TAIWANESE JOURNAL OF MATHEMATICS Vol. 13, No. 4, pp. 1111-1120, August 2009 This paper is available online at http://www.tjm.nsysu.edu.tw/

RIGHT GENERALIZED (α, β) -DERIVATIONS HAVING POWER CENTRAL VALUES

Jui-Chi Chang

Abstract. Let R be a prime ring with center Z and $f \neq 0$ a right generalized (α, β) -derivation of R. If $f(x)^n \in Z$ for all $x \in L$, a nonzero ideal of R, and for some fixed positive integer n, then R is either commutative or is an order in a 4-dimensional simple algebra.

1. INTRODUCTION

In [12], Herstein proved that if R is a prime ring with center Z and $d \neq 0$ a derivation of R such that $d(x)^n \in Z$ for all $x \in R$, where n is a fixed positive integer, then either R is commutative or is an order in a 4-dimensional simple algebra. In [3], the author extended this result to an (α, β) -derivation. It is quite natural to generalize this result to a more general case, say, right generalized (α, β) -derivations. The main result we obtain in this paper also generalizes two recent results on generalized derivations obtained by Lee [15] and Wang [18].

The theorem we shall prove is

Theorem A. Let R be a prime ring with center Z and $f \neq 0$ a right generalized (α, β) -derivation of R such that $f(x)^n \in Z$ for all $x \in L$, a nonzero ideal of R, and for some fixed positive integer n, then R is either commutative or is an order in a 4-dimensional simple algebra.

Theorem A is an immediate consequence of the following

Theorem B. Let R be a prime ring with center Z and $f \neq 0$ a right generalized β -derivation of R such that $f(x)^n \in Z$ for all $x \in L$, a nonzero ideal of R, and for some fixed positive integer n, then R is either commutative or is an order in a 4-dimensional simple algebra.

Communicated by Wen-Fong Ke.

Received August 31, 2006, accepted October 5, 2007.

²⁰⁰⁰ Mathematics Subject Classification: 16W20, 16W25, 16W55.

Key words and phrases: (α, β) -derivation, Generalized (α, β) -derivation, Automorphism, Prime ring, Generalized polynomial identity (GPI).

In what follows, let R be a prime ring with center Z, α and β automorphisms of R and δ an (α, β) -derivation of R, that is, an additive mapping $\delta : R \to R$ satisfies

$$\delta(xy) = \delta(x)\alpha(y) + \beta(x)\delta(y)$$

for all $x, y \in R$. If $\alpha = 1$ ($\beta = 1$ resp.), an identity map of R, then we will say that δ is a β -derivation (α -derivation resp.). A β -derivation is also called a skew derivation. We say that δ is an inner (α, β)-derivation if $\delta(x) = a\alpha(x) - \beta(x)a$ for some $a \in R$. An additive mapping $f : R \to R$ is said to be a right generalized (α, β)-derivation if it satisfies

$$f(xy) = f(x)\alpha(y) + \beta(x)\delta(y)$$

for all $x, y \in R$, where δ is an (α, β) -derivation of R. If $\beta = 1$, then we say that f is a generalized β -derivation.

We let $_{F}R$ denote the right Martindale quotient ring, Q the two sided Martindale quotient ring and C the center of $_{F}R$. Note that all automorphisms and all (α, β) derivations of R can be extended to Q and $_{F}R$. An (α, β) -derivation δ will be called X-inner if $\delta(x) = a\alpha(x) - \beta(x)a$ for some $a \in Q$. Also an automorphism g of R will be called X-inner if $g(x) = b^{-1}xb$ for some $b \in Q$. We also note that a right generalized (α, β) -derivation f of R can be extended to $_{F}R$ and f(x) = $s\alpha(x) + \delta(x)$ with $s = f(1) \in _{F}R$, where δ is an (α, β) -derivation associated to f(See [4]).

We begin with one of the crucial results

Lemma 1. Let R be a prime ring and let $a, b, c \in R$ with a invertible in R. If $(a(bx - xc))^n = 0$ for all $x \in L$, where $L \neq 0$ is an ideal of R and n is a fixed positive integer, then $b = c \in Z$.

