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EXPLICIT NECESSARY AND SUFFICIENT CONDITIONS
FOR THE EXISTENCE OF NONNEGATIVE SOLUTIONS

OF A p-LAPLACIAN BLOW-UP PROBLEM

Pei-Yu Huang, Ming-Ting Shieh and Shin-Hwa Wang*

Abstract. We establish explicit necessary and sufficient conditions for the
existence of nonnegative solutions of the p-Laplacian boundary blow-up prob-
lem 


(ϕp(u′(x)))′ = λf(u(x)), 0 < x < 1,

lim
x→0+

u(x) = ∞ = lim
x→1−

u(x),

where p > 1, ϕp (y) = |y|p−2
y and (ϕp(u′))′ is the one-dimensional p-

Laplacian, λ is a positive bifurcation parameter and f is a locally Lipschitz
continuous function on [0,∞). The gap is extremely small between the explicit
necessary condition and the explicit sufficient condition for the existence of
nonnegative solutions. Our results improve and extend some main results of
Anuradha, Brown and Shivaji [2] and of Wang [30] from p = 2 to any p > 1.

1. INTRODUCTION

In this paper we investigate the necessary and sufficient conditions for the ex-
istence of (classical) nonnegative solutions of the p-Laplacian boundary blow-up
problem 


(ϕp(u′(x)))′ = λf(u(x)), 0 < x < 1,

lim
x→0+

u(x) = ∞ = lim
x→1−

u(x),
(1.1)
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where p > 1, ϕp (y) = |y|p−2 y and (ϕp(u′))′ is the one-dimensional p-Laplacian, λ

is a positive bifurcation parameter and f is a locally Lipschitz continuous function
on [0,∞).

From 1990s, many authors have extensively studied the problems of existence,
uniqueness and asymptotic behavior of solutions of the p-Laplacian boundary blow-
up problem {

∆pu = f(u) in Ω,

u → ∞ as x → ∂Ω,
(1.2)

where p > 1, ∆p is the p-Laplacian div(|∇u|p−2 ∇u), and Ω is a bounded domain
in R

N(N ≥ 1) with smooth boundary. See, for examples, [1–32]. A problem of
this type was first considered by Bieberbach [6] in 1916, where

p = 2, f(u) = eu, and N = 2.

Bieberbach showed that if Ω is a bounded domain in R
2 such that ∂Ω is a C2

submanifold of R
2, then there exists a unique u ∈ C2(Ω) such that ∆u(x) = eu

in Ω and
∣∣u(x)− ln(d(x))−2

∣∣ is bounded on Ω. Using the ideas of Bieberbach,
Rademacher [28] extended this result to smooth bounded domains in R3. This
problem plays an important role, when N = 2, in the theory of Riemann surfaces of
constant negative curvature and in the theory of automorphic functions, and when
N = 3, according to [28], in the study of the electric potential in a glowing hollow
metal body.

Others pioneer contributions on existence of solutions of (1.2) are due to J.
B. Keller [17] and R. Osserman [27]. In 1957, Keller [17] (cf. also Osserman
[27]) first showed existence of positive solutions of (1.2) when p = 2 under the
assumptions that f is locally Lipschitz continuous and nondecreasing on [0,∞),
f(0) = 0 and ∫ ∞

ρ

du

F (u)1/2
< ∞ for all ρ > 0, (1.3)

where
F (s) :=

∫ s

0
f(t)dt.

