RIGHT GENERALIZED (α, β)-DERIVATIONS HAVING POWER CENTRAL VALUES

Jui-Chi Chang

Abstract

Let R be a prime ring with center Z and $f \neq 0$ a right generalized (α, β)-derivation of R. If $f(x)^{n} \in Z$ for all $x \in L$, a nonzero ideal of R, and for some fixed positive integer n, then R is either commutative or is an order in a 4 -dimensional simple algebra.

1. Introduction

In [12], Herstein proved that if R is a prime ring with center Z and $d \neq 0$ a derivation of R such that $d(x)^{n} \in Z$ for all $x \in R$, where n is a fixed positive integer, then either R is commutative or is an order in a 4 -dimensional simple algebra. In [3], the author extended this result to an (α, β)-derivation. It is quite natural to generalize this result to a more general case, say, right generalized (α, β) derivations. The main result we obtain in this paper also generalizes two recent results on generalized derivations obtained by Lee [15] and Wang [18].

The theorem we shall prove is
Theorem A. Let R be a prime ring with center Z and $f \neq 0$ a right generalized (α, β)-derivation of R such that $f(x)^{n} \in Z$ for all $x \in L$, a nonzero ideal of R, and for some fixed positive integer n, then R is either commutative or is an order in a 4-dimensional simple algebra.

Theorem A is an immediate consequence of the following
Theorem B. Let R be a prime ring with center Z and $f \neq 0$ a right generalized β-derivation of R such that $f(x)^{n} \in Z$ for all $x \in L$, a nonzero ideal of R, and for some fixed positive integer n, then R is either commutative or is an order in a 4-dimensional simple algebra.

[^0]In what follows, let R be a prime ring with center Z, α and β automorphisms of R and δ an (α, β)-derivation of R, that is, an additive mapping $\delta: R \rightarrow R$ satisfies

$$
\delta(x y)=\delta(x) \alpha(y)+\beta(x) \delta(y)
$$

for all $x, y \in R$. If $\alpha=1$ ($\beta=1$ resp.), an identity map of R, then we will say that δ is a β-derivation (α-derivation resp.). A β-derivation is also called a skew derivation. We say that δ is an inner (α, β)-derivation if $\delta(x)=a \alpha(x)-\beta(x) a$ for some $a \in R$. An additive mapping $f: R \rightarrow R$ is said to be a right generalized (α, β)-derivation if it satisfies

$$
f(x y)=f(x) \alpha(y)+\beta(x) \delta(y)
$$

for all $x, y \in R$, where δ is an (α, β)-derivation of R. If $\beta=1$, then we say that f is a generalized β-derivation.

We let ${ }_{F} R$ denote the right Martindale quotient ring, Q the two sided Martindale quotient ring and C the center of ${ }_{F} R$. Note that all automorphisms and all (α, β) derivations of R can be extended to Q and ${ }_{F} R$. An (α, β)-derivation δ will be called X-inner if $\delta(x)=a \alpha(x)-\beta(x) a$ for some $a \in Q$. Also an automorphism g of R will be called X-inner if $g(x)=b^{-1} x b$ for some $b \in Q$. We also note that a right generalized (α, β)-derivation f of R can be extended to ${ }_{F} R$ and $f(x)=$ $s \alpha(x)+\delta(x)$ with $s=f(1) \in{ }_{F} R$, where δ is an (α, β)-derivation associated to f (See [4]).

We begin with one of the crucial results
Lemma 1. Let R be a prime ring and let $a, b, c \in R$ with a invertible in R. If $(a(b x-x c))^{n}=0$ for all $x \in L$, where $L \neq 0$ is an ideal of R and n is a fixed positive integer, then $b=c \in Z$.

Proof. By [5, Theorem 2].

$$
(a(b x-x c))^{n}=0
$$

for all $x \in Q$, since Q is also the two sided Martindale quotient ring of L. If $b \in Z$, then $(a x(b-c))^{n}=0$ for all $x \in Q$. Substitute $a^{-1} x$ for all x, we have $(x(b-c))^{n}=0$ for all $x \in Q$ and hence $b-c=0$ by [11, Lemma 1.1]. Therefore $b=c \in Z$. Similarly, if $c \in Z$, we also have $b=c \in Z$.