Proof. By [5, Theorem 2].

$$(a(bx - xc))^n = 0$$

for all $x \in Q$, since Q is also the two sided Martindale quotient ring of L. If $b \in Z$, then $(ax(b-c))^n = 0$ for all $x \in Q$. Substitute $a^{-1}x$ for all x, we have $(x(b-c))^n = 0$ for all $x \in Q$ and hence b-c = 0 by [11, Lemma 1.1]. Therefore $b = c \in Z$. Similarly, if $c \in Z$, we also have $b = c \in Z$.

Now we may assume that $b \notin Z$ and $c \notin Z$. In this case, Q is a GPI ring. By a theorem of Martindale [17], Q is isomorphic to a dense subring of $\text{End}(_DV)$, where V is a left vector space over D, the associated division ring of Q. If $\dim_D V = 1$, then $Q \simeq D$ and a(bx - xc) = 0 for all $x \in Q$. Consequently, we have bx = xc for all $x \in Q$. This implies that $b = c \in Z$, a contradiction. So we may assume that $\dim_D V \ge 2$, Suppose there exists $v \in V$ such that v and vb are D-independent.

By the density of Q, there exists $x \in Q$ such that vx = 0 and $vbx = va^{-1}$. Then $va^{-1}(a(bx - xc))^n = va^{-1} \neq 0$, a contradiction. Thus v and vb are D-dependent for all $v \in V$ and as usual, there exists $\lambda \in D$ such that $vb = \lambda v$ for all $v \in V$. So if $x \in Q$, then $v(a(bx - xc)) = (va)bx - vaxc = \lambda vax - vaxc = vaxb - vaxc = v(a(x(b - c))))$ and $v(a(bx - xc))^n = v(a(x(b - c)))^n = 0$ for all $v \in V$. Since Q acts faithfully on V, we have $(a(x(b - c)))^n = 0$ for all $x \in Q$. As in the beginning of the proof, again we have $b = c \in Z$, a contradiction. This last contradiction proves the lemma.

For the next crucial result, we need the following

Lemma 2. Let R be a prime ring with center Z. Let $b \in R$. If $(bx)^n \in Z$ $((xb)^n \in Z \text{ resp.})$ for all $x \in L$, where L is a nonzero ideal of R and $n \ge 1$ is a fixed integer, then either b = 0 or R is commutative.

Proof. Assume that $(bx)^n \in Z$ for all $x \in L$. If Z = 0, then $(bx)^n = 0$ for all $x \in L$. By [11, Lemma 1.1], b = 0. Now assume that $Z \neq 0$ and $b \neq 0$. Then $(bx)^n y - y(bx)^n = 0$ for all $x, y \in L$ and hence for all $x, y \in Q$. Therefore $(bx)^n \in C$ for all $x \in Q$. Substitute $\lambda \neq 0 \in C$ for x, we have $b^n \lambda^n \in C$ and hence $b^n \in Z$. Substitute $b^{n-1}x$ for x into $(bx)^n \in C$, we have $b^n^2x^n \in C$. This implies either $b^{n^2} = 0$ or $x^n \in C$ for all $x \in Q$. If $b^{n^2} = 0$, then there exists $\ell > 0$ such that $b^\ell = 0$ but $b^{\ell-1} \neq 0$. Thus $b^{\ell-1}(bx)^n = 0$ and hence $(bx)^n = 0$ for all $x \in Q$. Again, by [11, Lemma 1.1], we have b = 0, a contradiction. So $x^n \in C$ for all $x \in Q$. Therefore R is commutative by a result of Herstein and Kaplansky [10]. ■

Lemma 3. Let R be a prime ring with center Z. Let $a, b, c \in R$ with a invertible in R. If $(a(bx - xc))^n \in Z$ for all $x \in L$, where L is a nonzero ideal of R and n is a fixed positive integer, then $b = c \in Z$, or R is commutative or R is an order in a 4-dimensional simple algebra.