He obtained the result by the method of superpositions and subsolutions together
with the uniform estimates of Keller [17, pp. 505–507]. He also showed that
positive solutions of (1.2) when p = 2 exist if and only if there exists no entire
positive solution of ∆u = f(u); i.e., no positive solution in the whole space. We
point out that the nondecreasing nonlinearity f is called an absorption term; see
Véron [29, p. 46]. Condition (1.3) is generally referred as the Keller-Osserman
condition to (1.2) when p = 2; see e.g. [22, 25]. It is plausible that a boundary
blow-up solution can only exist if f(u) grows sufficiently fast at infinity.
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For f(u) = ua with a > 1, problem (1.2) with p = 2 arises in the study of the
high speed diffusion problem. For the special case where f(u) = u(N+2)/(N−2) and
N > 2, which appears in geometrical problems, Loewner and Nirenberg [20] studied
uniqueness and asymptotic behavior of positive solution of (1.2). Then, Bandle and
Marcus [3, 4, 5] and Marcus and Véron [21] extended the results of Loewner and
Nirenberg [20] to a much large class of nonlinearities including f(u) = ua, a > 1.
D ĺaz and Letelier [8] proved existence and uniqueness of positive solution of (1.2)
for f(u) = ua with a > p − 1 and p �= 2. Then, for (1.2), assuming that f(u)
satisfies the following generalized Keller-Osserman condition:

Ψp(ρ) :=
∫ ∞

ρ

du

F (u)1/p
< ∞ for all ρ > 0, (1.4)

Matero [23] extended the results of [17] to a much larger class of positive, nonde-
creasing nonlinearities f by some techniques originally due to Keller [17].

Problem (1.2) has also found new applications, for example, in understanding
pattern formation for population models in environment. See [11, p. 740].

Cheng [7] studied the bifurcation curve λ(ρ) with ρ = minx∈(0,1) u(x) of (sign-
changing and nonnegative) solutions of (1.1) mainly for

f = f̃(u) =

{
εus + uq, u ≥ 0,

α |u|r + δ |u|τ , u < 0,

satisfying

q > p − 1 > r > s > 0, ε, α, δ > 0, and (τ > p − 1 or τ = 0). (1.5)

Hence he is able to prove the existence and multiplicity of (sign-changing and non-
negative) solutions of (1.1) for f = f̃(u). We note that the continuous nonlinearity
f̃ (u) satisfying (1.5) does not satisfy a Lipschitz condition of order p − 1 at 0.

When p = 2, assuming that nonlinearity f is a locally Lipschitz continuous
function on [0,∞), Anuradha et al. [2] and Wang [30] studied necessary and
sufficient conditions for the existence of nonnegative solutions of (1.1) basing on
building a quadrature method.

Define, for any p > 1,

Ip = {s ∈ [0,∞) : f(s) > 0, F (u) > F (s) for all u > s}.

The next lemma on the quadrature method extends Anuradha et al. [2, Lemma
2.1] from p = 2 to any p > 1. Denote by p′ = p/ (p − 1) the conjugate exponent
of p.
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Lemma 1.1. Let p > 1. Suppose that f is a locally Lipschitz continuous
function on [0,∞). Then, given λ > 0, there exists a unique (classical) nonnegative
solution u to (1.1) with minx∈(0,1) u(x) = ρ if and only if

G(ρ) := 2
(
p′

)−1/p
∫ ∞

ρ

du

(F (u) − F (ρ))1/p
= λ1/p < ∞ for ρ ∈ Ip. (1.6)

For G(ρ) in (1.6), to make it more clear for the dependence on the nonlinearity
f , we sometimes write Gf(ρ) instead of G(ρ).

Remark 1.2. Suppose that f is positive on (0,∞). Then

(i) Condition (1.6) G(ρ) < ∞ for all ρ > 0 implies condition (1.4) Ψp(ρ) < ∞
for all ρ > 0 since 1

(F (u)−F (ρ))1/p > 1
F (u)1/p for 0 < ρ < u < ∞.

(ii) Suppose that f is nondecreasing on [0,∞) and satisfies (2.4) stated below.
Then it follows by [26, Theorem 1.1] that condition (1.4) Ψp(ρ) < ∞ for all
ρ > 0 implies that G(ρ) is a decreasing function on (0,∞). In addition,

lim
ρ→0+

G(ρ) = 2
(
p′

)−1/p
∫ ∞

0

du

F (u)1/p

under the monotonicity assumption on f on [0,∞) by applying the monotone
convergence theorem.

