∫ 1

0

φ2
x(x)dx+ b(1− ε)

∫ 1

ε

φ2(x)
x2

dx.

It is clear that Jε(φ∗) < J(φ∗). Hence λε < λ∗ for all ε > 0 and so

(4.5) lim sup
ε→0+

λε ≤ λ∗.

On the other hand, we introduce a C∞-function θ by θ(s) = 0 for s ≤ 1/2,
θ(s) = 1 for s ≥ 1, and θ′ ≥ 0 in [1/2, 1]. Let θε(x) := θ(x/ε) for any ε ∈ (0, 1).
Set φ̃ε = φε in [ε, 1] and φ̃ε = ε in [0, ε]. Then for ψε := θεφ̃ε we have

J(ψε) ≤ Jε(φε) + bε

∫ 1

ε

φ2
ε (x)
x2

dx+ ε

(∫ 1

1/2
(θ′)2(s)ds+ b

∫ 1

1/2

θ2(s)
s2

ds

)
,

I(ψε) =
∫ 1

ε
φ2

ε(x)dx+ ε3
∫ 1

1/2
θ2(s)ds.

Since λ∗ ≤ J(ψε)/I(ψε) for all ε ∈ (0, 1), we conclude that

(4.6) λ∗ ≤ lim inf
ε→0+

λε.

Therefore, the lemma follows by combining (4.5) and (4.6).

5. DEAD-CORE RATE ESTIMATES

In this section, we shall give some estimates of the dead-core rate. First, the
upper bound of dead-core rate can be derived from Theorem 2.3. that

lim sup
t→∞

lnσ(t)
t

≤ −2α · π2

2(4α+ 1)
.

Next, we derive the following lower bound estimate for u− U .

Lemma 5.1. There exists a small positive constant δ such that

(5.1) u(x, t)− U(x) ≥ δe−λ∗tφ∗(x), x ∈ [0, 1], t > 1.
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Proof. Write w = u − U . Then w(0, t) > 0, w(1, t) = 0, and w satisfies the
equation

(5.2) wt = wxx − b

x2
w + F (x, w),

where

(5.3) F (x, w) := Up − (w + U)p +
b

x2
w =

1
2
p(1− p)Ũp−2w2,

for some Ũ ∈ (U, U + w). Note that F ≥ 0. Set ŵ(x, t) := δe−λ∗tφ∗(x), where δ
is a positive constant to be determined later. Then

ŵt = ŵxx − b

x2
ŵ, x ∈ (0, 1), t > 0,

ŵ(0, t) = 0, ŵ(1, t) = 0, t > 0.

Recall that (φ∗)′(1) < 0. Also, note that ux(1, 1)−U ′(1) < 0, by the Hopf Lemma.
By the continuity, there exist positive constants δ and η such that

(5.4) ux(x, 1)− U ′(x) − δe−λ∗
(φ∗)′(x) < 0

for all x ∈ [1 − η, 1]. It follows from (5.4) that w(x, 1) ≥ ŵ(x, 1) for all x ∈
[1− η, 1]. Using u(·, 1)> U(·) in [0, 1− η] and by choosing smaller positive δ (if
necessary), we obtain that w(x, 1) ≥ ŵ(x, 1) for all x ∈ [0, 1]. Therefore, by the
comparison principle, the estimate (5.1) follows.

For the lower bound of dead-core rate, we recall from Lemmas 3.1 and 3.2 that
for any x > 0:

(5.5) u(x, t) ≤ Uσ(t)(x) = U(x) + aσ(1−p)/2(t)x2α−1(1 + o(1)) as t→ ∞.

On the other hand, by (5.1) and (4.3), we have

(5.6) u(x(t), t) ≥ U(x(t)) + dδe−2αλ∗t(1 + o(1)) as t→ ∞,

where x(t) := e−λ∗t. Consequently, there exists a positive constants d1 such that

e−λ∗t ≤ d1σ
(1−p)/2(t)(1 + o(1)) as t→ ∞.

Hence we obtain that

(5.7) σ(t) ≥ d2e
−2αλ∗t(1 + o(1)) as t→ ∞

for some positive constant d2. This implies that

lim inf
t→∞

lnσ(t)
t

≥ −2αλ∗.
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6. RATE OF CONVERGENCE

Recall the principal eigen-pair (λε, φε) of (4.4) for any ε ∈ (0, 1). Hereafter we
shall fix the eigenfunction φε so that

φε > 0 in (0, 1),
∫ 1

0
φ2

ε (x)dx = 1.

Then it is clear that φε → φ∗ in C0([0, 1]) as ε→ 0+. Then we have the following
lemma for the upper bound of u− U .

Lemma 6.1. For each ε ∈ (0, 1), there exist positive constants c ε and tε such
that

(6.1) u(x, t)− U(x) ≤ cεe
−λεtφε(x), x ∈ [0, 1], t ≥ tε.

Proof. Again, we set w = u − U . We first estimate F as follows. Since
Ũ ∈ (U, U +w), we compute from (5.3) that

F (x, w) ≤ 1 − p

2
[U−1w][pUp−1w] =

1 − p

2
[U−1w]

(
b

x2
w

)
.

By Theorem 2.2, there is tε sufficiently large such that

1 − p

2
[U−1(x)w(x, t)] ≤ ε ∀x ∈ [ε, 1], t ≥ tε.

Consequently, we obtain from (5.2) that w satisfies the following inequality

(6.2) wt ≤ wxx − b(1− ε)
x2

w ∀x ∈ [ε, 1), t ≥ tε.

Note that wx(0, t) = w(1, t) = 0 for all t > 0. Since u > U , we have wt−wxx ≤ 0
for all x ∈ [0, 1].

Now, set ŵ(x, t) := cεe
−λεtφε(x), where cε is a positive constant to be deter-

mined. Then

ŵt = ŵxx − b(1− ε)
x2

χ[ε,1](x)ŵ, x ∈ (0, 1), t > 0,

ŵx(0, t) = 0, ŵ(1, t) = 0, t > 0.

Recall that (φε)′(1) < 0. Then by the continuity there exist a small positive constant
η and a large positive constant cε such that

(6.3) ux(x, tε) − U ′(x)− cεe
−λεtε(φε)′(x) > 0 ∀x ∈ [1 − η, 1].
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It follows from (6.3) that w(x, tε) ≤ ŵ(x, tε) for x ∈ [1− η, 1]. Then, by choosing
cε larger (if necessary), we obtain that w(x, tε) ≤ ŵ(x, tε) for x ∈ [0, 1]. Therefore,
the lemma follows by applying the comparison principle for weak solutions (cf.
[7]).

Since u > U , we have the following uniformly exponential rate of convergence
of u to U over the whole domain by using (5.1) and (6.1).

Theorem 6.2. For each ε > 0, there exist positive constants d and d ε such that

‖u(·, t)− U‖C0([0,1]) ≥ de−λ∗t for all t > 1,(6.4)

‖u(·, t)− U‖C0([0,1]) ≤ dεe
−λεt for all t > tε.(6.5)

Indeed, the constants d and dε in Theorem 6.2 can be taken as d = δφ∗(1/2)
and dε = cε‖φε‖C0([0,1]). Notice that λε < λ∗ for all ε > 0 and λε → λ∗ as ε→ 0+.
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