Proof. If Z = 0, then $(a(bx - xc))^n = 0$ for all $x \in L$. But then $b = c \in Z$ by Lemma 1. So we may assume that $Z \neq 0$. If $b \in Z$, then $(a(bx - xc))^n = (ax(b-c))^n \in Z$ for all $x \in L$. Substitute $a^{-1}x$ for x, we have $(x(b-c))^n \in Z$ for all $x \in L$. Thus b - c = 0 or R is commutative by Lemma 2. If b - c = 0, then $b = c \in Z$. Similarly, if $c \in Z$, then $b = c \in Z$ or R is commutative. So from now on we assume that $b \notin Z$ and $c \notin Z$. In this case, L satisfies the nontrivial GPI $(a(bx - xc))^n y - y(a(bx - xc))^n = 0$ and Q also satisfies the same GPI by [5, Theorem 2]. Again by a theorem of Martindale [17], Q is isomorphic to a dense subring of End $(_DV)$, where D is a finite dimensional division ring over C and Vis a left D-vector space.

If dim $_DV = \infty$, then $(a(bx - xc))^n = 0$ holds on H, the socle of Q and hence holds on Q. But again by Lemma 1, b = c = Z, a contradiction. So we must

have dim $_DV < \infty$ and hence $Q \simeq \text{End}(_DV)$. That is, Q is isomorphic to D_m , the $m \times m$ matrix ring over D for some m.

If C is finite, then D, being finite dimensional over C, is a finite division ring and thus is a field by Wedderburn's theorem [9]. In this case, $Q = C_m$. On the other hand, if C is infinite, let F be the algebraic closure of C, then by the van der Monde determinant argument, we see that $Q \otimes_C F$ satisfies the same GPI $(a(bx-xc))^n y - y(a(bx-xc))^n = 0$. But $Q \otimes_C F \simeq D_m \otimes_C F = (D \otimes_C F)_m = F_k$ for some k > 1 since R is not commutative.

Suppose that $k \ge 3$. If $x \in Q$ is of rank 1, then bx and xc are of rank at most 1. Hence a(bx - xc) and $(a(bx - xc))^n$ are of rank at most 2. Consequently, $(a(bx - xc))^n = 0$ for all $x \in Q$ with rank 1. Since $b \notin F$, there is a $v \in V$ such that v and vb are linearly independent over F. Then there exists $x \in Q$ of rank 1 such that vx = 0 and $vbx = va^{-1}$ and hence $va^{-1}(a(bx - xc))^n = va^{-1} \neq 0$, a contradiction. Therefore k = 2 and $Q \simeq F_2$. Hence R is an order in a 4-dimensional simple algebra.

Lemma 4. Let R be a prime ring and let $b, c \in R$. Let β be an automorphism of R. Suppose that $(bx - \beta(x)c)^n = 0$ for all $x \in L$, where L is a nonzero ideal of R and n is a fixed positive integer, then $bx - \beta(x)c = 0$ for all $x \in R$.

Proof. If b = 0 or c = 0, then we are done by [11, Lemma 1.1]. So we may assume that $b \neq 0$ and $c \neq 0$. Suppose that β is X-inner. Then $\beta(x) = axa^{-1}$ for all $x \in R$, where a is invertible in Q. Hence

$$(bx - \beta(x)c)^n = (bx - axa^{-1}c)^n = (a(a^{-1}bx - xa^{-1}c))^n = 0$$

for all $x \in L$ and also for all $x \in Q$ by [5, Theorem 2]. By Lemma 1 we have $a^{-1}b = a^{-1}c \in C$. In particular, b = c and then $bx - \beta(x)c = bx - \beta(x)b$ is a β -derivation. By Lemma 2 in [2], $bx - \beta(x)c = 0$ for all $x \in R$ and we are done.

Now suppose that β is X-outer. Since L satisfies the identity $(bx - \beta(x)c)^n = 0$, by [5, Theorem 2], Q also satisfies the same identity. Moreover, by the Main Theorem of [8], Q satisfies a nontrivial GPI. By Martindale's theorem [17], Q is isomorphic to a dense subring of $\text{End}(_DV)$, where D is the associated division ring of Q, and V is a vector space over D and Q contains nonzero linear transformations of finite rank. By [9, P.79], there exists a semi-linear automorphism $T \in \text{End}(V)$ such that $\beta(x) = TxT^{-1}$ for all $x \in Q$. Now $(bx - \beta(x)c)^n = (bx - TxT^{-1}c)^n =$ $(T(T^{-1}bx - xT^{-1}c))^n = 0$ for all $x \in Q$.