2. MAIN RESULTS

The main results in this paper are next Theorems 2.1 and 2.2 in which we
establish explicit necessary and sufficient conditions for the existence of (classical)
nonnegative solutions of (1.1) for p > 1. The gap is extremely small between the
explicit necessary condition and the explicit sufficient condition for the existence
of nonnegative solutions to (1.1). Note that Theorem 2.1 improves and extends
Anuradha et al. [2, Theorem 3.1] and Wang [30, Theorem 2.1] from p = 2 to any
p > 1. Theorem 2.2 improves and extends Anuradha et al. [2, Theorem 3.2] and
Wang [30, Theorem 2.2] from p = 2 to any p > 1.

Let e0 = 1. For n ∈ N, let constants en denote the n-th iterate of exp(1) so
that 


e1 = exp(1) for n = 1,

en = exp(exp · · · (exp︸ ︷︷ ︸
n−times

(1))) for n ≥ 2.

Let
ea
n = (en)a for a > 0.
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Note that {en} is a nonnegative strictly increasing sequence and limn→∞ en = ∞.

For n ∈ N, let functions Ln(u) denote the n-th iterate of ln u so that


L1 = L1(u) = lnu > 0 for u > e0 = 1, n = 1,

Ln = Ln(u) = ln(ln(· · · (ln︸ ︷︷ ︸
n-times

u))) > 0 for u > en−1, n ≥ 2. (2.1)

Let
La

n = (Ln(u))a for a > 0.

Note that, for n ∈ N,

Ln = Ln(u) > 1 for u > en. (2.2)

Theorem 2.1. Let p > 1. Suppose that f is a locally Lipschitz continuous
function on [0,∞). If there exists any nonnegative solution to (1.1) for any λ > 0,
then

lim sup
u→∞

f(u)
up−1Lp

1L
p
2 · · ·Lp

n−1L
p
n

= ∞ for any n ∈ N. (2.3)

Theorem 2.2. Let p > 1. Suppose that f is a locally Lipschitz continuous
function on [0,∞). If f satisfies



∃n ∈ N, a > p, and 0 < β ≤ ∞ such that either

n = 1, lim inf
u→∞

f(u)
up−1La

1

= β,

or n ≥ 2, lim inf
u→∞

f(u)
up−1Lp

1L
p
2 · · ·Lp

n−1L
a
n

= β,

(2.4)

then there exist nonnegative solutions to (1.1) for some λ > 0 and G(ρ) is well
defined and continuous for all ρ ∈ I p.

Remark 2. For any p ≥ 2, condition (2.3) is necessary, but not sufficient for
existence of nonnegative solutions. For example, let

f = f1(u) :=




up−1 for 0 ≤ u < e1,

up−1(lnu)p = up−1Lp
1 for e1 ≤ u < e2,

up−1Lp
1L

p
2 · · ·Lp

n for en ≤ u < en+1, n ≥ 2.

Then f1 is a locally Lipschitz continuous function on [0,∞) and it satisfies (2.3). It
can be proved that Gf1(ρ) = ∞ for all ρ ∈ (0,∞), and hence (1.1) has no positive
solution for any λ > 0. We omit the proof.
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Fig. 1. Graph of function f = f2(u) for u > 0, p ≥ 2. up−1(ln(u + 1))p ≤ f2(u) ≤
up−1(ln(u + 1))p+1 for u > 0.

Remark 3. (See Fig. 1). For any p ≥ 2, condition (2.4) is sufficient, but not
necessary for existence of nonnegative solutions. For example, let

f = f2(u) :=




up−1(ln(u + 1))p +
[
up−1(ln(u + 1))p+1 − up−1(ln(u + 1))p

]
· 1 + sinu

2
for u > 0,

0 for u = 0.

Then f2 is a locally Lipschitz continuous function on [0,∞) and it satisfies (2.3)
but not (2.4). Function f2 “oscillates” between functions up−1(ln(u + 1))p and
up−1(ln(u+1))p+1 for u > 1. It can be proved that Gf2(ρ) exists for all ρ > 1 and
limρ→∞ Gf2(ρ) = 0. Hence (1.1) has a positive solution for λ > 0 small enough.
We omit the proof.