Now we may assume that $b \notin Z$ and $c \notin Z$. In this case, Q is a GPI ring. By a theorem of Martindale [17], Q is isomorphic to a dense subring of $\operatorname{End}\left({ }_{D} V\right)$, where V is a left vector space over D, the associated division ring of Q. If $\operatorname{dim}_{D} V=1$, then $Q \simeq D$ and $a(b x-x c)=0$ for all $x \in Q$. Consequently, we have $b x=x c$ for all $x \in Q$. This implies that $b=c \in Z$, a contradiction. So we may assume that $\operatorname{dim}_{D} V \geq 2$, Suppose there exists $v \in V$ such that v and $v b$ are D-independent.

By the density of Q, there exists $x \in Q$ such that $v x=0$ and $v b x=v a^{-1}$. Then $v a^{-1}(a(b x-x c))^{n}=v a^{-1} \neq 0$, a contradiction. Thus v and $v b$ are D-dependent for all $v \in V$ and as usual, there exists $\lambda \in D$ such that $v b=\lambda v$ for all $v \in V$. So if $x \in Q$, then $v(a(b x-x c))=(v a) b x-v a x c=\lambda v a x-v a x c=v a x b-v a x c=$ $v(a(x(b-c)))$ and $v(a(b x-x c))^{n}=v(a(x(b-c)))^{n}=0$ for all $v \in V$. Since Q acts faithfully on V, we have $(a(x(b-c)))^{n}=0$ for all $x \in Q$. As in the beginning of the proof, again we have $b=c \in Z$, a contradiction. This last contradiction proves the lemma.

For the next crucial result, we need the following
Lemma 2. Let R be a prime ring with center Z. Let $b \in R$. If $(b x)^{n} \in Z$ $\left((x b)^{n} \in Z\right.$ resp.) for all $x \in L$, where L is a nonzero ideal of R and $n \geq 1$ is a fixed integer, then either $b=0$ or R is commutative.

Proof. Assume that $(b x)^{n} \in Z$ for all $x \in L$. If $Z=0$, then $(b x)^{n}=0$ for all $x \in L$. By [11, Lemma 1.1], $b=0$. Now assume that $Z \neq 0$ and $b \neq 0$. Then $(b x)^{n} y-y(b x)^{n}=0$ for all $x, y \in L$ and hence for all $x, y \in Q$. Therefore $(b x)^{n} \in C$ for all $x \in Q$. Substitute $\lambda \neq 0 \in C$ for x, we have $b^{n} \lambda^{n} \in C$ and hence $b^{n} \in Z$. Substitute $b^{n-1} x$ for x into $(b x)^{n} \in C$, we have $b^{n^{2}} x^{n} \in C$. This implies either $b^{n^{2}}=0$ or $x^{n} \in C$ for all $x \in Q$. If $b^{n^{2}}=0$, then there exists $\ell>0$ such that $b^{\ell}=0$ but $b^{\ell-1} \neq 0$. Thus $b^{\ell-1}(b x)^{n}=0$ and hence $(b x)^{n}=0$ for all x $\in Q$. Again, by [11, Lemma 1.1], we have $b=0$, a contradiction. So $x^{n} \in C$ for all $x \in Q$. Therefore R is commutative by a result of Herstein and Kaplansky [10].

Lemma 3. Let R be a prime ring with center Z. Let $a, b, c \in R$ with a invertible in R. If $(a(b x-x c))^{n} \in Z$ for all $x \in L$, where L is a nonzero ideal of R and n is a fixed positive integer, then $b=c \in Z$, or R is commutative or R is an order in a 4-dimensional simple algebra.