If dim $_DV = 1$, then $Q \simeq D$ and hence $bx - \beta(x)c = 0$ for all $x \in R$. So we may assume that dim $_DV \ge 2$. If v and $T^{-1}bv$ are D-dependent for all $v \in V$, then as usual, there is $\lambda \in D$ such that $T^{-1}bv = \lambda v$ for all $v \in V$ and this implies

Right Generalized (α, β) -Derivations Having Power Central Values

$$vT^{-1}(bx - \beta(x)c) = vT^{-1}(bx - TxT^{-1}c)$$

= $vT^{-1}bx - vxT^{-1}c$
= $\lambda vx - vxT^{-1}c$
= $vxT^{-1}b - vxT^{-1}c$
= $vT^{-1}(TxT^{-1}b - TxT^{-1}c)$
= $vT^{-1}(\beta(x)(b - c))$

for all $v \in V$ and all $x \in Q$. Since T is a semi-linear automorphism of V and Q acts faithfully on V, we have $bx - \beta(x)c = \beta(x)(b-c)$ for all $x \in Q$. Hence $(\beta(x)(b-c))^n = 0$ for all $x \in Q$. By [11, Lemma 1.1], b = c and hence $bx - \beta(x)c = 0$ for all $x \in Q$ as asserted.

Now we may assume that there exists $v_0 \in V$ such that v_0 and $v_0T^{-1}b$ are *D*-independent. By the density of Q, there is a $x \in Q$ such that $v_0T^{-1}bx = v_0T^{-1}$ and $v_0x = 0$. This implies

$$v_0 T^{-1} (T(T^{-1}bx - xT^{-1}c)) = v_0 T^{-1}bx - v_0 xT^{-1}c = v_0 T^{-1}$$

and

$$v_0 T^{-1} (T (T^{-1} bx - x T^{-1} c))^n = v_0 T^{-1} \neq 0$$

a contradiction. The proof is complete.

Lemma 4 was proved in [16, Lemma 2.6] in a different way. As a corollary we have the following

Theorem 1. Let R be a prime ring and f a right generalized β -derivation of R. If $f(x)^n = 0$ for all $x \in L$, where L is a nonzero ideal of R and n is a fixed positive integer, then f = 0.

Proof. We can write $f(x) = sx + \delta(x)$ where $s \in {}_{F}R$ and where δ is the associated β -derivation of f. By [8, Theorem 2], we have

(1)
$$(sx + \delta(x))^n = 0$$

for all $x \in {}_{F}R$. If δ is X-outer, then by [8, Theorem 1], we have $(sx + y)^n = 0$ for all $x, y \in R$. In particular, $y^n = 0$ for all $y \in R$. By [11, Lemma 1.1], this leads to a contradiction. Suppose now that δ is X-inner. Then $\delta(x) = bx - \beta(x)b$ for all $x \in R$, where $b \in Q$. We can rewrite (1) as

$$((s+b)x - \beta(x)b)^n = 0$$

for all $x \in R$ and hence for all $x \in {}_{F}R$ [8, Theorem 2]. By Lemma 4, $(s + b)x - \beta(x)b = 0$ for all $x \in {}_{F}R$. Thus f = 0 follows. This proves the theorem.

As a consequence of Theorem 1, we have

1115

Corollary 1. Let R be a prime ring and f a right generalized (α, β) -derivation of R. If $f(x)^n = 0$ for all $x \in L$, where L is a nonzero ideal of R and n is a fixed positive integer, then f = 0.

Lemma 5. Let R be a prime ring with center Z. Let $b, c \in R$ and let $f(x) = bx - \beta(x)c$ for all $x \in R$. Assume that $f \neq 0$. If $f(x)^n \in Z$ for all $x \in L$, where $L \neq 0$ is an ideal of R and $n \ge 1$ is a fixed integer, then either R is commutative or R is an order in a 4-dimensional simple algebra.