The next theorem improves and extends Anuradha et al. [2, Theorem 3.3] and
Wang [30, Theorems 2.3] from p = 2 to any p > 1.

Theorem 2.3. Let p > 1. Suppose that f is a locally Lipschitz continuous
function on [0,∞). If f satisfies (2.4), then

G(ρ) → 0 as ρ → ∞.

The next theorem improves and extends Anuradha et al. [2, Lemma 4.2] and
Wang [30, Theorems 2.4] from p = 2 to any p > 1. Recall that, f is said to satisfy
a Lipschitz condition of order p−1 at s if there exist constants M > 0, δ > 0 such
that

|f(u) − f(s)| < M |u − s|p−1 for s − δ < u < s + δ, u �= s. (2.5)
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When p = 2, f is said to be locally Lipschitz continuous at s if f satisfies a
Lipschitz condition of order 1 at s.

Theorem 2.4. Let p > 1. Suppose that f is a locally Lipschitz continuous
function on [0,∞). Let f(u) satisfy (2.4). Assume that there exits s ∈ [0,∞) such
that f(s) = 0 and f satisfies a Lipschitz condition of order p − 1 at s. If there
exits ε > 0 such that (s, s + ε) ⊂ I, then G(ρ) → ∞ as ρ → s+. Furthermore, if
there exits ε > 0 such that (s − ε, s) ⊂ I, then G(ρ) → ∞ as ρ → s−.

The next theorem improves and extends Wang [30, Theorems 2.5] from p = 2
to any p > 1.

Theorem 2.5. Let p > 1. Suppose that f is a locally Lipschitz continuous
function on [0,∞). If f satisfies (2.4) and 0 ∈ Ip, then

G(0) < ∞.

We finally give a remark to Theorem 2.4 and we may assume s = 0 without loss
of generality. For p-Laplacian problem (1.1) with p > 1, suppose that f satisfies all
assumptions in Theorem 2.4 except Lipschitz conditions of order p−1 and of order
1 at s = 0, it is possible that limρ→0+ G(ρ) exists and is finite. Hence problem
(1.1) may not admit (classical) nonnegative solutions for any λ > 0 large enough.
We give the next explicit example as follows.

Fig. 2. p = 2. Numerical simulation of Gf3(ρ), ρ > 0. Gf3(0) := limρ→0+ Gf3(ρ) =
2π ≈ 6.283 and limρ→∞ Gf3(ρ) = 0.

Example 2.6. (See Fig. 2) Let p = 2 and

f = f3(u) := 3u1/2 + 8u + 5u3/2 for u ≥ 0.
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It is obvious that f3(0) = 0, f(u) > 0 on (0,∞), and f3 is locally Lipschitz
continuous at all points on [0,∞) except at 0. In addition, f3 satisfies (2.4) with
n = 1, a = 3 and β = ∞. So Gf3(ρ) exists and is continuous for all ρ ∈ I2 =
(0,∞). It is interesting to notice that, for this particular nonlinearity f = f3(u), it
can be checked that the trigonometric function

u = cot4(πx), 0 < x < 1

satisfying ρ = minx∈(0,1) u(x) = u(1/2) = 0 is a nonnegative solution of (1.1)
corresponding to λ = 4π2 (=

(
limρ→0+ Gf3(ρ)

)2). In addition, it can be proved
that

(i) lim
ρ→0+

Gf3(ρ) = 2π ≈ 6.283. (We omit the proof.)

(ii) lim
ρ→∞Gf3(ρ) = 0 by [2, Theorem 3.3].

(iii) Gf3(ρ) is a strictly decreasing function of ρ > 0 by [2, Theorem 3.4] since
f3 is strictly decreasing on (0,∞).

Thus (1.1) has exactly one positive solution for 0 < λ < 4π2, exactly one
nonnegative solution u = cot4(πx) with minx∈(0,1) u(x) = u(1/2) = 0 for λ =
4π2, and no nonnegative solution for λ > 4π2.