Proof. If $Z=0$, then $(a(b x-x c))^{n}=0$ for all $x \in L$. But then $b=c \in Z$ by Lemma 1. So we may assume that $Z \neq 0$. If $b \in Z$, then $(a(b x-x c))^{n}=$ $(a x(b-c))^{n} \in Z$ for all $x \in L$. Substitute $a^{-1} x$ for x, we have $(x(b-c))^{n} \in Z$ for all $x \in L$. Thus $b-c=0$ or R is commutative by Lemma 2. If $b-c=0$, then $b=c \in Z$. Similarly, if $c \in Z$, then $b=c \in Z$ or R is commutative. So from now on we assume that $b \notin Z$ and $c \notin Z$. In this case, L satisfies the nontrivial GPI $(a(b x-x c))^{n} y-y(a(b x-x c))^{n}=0$ and Q also satisfies the same GPI by [5, Theorem 2]. Again by a theorem of Martindale [17], Q is isomorphic to a dense subring of $\operatorname{End}\left({ }_{D} V\right)$, where D is a finite dimensional division ring over C and V is a left D-vector space.

If $\operatorname{dim}_{D} V=\infty$, then $(a(b x-x c))^{n}=0$ holds on H, the socle of Q and hence holds on Q. But again by Lemma $1, b=c=Z$, a contradiction. So we must
have $\operatorname{dim}_{D} V<\infty$ and hence $Q \simeq \operatorname{End}\left({ }_{D} V\right)$. That is, Q is isomorphic to D_{m}, the $m \times m$ matrix ring over D for some m.

If C is finite, then D, being finite dimensional over C, is a finite division ring and thus is a field by Wedderburn's theorem [9]. In this case, $Q=C_{m}$. On the other hand, if C is infinite, let F be the algebraic closure of C, then by the van der Monde determinant argument, we see that $Q \otimes_{C} F$ satisfies the same GPI $(a(b x-x c))^{n} y-y(a(b x-x c))^{n}=0$. But $Q \otimes_{C} F \simeq D_{m} \otimes_{C} F=\left(D \otimes_{C} F\right)_{m}=F_{k}$ for some $k>1$ since R is not commutative.

Suppose that $k \geq 3$. If $x \in Q$ is of rank 1 , then $b x$ and $x c$ are of rank at most 1. Hence $a(b x-x c)$ and $(a(b x-x c))^{n}$ are of rank at most 2. Consequently, $(a(b x-x c))^{n}=0$ for all $x \in Q$ with rank 1 . Since $b \notin F$, there is a $v \in V$ such that v and $v b$ are linearly independent over F. Then there exists $x \in Q$ of rank 1 such that $v x=0$ and $v b x=v a^{-1}$ and hence $v a^{-1}(a(b x-x c))^{n}=v a^{-1} \neq 0$, a contradiction. Therefore $k=2$ and $Q \simeq F_{2}$. Hence R is an order in a 4-dimensional simple algebra.

Lemma 4. Let R be a prime ring and let $b, c \in R$. Let β be an automorphism of R. Suppose that $(b x-\beta(x) c)^{n}=0$ for all $x \in L$, where L is a nonzero ideal of R and n is a fixed positive integer, then $b x-\beta(x) c=0$ for all $x \in R$.

Proof. If $b=0$ or $c=0$, then we are done by [11, Lemma 1.1]. So we may assume that $b \neq 0$ and $c \neq 0$. Suppose that β is X-inner. Then $\beta(x)=a x a^{-1}$ for all $x \in R$, where a is invertible in Q. Hence

$$
(b x-\beta(x) c)^{n}=\left(b x-a x a^{-1} c\right)^{n}=\left(a\left(a^{-1} b x-x a^{-1} c\right)\right)^{n}=0
$$

for all $x \in L$ and also for all $x \in Q$ by [5, Theorem 2]. By Lemma 1 we have $a^{-1} b=a^{-1} c \in C$. In particular, $b=c$ and then $b x-\beta(x) c=b x-\beta(x) b$ is a β-derivation. By Lemma 2 in [2], $b x-\beta(x) c=0$ for all $x \in R$ and we are done.