Proof. If Z = 0, then $(bx - \beta(x)c)^n = 0$ for all $x \in L$ and hence $bx - \beta(x)c = 0$ for all $x \in R$ by Lemma 4, which is a contradiction. So we may assume that $Z \neq 0$. If β is X-inner, then there exists $a \in Q$ such that $\beta(x) = axa^{-1}$ for all $x \in R$. So by the hypothesis, we have

$$(bx - \beta(x)c)^n = (bx - axa^{-1}c)^n = (a(a^{-1}bx - xa^{-1}c))^n \in Z$$

for all $x \in L$. That is, L satisfies the identity $(a(a^{-1}bx - xa^{-1}c))^n y - y(a(a^{-1}bx - xa^{-1}c))^n = 0$. By [5, Theorem 2], Q also satisfies the same identity and hence

$$(a(a^{-1}bx - xa^{-1}c))^n \in C$$

for all $x \in Q$. By Lemma 3, we see that either $a^{-1}b = a^{-1}c \in C$ or R is commutative or R is an order in a 4-dimensional simple algebra. If $a^{-1}b = a^{-1}c \in C$, then b = c and hence $bx - \beta(x)c = bx - axa^{-1}c = bx - cx = 0$ for all $x \in R$, which is not the case. Therefore R is commutative or R is an order in a 4-dimensional simple algebra as asserted.

Now suppose that β is X-outer. By the hypothesis, L satisfies $(bx - \beta(x)c)^n y - y(bx - \beta(x)c)^n = 0$. By Theorem 1 of [6] Q also satisfies the same identity. Moreover, Q satisfies a nontrivial GPI by the Main Theorem of [6]. By a Martindale's result cited before, Q is a primitive ring having nonzero socle and its associated division ring D is finite dimensional over C. Hence Q is isomorphic to a dense subring of $\operatorname{End}(_DV)$. If $\dim_D V = \infty$, then $(bx - \beta(x)c)^n = 0$ for all $x \in H$, the socle of Q and hence for all $x \in Q$. Again by Lemma 4, we have $bx - \beta(x)c = 0$ for all $x \in R$ and we are done in this case. So we may assume that $\dim_D V < \infty$. Thus $Q = \operatorname{End}(_D V)$ and is isomorphic to D_m , the $m \times m$ matrix ring over D for some m.

We claim that $m \leq 2$. Suppose on the contrary that m > 2. By [9, P.79] there exists a semi-linear automorphism $T \in \text{End}(V)$ such that $\beta(x) = TxT^{-1}$ for all $x \in Q$. Hence we have $(bx - \beta(x)c)^n = (bx - TxT^{-1}c)^n = (T(T^{-1}bx - xT^{-1}c))^n \in C$ for all $x \in Q$. If v and $vT^{-1}b$ are D-dependent for all $v \in V$, then as before, there

exists a $\lambda \in D$ such that $vT^{-1}b = \lambda v$ for all $v \in V$. This implies

$$vT^{-1}(bx - \beta(x)c) = vT^{-1}(T(T^{-1}bx - xT^{-1}c))$$

= $vT^{-1}bx - vxT^{-1}c$
= $\lambda vx - vxT^{-1}c$
= $vxT^{-1}b - vxT^{-1}c$
= $vT^{-1}(TxT^{-1}b - TxT^{-1}c)$
= $vT^{-1}(\beta(x)(b - c))$

for all $v \in V$ and for all $x \in Q$. Since Q acts on V faithfully and $VT^{-1} = V$, we have $bx - \beta(x)c = \beta(x)(b-c)$ for all $x \in Q$. Hence $(\beta(x)(b-c))^n = (bx - \beta(x)c)^n \in C$ for all $x \in Q$. In particular $(x(b-c))^n \in C$ for all $x \in Q$. By Lemma 2, b = c or Q is commutative. But Q is not commutative, since $Q \simeq D_m$, $m \ge 3$. On the other hand, if b = c, then $bx - \beta(x)c = bx - \beta(x)b$ is a β derivation. Proposition 2 in [3] implies that Q is commutative or Q is an order in a 4-dimensional simple algebra which is absurd since $Q \simeq D_m$, $m \ge 3$.

Now we may assume that there exists $v_0 \in V$ such that v_0 and $v_0T^{-1}b$ are *D*independent. By the density of Q, there exists $x \in Q$ of rank 1 such that $v_0x = 0$ and $v_0T^{-1}bx = v_0T^{-1}$. Hence $v_0T^{-1}(T(T^{-1}bx - xT^{-1}c)) = v_0T^{-1}bx - v_0xT^{-1}c =$ v_0T^{-1} and $v_0T^{-1}(bx - \beta(x)c)^n = v_0T^{-1}(T(T^{-1}bx - xT^{-1}c))^n = v_0T^{-1}$. On the other hand, since x is of rank 1, $(bx - \beta(x)c)^n$ is of rank at most 2. Being in C, we have $(bx - \beta(x)c)^n = 0$ since dim $_DV \ge 3$. Therefore $v_0T^{-1} = 0$ which is a contradiction. This proves our claim and hence dim $_DV \le 2$.