3. LEMMAS

The next Lemmas 3.1-3.3 are needed in the proofs of Theorems 2.1-2.4. For
n ∈ N, a ≥ p, and Ln in (2.1) for u > en−1. For convenience of notations, we
define

Ap,a(u, n) =

{
up−1La

1 = up−1(ln u)a > 0 if n = 1,

up−1Lp
1L

p
2 · · ·Lp

n−1L
a
n > 0 if n ≥ 2,

(3.1)

Bp,a(u, n) =
d

du
(uAp,a(u, n)) , (3.2)

Cp(u, n) = upLp
1L

p
2 · · ·Lp

n, (3.3)

Dp(u, n) =
d

du
Cp(u, n) =

d

du
(upLp

1L
p
2 · · ·Lp

n). (3.4)

Lemma 3.1. Let p > 1. For n ∈ N and a ≥ p,
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(i) Dp(u, n)
(

=
d

du
Cp(u, n) =

d

du
(upLp

1L
p
2 · · ·Lp

n)
)

= pup−1Lp−1
1 Lp−1

2 · · ·Lp−1
n (1 + Ln + Ln−1Ln + · · ·+ L1L2 · · ·Ln−1Ln).

(ii) Bp,a(u, n)
(

=
d

du
(uAp,a(u, n))

)

=




pup−1La−1
1 (

a

p
+ L1) if n = 1,

pup−1L
p−1
1 L

p−1
2 · · ·Lp−1

n−1L
a−1
n

·
(

a

p
+ Ln + Ln−1Ln + · · ·+ L1L2 · · ·Ln−1Ln

)
if n ≥ 2.

Lemma 3.2. Let p > 1. For n ∈ N and a ≥ p,

(i) pAp,p(u, n) < Bp,p(u, n) for u > en−1.

(ii) (p + 1)Ap,a(u, n) > Bp,a(u, n) for u > max {exp (a + p(n − 1)) , en}.

Lemma 3.3. Let p > 1. Let f satisfy (2.4) and ρ ∈ [ρ1, ρ2] ⊂ Ip. Then for any
n ∈ N, a > p, there exists a constant M > max {exp (a + p(n − 1)) , en} such
that Ln(M) > 1 and

F (u) − F (ρ) ≥ γuAp,a(u, n) > 0 for u > M,

where

γ =




β

4(p + 1)
if 0 < β < ∞,

1
2(p + 1)

if β = ∞.
(3.5)

We now prove Lemmas 3.1-3.3 as follows.

Proof of Lemma 3.1. We first prove Lemma 3.1(i) by mathematical induction
on n. First, it is trivial that Lemma 3.1(i) holds when n = 1. Assume that, when
n = k, Lemma 3.1(i) holds. Then when n = k + 1, by (3.3) and (3.4), we obtain

Dp(u, k + 1)

=
d

du
Cp(u, k + 1)

=
d

du

(
Cp(u, k)Lp

k+1

)
=

(
d

du
Cp(u, k)

)
L

p
k+1 + Cp(u, k)

(
d

du
L

p
k+1

)
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= Dp(u, k)Lp
k+1 + Cp(u, k) · p(uL1L2 · · ·Lk)−1Lp−1

k+1

= pup−1L
p−1
1 L

p−1
2 · · ·Lp−1

k (1 + Lk + Lk−1Lk + · · ·+ L1L2 · · ·Lk−1Lk)L
p
k+1

+pup−1Lp−1
1 Lp−1

2 · · ·Lp−1
k Lp−1

k+1

(by the assumption that Lemma 3.1(i) holds for n = k)

= pup−1Lp−1
1 Lp−1

2 · · ·Lp−1
k Lp−1

k+1(1 + Lk+1 + LkLk+1 + · · ·+ L1L2 · · ·LkLk+1).

So Lemma 3.1(i) holds for n = k + 1. Thus by mathematical induction, Lemma
3.1(i) holds for all n ∈ N.