Now suppose that β is X-outer. Since L satisfies the identity $(b x-\beta(x) c)^{n}=0$, by [5, Theorem 2], Q also satisfies the same identity. Moreover, by the Main Theorem of [8], Q satisfies a nontrivial GPI. By Martindale's theorem [17], Q is isomorphic to a dense subring of $\operatorname{End}\left({ }_{D} V\right)$, where D is the associated division ring of Q, and V is a vector space over D and Q contains nonzero linear transformations of finite rank. By [9, P.79], there exists a semi-linear automorphism $T \in \operatorname{End}(V)$ such that $\beta(x)=T x T^{-1}$ for all $x \in Q$. Now $(b x-\beta(x) c)^{n}=\left(b x-T x T^{-1} c\right)^{n}=$ $\left(T\left(T^{-1} b x-x T^{-1} c\right)\right)^{n}=0$ for all $x \in Q$.

If $\operatorname{dim}_{D} V=1$, then $Q \simeq D$ and hence $b x-\beta(x) c=0$ for all $x \in R$. So we may assume that $\operatorname{dim}_{D} V \geq 2$. If v and $T^{-1} b v$ are D-dependent for all $v \in V$, then as usual, there is $\lambda \in D$ such that $T^{-1} b v=\lambda v$ for all $v \in V$ and this implies

$$
\begin{aligned}
v T^{-1}(b x-\beta(x) c) & =v T^{-1}\left(b x-T x T^{-1} c\right) \\
& =v T^{-1} b x-v x T^{-1} c \\
& =\lambda v x-v x T^{-1} c \\
& =v x T^{-1} b-v x T^{-1} c \\
& =v T^{-1}\left(T x T^{-1} b-T x T^{-1} c\right) \\
& =v T^{-1}(\beta(x)(b-c))
\end{aligned}
$$

for all $v \in V$ and all $x \in Q$. Since T is a semi-linear automorphism of V and Q acts faithfully on V, we have $b x-\beta(x) c=\beta(x)(b-c)$ for all $x \in Q$. Hence $(\beta(x)(b-c))^{n}=0$ for all $x \in Q$. By [11, Lemma 1.1], $b=c$ and hence $b x-\beta(x) c=0$ for all $x \in Q$ as asserted.

Now we may assume that there exists $v_{0} \in V$ such that v_{0} and $v_{0} T^{-1} b$ are D-independent. By the density of Q, there is a $x \in Q$ such that $v_{0} T^{-1} b x=v_{0} T^{-1}$ and $v_{0} x=0$. This implies

$$
v_{0} T^{-1}\left(T\left(T^{-1} b x-x T^{-1} c\right)\right)=v_{0} T^{-1} b x-v_{0} x T^{-1} c=v_{0} T^{-1}
$$

and

$$
v_{0} T^{-1}\left(T\left(T^{-1} b x-x T^{-1} c\right)\right)^{n}=v_{0} T^{-1} \neq 0
$$

a contradiction. The proof is complete.
Lemma 4 was proved in [16, Lemma 2.6] in a different way. As a corollary we have the following

Theorem 1. Let R be a prime ring and f a right generalized β-derivation of R. If $f(x)^{n}=0$ for all $x \in L$, where L is a nonzero ideal of R and n is a fixed positive integer, then $f=0$.

Proof. We can write $f(x)=s x+\delta(x)$ where $s \in{ }_{F} R$ and where δ is the associated β-derivation of f. By [8, Theorem 2], we have

$$
\begin{equation*}
(s x+\delta(x))^{n}=0 \tag{1}
\end{equation*}
$$

for all $x \in{ }_{F} R$. If δ is X-outer, then by [8, Theorem 1], we have $(s x+y)^{n}=0$ for all $x, y \in R$. In particular, $y^{n}=0$ for all $y \in R$. By [11, Lemma 1.1], this leads to a contradiction. Suppose now that δ is X-inner. Then $\delta(x)=b x-\beta(x) b$ for all $x \in R$, where $b \in Q$. We can rewrite (1) as

$$
((s+b) x-\beta(x) b)^{n}=0
$$

for all $x \in R$ and hence for all $x \in{ }_{F} R$ [8, Theorem 2]. By Lemma 4, $(s+b) x-$ $\beta(x) b=0$ for all $x \in{ }_{F} R$. Thus $f=0$ follows. This proves the theorem.