If C is finite, then dim $_{C}D < \infty$ implies D is also finite. Thus D is a filed by Wedderburn's Theorem [9, P.183]. In this case, R is commutative or R is an order in a 4-dimensional simple algebra. So we may assume that C is infinite for the rest of the proof. If β is not Frobenius, then by the Main Theorem of [7], we have $(bx - yc)^n \in C$ for all $x, y \in Q$. This implies $(bx)^n \in Z$ for all $x \in R$. Again, by Lemma 2, b = 0 or R is commutative. If R is not commutative, then b = 0 and this implies $(-cy)^n \in Z$ for all $y \in R$. Again this leads to c = 0 since R is not commutative. But if b = 0 and c = 0 then f = 0, a contradiction. Hence R is commutative in this case.

On the other hand, if β is Frobenius, then $\operatorname{char} Q = p > 0$. Otherwise if $\operatorname{char} Q = 0$, then $\beta(\lambda) = \lambda$ for all $\lambda \in C$ and hence β must be X-inner by [1, Theorem 4.7.4], a contradiction. Also $\beta(\lambda) = \lambda^{p^k}$ for all $\lambda \in C$ and for some integer $k \neq 0$. Substitute λx for x into $(bx - \beta(x)c)^n$ with $\lambda \neq 0$, we have $(b(\lambda x) - \beta(\lambda x)c)^n = (\lambda bx - \lambda^{p^k}\beta(x)c)^n \in C$ for all $x \in Q$ and hence $(bx - \lambda^{p^k-1}\beta(x)c)^n \in C$ for all $x \in Q$. Expanding this, we have

(2)
$$\sum_{i=0}^{n} \left(\sum_{(i,n-i)} y_1 y_2 \cdots y_n \right) \lambda^{(p^k-1)i} \in C,$$

where the inside summation are taken over all permutations of n - i (bx)'s and i ($\beta(x)c$)'s, that is, each term has exactly n - i (bx) and i ($\beta(x)c$) but in some different order. Let $u = \lambda^{p^k-1}$ and

$$t_i = \sum_{(i,n-i)} y_1 y_2 \cdots y_n$$

for i = 0, 1, 2, ..., n. Then we can rewrite (2) into the following

$$(3) t_0 + ut_1 + \dots + u^n t_n \in C$$

Replacing λ successively by $1, \lambda, \dots, \lambda^n$, (3) gives the system of equations

(4)
$$t_0 + t_1 + \dots + t_n = \tau_0$$
$$t_0 + ut_1 + \dots + u^n t_n = \tau_1$$
$$\vdots$$
$$t_0 + u^n t_1 + \dots + u^{n^2} t_n = \tau_n$$

where $\tau_0, \tau_1, \ldots, \tau_n \in C$. Since C is infinite, there exists infinitely many $\lambda \in C$ such that $\lambda^{(p^k-1)\ell} \neq 1$ for $\ell = 1, 2, \ldots, n$ and so the van der Monde determinant

$$\begin{vmatrix} 1 & 1 & \cdots & 1 \\ 1 & u & \cdots & u^n \\ \vdots & \vdots & & \vdots \\ 1 & u^n & \cdots & u^{n^2} \end{vmatrix} = \prod_{\substack{i,j=0\\i< j}}^n (u^i - u^j) = \prod_{\substack{i,j=0\\i< j}}^n \left(\lambda^{i(p^k-1)} - \lambda^{j(p^k-1)}\right)$$

is not zero. Therefore we can solve from (4) and obtain $t_0 \in C$. But $t_0 = (bx)^n$ and so we have $(bx)^n \in C$ for all $x \in Q$. As before, we can conclude that R is commutative. The proof is complete.