We then prove Lemma 3.1(ii). First when n = 1, it is trivial that the Lemma
3.1(ii) holds. Secondly, when n ≥ 2, by (3.2)-(3.4) and Lemma 3.1(i), we obtain

Bp,a(u, n)

=
d

du
(Cp(u, n − 1)La

n)

=
(

d

du
Cp(u, n− 1)

)
La

n + Cp(u, n− 1)
(

d

du
La

n

)
= Dp(u, n− 1)La

n + Cp(u, n− 1) · a(uL1L2 · · ·Ln−1)−1La−1
n

= pup−1Lp−1
1 Lp−1

2 · · ·Lp−1
n−1L

a
n(1 + Ln−1 + Ln−2Ln−1 + · · ·

+L1L2 · · ·Ln−2Ln−1) + aup−1Lp−1
1 Lp−1

2 · · ·Lp−1
n−1L

a−1
n

= pup−1Lp−1
1 Lp−1

2 · · ·Lp−1
n−1L

a−1
n

(
a

p
+Ln+Ln−1Ln + · · ·+ L1L2 · · ·Ln−1Ln

)
.

So Lemma 3.1(ii) holds for n ≥ 2. We conclude that Lemma 3.1(ii) holds for all
n ∈ N.

Proof of Lemma 3.2. We first prove Lemma 3.2(i). By Lemma 3.1(ii) and
(3.1), when n = 1,

Bp,p(u, 1)− pAp,p(u, 1) = pup−1Lp−1
1 (1 + L1) − pup−1Lp

1

= pup−1L
p−1
1

= pup−1(lnu)p−1

> 0 for u > e0 = 1,

and when n ≥ 2, by Lemma 3.1(ii) and (3.1), it can be computed that

Bp,p(u, n)− pAp,p(u, n)

= pup−1Lp−1
1 Lp−1

2 · · ·Lp−1
n−1L

p−1
n (1 + Ln + Ln−1Ln + Ln−2Ln−1Ln

+ · · ·+ L2L3 · · ·Ln) > 0 for u > en−1.
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So Lemma 3.2(i) follows.
We then prove Lemma 3.2(ii). By (3.1), (3.2) and Lemma 3.1(ii), when n = 1,

(p + 1)Ap,a(u, 1)− Bp,a(u, 1) = (p+1)up−1La
1−pup−1La−1

1

(
a

p
+L1

)
= up−1La−1

1 (L1 − a)

= up−1(lnu)a−1 ((lnu) − a)

> 0 for u > exp(a),

(3.6)

and when n ≥ 2, for u > en, it can be computed that

(p + 1)Ap,a(u, n)− Bp,a(u, n)

= up−1L
p−1
1 L

p−1
2 · · ·Lp−1

n−1L
a−1
n (L1L2 · · ·Ln−1Ln − a

−pLn − pLn−1Ln − pLn−2Ln−1Ln − · · · − pL2 · · ·Ln−1Ln)

> up−1Lp−1
1 Lp−1

2 · · ·Lp−1
n−1L

a−1
n (L1L2 · · ·Ln−1Ln − aL2 · · ·Ln−1Ln

−pL2 · · ·Ln−1Ln − pL2 · · ·Ln−1Ln − · · · − pL2 · · ·Ln−1Ln︸ ︷︷ ︸
(n−1)−times

) (by (2.2))

= up−1Lp−1
1 Lp−1

2 · · ·Lp−1
n−1L

a−1
n (L1L2 · · ·Ln−1Ln−(a+p(n−1))L2 · · ·Ln−1Ln)

= up−1Lp−1
1 Lp

2 · · ·Lp
n−1L

a
n (L1 − (a + p(n − 1))) .

Since

L1 − (a + p(n − 1)) = lnu − (a + p(n − 1)) > 0 for u > exp(a + p(n − 1)),

we conclude that, for n ≥ 2,

(p + 1)Aa(u, n)− Ba(u, n) > 0 for u > max {exp(a + p(n − 1)), en} . (3.7)

So Lemma 3.2(ii) follows immediately from (3.6) and (3.7).