As a consequence of Theorem 1, we have

Corollary 1. Let R be a prime ring and f a right generalized (α, β)-derivation of R. If $f(x)^{n}=0$ for all $x \in L$, where L is a nonzero ideal of R and n is a fixed positive integer, then $f=0$.

Lemma 5. Let R be a prime ring with center Z. Let $b, c \in R$ and let $f(x)=$ $b x-\beta(x) c$ for all $x \in R$. Assume that $f \neq 0$. If $f(x)^{n} \in Z$ for all $x \in L$, where $L \neq 0$ is an ideal of R and $n \geq 1$ is a fixed integer, then either R is commutative or R is an order in a 4-dimensional simple algebra.

Proof. If $Z=0$, then $(b x-\beta(x) c)^{n}=0$ for all $x \in L$ and hence $b x-\beta(x) c=0$ for all $x \in R$ by Lemma 4 , which is a contradiction. So we may assume that $Z \neq 0$. If β is X-inner, then there exists $a \in Q$ such that $\beta(x)=a x a^{-1}$ for all $x \in R$. So by the hypothesis, we have

$$
(b x-\beta(x) c)^{n}=\left(b x-a x a^{-1} c\right)^{n}=\left(a\left(a^{-1} b x-x a^{-1} c\right)\right)^{n} \in Z
$$

for all $x \in L$. That is, L satisfies the identity $\left(a\left(a^{-1} b x-x a^{-1} c\right)\right)^{n} y-y\left(a\left(a^{-1} b x-\right.\right.$ $\left.\left.x a^{-1} c\right)\right)^{n}=0$. By [5, Theorem 2], Q also satisfies the same identity and hence

$$
\left(a\left(a^{-1} b x-x a^{-1} c\right)\right)^{n} \in C
$$

for all $x \in Q$. By Lemma 3, we see that either $a^{-1} b=a^{-1} c \in C$ or R is commutative or R is an order in a 4 -dimensional simple algebra. If $a^{-1} b=a^{-1} c \in$ C, then $b=c$ and hence $b x-\beta(x) c=b x-a x a^{-1} c=b x-c x=0$ for all $x \in R$, which is not the case. Therefore R is commutative or R is an order in a 4-dimensional simple algebra as asserted.

Now suppose that β is X-outer. By the hypothesis, L satisfies $(b x-\beta(x) c)^{n} y-$ $y(b x-\beta(x) c)^{n}=0$. By Theorem 1 of [6] Q also satisfies the same identity. Moreover, Q satisfies a nontrivial GPI by the Main Theorem of [6]. By a Martindale's result cited before, Q is a primitive ring having nonzero socle and its associated division ring D is finite dimensional over C. Hence Q is isomorphic to a dense subring of $\operatorname{End}\left({ }_{D} V\right)$. If $\operatorname{dim}_{D} V=\infty$, then $(b x-\beta(x) c)^{n}=0$ for all $x \in H$, the socle of Q and hence for all $x \in Q$. Again by Lemma 4, we have $b x-\beta(x) c=0$ for all $x \in R$ and we are done in this case. So we may assume that $\operatorname{dim}_{D} V<\infty$. Thus $Q=\operatorname{End}\left({ }_{D} V\right)$ and is isomorphic to D_{m}, the $m \times m$ matrix ring over D for some m.