Now we are ready to give

Proof of Theorem B. If Z = 0, then $f(x)^n = 0$ for all $x \in L$, a nonzero ideal of R. By Theorem 1, f = 0 which is not the case. Thus $Z \neq 0$. We can write $f(x) = sx + \delta(x)$, where $s \in {}_{F}R$ and where $\delta : R \to R$ is the associated β derivation of f. By the hypothesis, we have $(sx + \delta(x))^n y - y(sx + \delta(x))^n = 0$ for all $x, y \in L$. By [8, Theorem 2], we see that $(sx + \delta(x))^n y - y(sx + \delta(x))^n = 0$ also holds for all $x, y \in {}_{F}R$. If δ is X-outer, then by [8, Theorem 1] we have $(sx + z)^n y - y(sx + z)^n = 0$ for all $x, y, z \in {}_{F}R$. In particular, we have

1118

 $(sx)^n \in C$ for all $x \in {}_FR$. By Lemma 2, s = 0 or ${}_FR$ is commutative. If R is not commutative, then s = 0 and hence $f(x) = \delta(x)$ for all $x \in R$. We are done in this case by [3, Theorem B]. Hence we may assume that δ is X-inner and write $\delta(x) = bx - \beta(x)b$, where $b \in Q$. In this case, $f(x)^n = ((s+b)x - \beta(x)b)^n \in C$ for all $x \in {}_FR$. Hence we are done by Lemma 5. The proof is complete.

As a corollary, we have Theorem A immediately.

Example. Let F be a field of characteristic 2 and let $R = F_2$, the 2×2 matrix ring over F. Let

$$u = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad a = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad b = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}.$$

For $x \in R$, define $f(x) = ax - u^{-1}xub$. It is easy to see that $f(x)^2 \in Z$.

REFERENCES

- 1. K. I. Beidar, W. S. Martindale 3rd and A. V. Mikhalev, *Rings with Generalized Identities*, Marcel Dekker, Inc. New York-Basel-Hongkang, 1996.
- 2. J. C. Chang and J. S. Lin, (α, β) -derivation with nilpotent values, *Chinese J. Math.*, **22(4)** (1994), 349-355.
- J. C. Chang, (α, β)-derivation of prime rings having power central values, Bull. Inst. Math., Academic Sinica, 23(4) (1995), 295-303.
- 4. J. C. Chang, On the identity h(x) = af(x) + g(x)b, Taiwanese J. of Math., 7(1) (2003), 103-113.
- C. L. Chuang, GPIs having coefficients in Utumi quotient rings, *Proc. Amer. Math. Soc.*, 103 (1988), 723-728.
- C. L. Chuang, Differential identities with automorphisms and anti-automorphisms I, J. Algebra, 149 (1992), 371-404.
- C. L. Chuang, Differential identities with automorphisms and anti-automorphisms II, J. Algebra, 160 (1993), 292-335.
- 8. C. L. Chuang and T. K. Lee, Identities with single skew derivation, J. of Algebra, 288 (2005), 59-77.
- 9. N. Jacobson, *Structure of rings*, Vol. 37, Amer. Math. Soc., Collog. Pub., Rhode Island, 1964.
- 10. I. N. Herstein, *Non-commutative rings, Carus Monograph*, 15, Math. Assoc. Amer., 1968.
- 11. I. N. Herstein, Topics in ring theory, Univ. of Chicago Press, Chicago, 1969.

- 12. I. N. Herstein, Derivations of prime rings having power central values, *Contemporary Math.*, **13** (1982), 163-171.
- 13. V. K. Kharchenko, Generalized identities with automorphisms, *Algebra i Logika*, **14(2)** (1975), 215-237; *Engl. Transl: Algebra and Logic*, **14(2)** (1975), 132-148.
- V. K. Kharchenko and A. Z. Popov, Skew derivation of prime rings, *Comm. Algebra*, 20 (1992), 3321-3345.
- 15. T. K. Lee, Generalized derivations of left faithful rings, *Comm. Algebra*, **27** (1999), 4057-4073.
- 16. T. K. Lee and K. S. Liu, *Generalized skew derivations with algebraic values of bounded degree*, preprint.
- 17. W. S. Martindale 3rd, Prime rings satisfying a generalized polynomial identity, J. Algebra, 12 (1969), 576-584.
- 18. Y. Wang, Generalized derivations with power-central values on multilinear polynomials, *Algebra Colloq.*, **13** (2006), 405-410.

Jui-Chi Chang Department of Computer Science and Information Engineering, Chang Jung Christian University, Tainan, Taiwan E-mail: jc2004@mail.cjcu.edu.tw