Proof of Lemma 3.3. Suppose that f satisfies (2.4), by (2.2), (3.1) and Lemma
3.2(ii), it is easy to see that there exists a constant M1 >max {exp (a+p(n−1)) , en}
such that Ln(M1) > 1, Ap,a(M1, n) > 1, and

f(u) > 2(p + 1)γAp,a(u, n) > 2γBp,a(u, n) for u > M1, (3.8)
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where γ is defined in (3.5). Then for u > M1,

F (u) = F (M1) +
∫ u

M1

f(t)dt

≥ F (M1) +
∫ u

M1

2γBp,a(t, n)dt

= F (M1) + 2γ [uAp,a(u, n)− M1Ap,a(M1, n)]

by (3.2). Let ρ ∈ [ρ1, ρ2] ⊂ Ip, then

F (u) − F (ρ) ≥ F (M1)− F (ρ) + 2γ [uAp,a(u, n)− M1Ap,a(M1, n)] .

Let K = F (M1) − 2γM1Ap,a(M1, n)− supρ∈[ρ1,ρ2] F (ρ). We obtain

F (u) − F (ρ) ≥ K + 2γuAp,a(u, n) for u > M1. (3.9)

Now there exists M2 > 0 such that

γuAp,a(u, n) ≥ −K for u > M2,

which implies

K + 2γuAp,a(u, n) ≥ γuAp,a(u, n) > 0 for u > M2. (3.10)

Letting M = max {M1, M2} , by (3.9) and (3.10), we obtain

F (u) − F (ρ) ≥ γuAp,a(u, n) > 0 for u > M.

This completes the proof of Lemma 3.3.

4. PROOFS OF MAIN RESULTS

The proofs of Theorems 2.1-2.3 are based upon modification of methods of [2,
Theorems 3.1-3.3] and of [30, Theorems 2.1-2.3].

Proof of Theorem 2.1. We prove Theorem 2.1 by method of contradiction.
Assume that lim supu→∞ f(u)/Ap,p(u, n) �= ∞ for some n ∈ N. Then there exist
constants K > 0, M1 > en−1 such that, for u ≥ M1,

f(u) ≤ KAp,p(u, n)

<
K

p
Bp,p(u, n)
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by Lemma 3.2(i). This and (3.2) imply that

F (u) =
∫ u

0
f(t)dt =

∫ M1

0
f(t)dt +

∫ u

M1

f(t)dt

< F (M1) +
∫ u

M1

K

p
Bp,p(t, n)dt

= F (M1) +
K

p
uAp,p(u, n)− K

p
M1Ap,p(M1, n) for u ≥ M1.

Let ρ ∈ Ip and K1 = F (M1) − F (ρ) − K

p
M1Ap,p(M1, n), then

F (u) − F (ρ) < F (M1) − F (ρ) +
K

p
uAp,p(u, n)− K

p
M1Ap,p(M1, n)

= K1 +
K

p
uAp,p(u, n) for u ≥ M1.

(4.1)

It is easy to see that there exists M2 > 0 such that

(p−1)K
p

uAp,p(u, n)=
(p−1)K

p
upLp

1L
p
2 · · ·Lp

n−1L
p
n >K1 for u ≥ M1. (4.2)

Let M = max{M1, M2}, then (4.1) and (4.2) imply

F (u) − F (ρ) < KuAp,p(u, n) for u ≥ M. (4.3)

Without loss of generality, we may assume M > ρ, and we obtain from (1.6), (4.3)
and (3.1) that

G(ρ) = 2
(
p′

)−1/p
∫ ∞

ρ

du

(F (u) − F (ρ))1/p

≥ 2
(
p′

)−1/p
∫ ∞

M

du

(F (u) − F (ρ))1/p

≥ 2
(
p′

)−1/p
∫ ∞

M

du

(KuAp,p(u, n))1/p

= 2
(
p′K

)−1/p
∫ ∞

M

du

uL1L2 · · ·Ln−1Ln

= 2
(
p′K

)−1/p
Ln+1(u)|u=∞

u=M

= ∞.