We claim that $m \leq 2$. Suppose on the contrary that $m>2$. By [9, P.79] there exists a semi-linear automorphism $T \in \operatorname{End}(V)$ such that $\beta(x)=T x T^{-1}$ for all $x \in$ Q. Hence we have $(b x-\beta(x) c)^{n}=\left(b x-T x T^{-1} c\right)^{n}=\left(T\left(T^{-1} b x-x T^{-1} c\right)\right)^{n} \in C$ for all $x \in Q$. If v and $v T^{-1} b$ are D-dependent for all $v \in V$, then as before, there
exists a $\lambda \in D$ such that $v T^{-1} b=\lambda v$ for all $v \in V$. This implies

$$
\begin{aligned}
v T^{-1}(b x-\beta(x) c) & =v T^{-1}\left(T\left(T^{-1} b x-x T^{-1} c\right)\right) \\
& =v T^{-1} b x-v x T^{-1} c \\
& =\lambda v x-v x T^{-1} c \\
& =v x T^{-1} b-v x T^{-1} c \\
& =v T^{-1}\left(T x T^{-1} b-T x T^{-1} c\right) \\
& =v T^{-1}(\beta(x)(b-c))
\end{aligned}
$$

for all $v \in V$ and for all $x \in Q$. Since Q acts on V faithfully and $V T^{-1}=V$, we have $b x-\beta(x) c=\beta(x)(b-c)$ for all $x \in Q$. Hence $(\beta(x)(b-c))^{n}=$ $(b x-\beta(x) c)^{n} \in C$ for all $x \in Q$. In particular $(x(b-c))^{n} \in C$ for all $x \in Q$. By Lemma $2, b=c$ or Q is commutative. But Q is not commutative, since $Q \simeq D_{m}$, $m \geq 3$. On the other hand, if $b=c$, then $b x-\beta(x) c=b x-\beta(x) b$ is a β derivation. Proposition 2 in [3] implies that Q is commutative or Q is an order in a 4-dimensional simple algebra which is absurd since $Q \simeq D_{m}, m \geq 3$.

Now we may assume that there exists $v_{0} \in V$ such that v_{0} and $v_{0} T^{-1} b$ are D independent. By the density of Q, there exists $x \in Q$ of rank 1 such that $v_{0} x=0$ and $v_{0} T^{-1} b x=v_{0} T^{-1}$. Hence $v_{0} T^{-1}\left(T\left(T^{-1} b x-x T^{-1} c\right)\right)=v_{0} T^{-1} b x-v_{0} x T^{-1} c=$ $v_{0} T^{-1}$ and $v_{0} T^{-1}(b x-\beta(x) c)^{n}=v_{0} T^{-1}\left(T\left(T^{-1} b x-x T^{-1} c\right)\right)^{n}=v_{0} T^{-1}$. On the other hand, since x is of rank $1,(b x-\beta(x) c)^{n}$ is of rank at most 2. Being in C, we have $(b x-\beta(x) c)^{n}=0$ since $\operatorname{dim}_{D} V \geq 3$. Therefore $v_{0} T^{-1}=0$ which is a contradiction. This proves our claim and hence $\operatorname{dim}_{D} V \leq 2$.

If C is finite, then $\operatorname{dim}_{C} D<\infty$ implies D is also finite. Thus D is a filed by Wedderburn's Theorem [9, P.183]. In this case, R is commutative or R is an order in a 4-dimensional simple algebra. So we may assume that C is infinite for the rest of the proof. If β is not Frobenius, then by the Main Theorem of [7], we have $(b x-y c)^{n} \in C$ for all $x, y \in Q$. This implies $(b x)^{n} \in Z$ for all $x \in R$. Again, by Lemma 2, $b=0$ or R is commutative. If R is not commutative, then $b=0$ and this implies $(-c y)^{n} \in Z$ for all $y \in R$. Again this leads to $c=0$ since R is not commutative. But if $b=0$ and $c=0$ then $f=0$, a contradiction. Hence R is commutative in this case.