Thus G(ρ) does not exist if lim supu→∞ f(u)/Ap,p(u, n) �= ∞ for some n ∈ N,

and Theorem 2.1 follows from Lemma 1.1.
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Proof of Theorem 2.2. First, we suppose ρ ∈ Ip. Since Ip is open, there exist
ρ1, ρ2 ∈ Ip such that ρ ∈ (ρ1, ρ2) ⊂ Ip. Suppose that f satisfies (2.4), by Lemma
3.3, then there exists a constant M > max {exp (a + p(n − 1)) , en, ρ2} (we assume
without loss of generality that M > ρ2) such that Ln(M) > 1 and

F (u) − F (ρ) ≥ γuAp,a(u, n) > 0 for u > M, ρ ∈ [ρ1, ρ2] , (4.4)

where γ is defined in (3.5). Note that

G(ρ) = 2
(
p′

)−1/p
∫ ∞

ρ

du

(F (u) − F (ρ))1/p
< ∞

if and only if there exists δ̃ ∈ (0, ρ2 − ρ) such that

∫ ρ+δ̃

ρ

du

(F (u) − F (ρ))1/p
< ∞ and

∫ ∞

M

du

(F (u) − F (ρ))1/p
< ∞.

Let α := minz∈[ρ,ρ+δ̃] f(z) > 0. For u ∈
[
ρ, ρ + δ̃

]
⊂ Ip, by the mean value

theorem, there exists z ∈ [ρ, u] ⊂
[
ρ, ρ + δ̃

]
such that

F (u) − F (ρ) = f(z)(u − ρ) ≥
[

min
z∈[ρ,ρ+δ̃]

f(z)

]
(u− ρ) = α(u − ρ).

Thus∫ ρ+δ̃

ρ

du

(F (u)−F (ρ))1/p
≤α−1/p

∫ ρ+̃δ

ρ

du

(u−ρ)1/p
=

p

p−1
α−1/pδ̃(p−1)/p<∞. (4.5)

In addition, by (4.4), (3.1) and (2.1), if f satisfies (2.4) with n = 1 and a > p, then∫ ∞

M

du

(F (u) − F (ρ))1/p
≤ γ−1/p

∫ ∞

M

du

(uAp,a(u, 1))1/p

= γ−1/p

∫ ∞

M

du

uL
a/p
1

= γ−1/p

∫ ∞

M

du

u (ln u)a/p

= γ−1/p p

p − a
(lnu)(p−a)/p

∣∣∣u=∞
u=M

= γ−1/p p

a − p
(ln M)(p−a)/p

< ∞;

(4.6)
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if f satisfies (2.4) with n ≥ 2 and a > p, then∫ ∞

M

du

(F (u) − F (ρ))1/p
≤ γ−1/p

∫ ∞

M

du

(uAp,a(u, n))1/p

= γ−1/p

∫ ∞

M

du

uL1L2 · · ·Ln−1L
a/p
n

= γ−1/p

∫ u=∞

u=M

dLn

L
a/p
n

= γ−1/p p

p − a
(Ln(u))(p−a)/p

∣∣∣u=∞
u=M

= γ−1/p p

a − p
(Ln(M))(p−a)/p

< ∞.

(4.7)

By (4.5)-(4.7), it follows immediately that G(ρ) < ∞ for ρ ∈ Ip. Hence G(ρ) is
well defined for all ρ ∈ Ip, and by Lemma 1.1, there exists a nonnegative solution
to (1.1) for some λ = (G(ρ))p given by any ρ ∈ Ip. By using (4.4), the arguments
in the proof of [2, Theorem 3.2] can be modified to prove that G(ρ) is continuous
for all ρ ∈ Ip.

The proof of Theorem 2.2 is now complete.
The proof of Theorem 2.3 follows by slight modification of the proof of [30,

Theorem 2.3] and by Lemma 3.3 and (3.8). We omit the proof.
The proof of Theorem 2.4 follows by slight modification of the proof of [2,

Lemma 4.2] and by (2.5). We omit the proof.
The proof of Theorem 2.5 follows by slight modification of the proof of [30,

Theorem 2.5] and by Lemma 3.3. We omit the proof.
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