On the other hand, if β is Frobenius, then char $Q=p>0$. Otherwise if char $Q=0$, then $\beta(\lambda)=\lambda$ for all $\lambda \in C$ and hence β must be X-inner by [1, Theorem 4.7.4], a contradiction. Also $\beta(\lambda)=\lambda^{p^{k}}$ for all $\lambda \in C$ and for some integer $k \neq 0$. Substitute λx for x into $(b x-\beta(x) c)^{n}$ with $\lambda \neq 0$, we have $(b(\lambda x)-\beta(\lambda x) c)^{n}=\left(\lambda b x-\lambda^{p^{k}} \beta(x) c\right)^{n} \in C$ for all $x \in Q$ and hence $\left(b x-\lambda^{p^{k}-1} \beta(x) c\right)^{n} \in C$ for all $x \in Q$. Expanding this, we have

$$
\begin{equation*}
\sum_{i=0}^{n}\left(\sum_{(i, n-i)} y_{1} y_{2} \cdots y_{n}\right) \lambda^{\left(p^{k}-1\right) i} \in C \tag{2}
\end{equation*}
$$

where the inside summation are taken over all permutations of $n-i(b x)$'s and $i(\beta(x) c)$'s, that is, each term has exactly $n-i(b x)$ and $i(\beta(x) c)$ but in some different order. Let $u=\lambda^{p^{k}-1}$ and

$$
t_{i}=\sum_{(i, n-i)} y_{1} y_{2} \cdots y_{n}
$$

for $i=0,1,2, \ldots, n$. Then we can rewrite (2) into the following

$$
\begin{equation*}
t_{0}+u t_{1}+\cdots+u^{n} t_{n} \in C \tag{3}
\end{equation*}
$$

Replacing λ successively by $1, \lambda, \ldots, \lambda^{n}$, (3) gives the system of equations

$$
\begin{align*}
t_{0}+t_{1}+\cdots+t_{n} & =\tau_{0} \\
t_{0}+u t_{1}+\cdots+u^{n} t_{n} & =\tau_{1} \tag{4}\\
& \vdots \\
t_{0}+u^{n} t_{1}+\cdots+u^{n^{2}} t_{n} & =\tau_{n}
\end{align*}
$$

where $\tau_{0}, \tau_{1}, \ldots, \tau_{n} \in C$. Since C is infinite, there exists infinitely many $\lambda \in C$ such that $\lambda^{\left(p^{k}-1\right) \ell} \neq 1$ for $\ell=1,2, \ldots, n$ and so the van der Monde determinant

$$
\left|\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
1 & u & \cdots & u^{n} \\
\vdots & \vdots & & \vdots \\
1 & u^{n} & \cdots & u^{n^{2}}
\end{array}\right|=\prod_{\substack{i, j=0 \\
i<j}}^{n}\left(u^{i}-u^{j}\right)=\prod_{\substack{i, j=0 \\
i<j}}^{n}\left(\lambda^{i\left(p^{k}-1\right)}-\lambda^{j\left(p^{k}-1\right)}\right)
$$

is not zero. Therefore we can solve from (4) and obtain $t_{0} \in C$. But $t_{0}=(b x)^{n}$ and so we have $(b x)^{n} \in C$ for all $x \in Q$. As before, we can conclude that R is commutative. The proof is complete.

Now we are ready to give
Proof of Theorem B. If $Z=0$, then $f(x)^{n}=0$ for all $x \in L$, a nonzero ideal of R. By Theorem $1, f=0$ which is not the case. Thus $Z \neq 0$. We can write $f(x)=s x+\delta(x)$, where $s \in{ }_{F} R$ and where $\delta: R \rightarrow R$ is the associated β derivation of f. By the hypothesis, we have $(s x+\delta(x))^{n} y-y(s x+\delta(x))^{n}=0$ for all $x, y \in L$. By [8, Theorem 2], we see that $(s x+\delta(x))^{n} y-y(s x+\delta(x))^{n}=0$ also holds for all $x, y \in{ }_{F} R$. If δ is X-outer, then by [8, Theorem 1] we have $(s x+z)^{n} y-y(s x+z)^{n}=0$ for all $x, y, z \in{ }_{F} R$. In particular, we have
$(s x)^{n} \in C$ for all $x \in{ }_{F} R$. By Lemma $2, s=0$ or ${ }_{F} R$ is commutative. If R is not commutative, then $s=0$ and hence $f(x)=\delta(x)$ for all $x \in R$. We are done in this case by [3, Theorem B]. Hence we may assume that δ is X-inner and write $\delta(x)=b x-\beta(x) b$, where $b \in Q$. In this case, $f(x)^{n}=((s+b) x-\beta(x) b)^{n} \in C$ for all $x \in{ }_{F} R$. Hence we are done by Lemma 5. The proof is complete.

As a corollary, we have Theorem A immediately.
Example. Let F be a field of characteristic 2 and let $R=F_{2}$, the 2×2 matrix ring over F. Let

$$
u=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad a=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \quad b=\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)
$$

For $x \in R$, define $f(x)=a x-u^{-1} x u b$. It is easy to see that $f(x)^{2} \in Z$.

References

1. K. I. Beidar, W. S. Martindale 3rd and A. V. Mikhalev, Rings with Generalized Identities, Marcel Dekker, Inc. New York-Basel-Hongkang, 1996.
2. J. C. Chang and J. S. Lin, (α, β)-derivation with nilpotent values, Chinese J. Math., 22(4) (1994), 349-355.
3. J. C. Chang, (α, β)-derivation of prime rings having power central values, Bull. Inst. Math., Academic Sinica, 23(4) (1995), 295-303.
4. J. C. Chang, On the identity $h(x)=a f(x)+g(x) b$, Taiwanese J. of Math., 7(1) (2003), 103-113.
5. C. L. Chuang, GPIs having coefficients in Utumi quotient rings, Proc. Amer. Math. Soc., 103 (1988), 723-728.
6. C. L. Chuang, Differential identities with automorphisms and anti-automorphisms I, J. Algebra, 149 (1992), 371-404.
7. C. L. Chuang, Differential identities with automorphisms and anti-automorphisms II, J. Algebra, 160 (1993), 292-335.
8. C. L. Chuang and T. K. Lee, Identities with single skew derivation, J. of Algebra, 288 (2005), 59-77.
9. N. Jacobson, Structure of rings, Vol. 37, Amer. Math. Soc., Collog. Pub., Rhode Island, 1964.
10. I. N. Herstein, Non-commutative rings, Carus Monograph, 15, Math. Assoc. Amer., 1968.
11. I. N. Herstein, Topics in ring theory, Univ. of Chicago Press, Chicago, 1969.
12. I. N. Herstein, Derivations of prime rings having power central values, Contemporary Math., 13 (1982), 163-171.
13. V. K. Kharchenko, Generalized identities with automorphisms, Algebra i Logika, 14(2) (1975), 215-237; Engl. Transl: Algebra and Logic, 14(2) (1975), 132-148.
14. V. K. Kharchenko and A. Z. Popov, Skew derivation of prime rings, Comm. Algebra, 20 (1992), 3321-3345.
15. T. K. Lee, Generalized derivations of left faithful rings, Comm. Algebra, 27 (1999), 4057-4073.
16. T. K. Lee and K. S. Liu, Generalized skew derivations with algebraic values of bounded degree, preprint.
17. W. S. Martindale 3rd, Prime rings satisfying a generalized polynomial identity, J. Algebra, 12 (1969), 576-584.
18. Y. Wang, Generalized derivations with power-central values on multilinear polynomials, Algebra Colloq., 13 (2006), 405-410.

Jui-Chi Chang

Department of Computer Science and Information Engineering, Chang Jung Christian University,
Tainan, Taiwan
E-mail: jc2004@mail.cjcu.edu.tw

[^0]: Received August 31, 2006, accepted October 5, 2007.
 Communicated by Wen-Fong Ke.
 2000 Mathematics Subject Classification: 16W20, 16W25, 16W55.
 Key words and phrases: (α, β)-derivation, Generalized (α, β)-derivation, Automorphism, Prime ring, Generalized polynomial identity (GPI).

