A NOTE ON POINTWISE CONVERGENCE FOR EXPANSIONS IN SURFACE HARMONICS OF HIGHER DIMENSIONAL EUCLIDEAN SPACES

Ming-gang Fei and Tao Qian

Abstract

We study the Fourier-Laplace series on the unit sphere of higher dimensional Euclidean spaces and obtain a condition for convergence of FourierLaplace series on the unit sphere. The result generalizes Carleson's Theorem to higher dimensional unit spheres.

1. Introduction

We start with reviewing the basic notations and results. Let $f \in L^{1}([-\pi, \pi])$, then the Fourier coefficients c_{k} are all well-defined by

$$
\begin{equation*}
c_{k}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(t) e^{-i k t} d t, \quad k \in \mathbf{Z} \tag{1}
\end{equation*}
$$

where \mathbf{Z} denotes the set of all integers.
By $s_{N}(f)(x)$ we denote the partial sum

$$
\begin{equation*}
s_{N}(f)(x)=\sum_{|k| \leq N} c_{k} e^{i k x}, \quad x \in[-\pi, \pi], N \in \mathbf{N}_{0} \tag{2}
\end{equation*}
$$

of the Fourier series of f, where \mathbf{N}_{0} denotes the set of all natural numbers.
Then we have,

$$
\begin{equation*}
s_{N}(f)(x)=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) D_{N}(x-t) d t \tag{3}
\end{equation*}
$$

where

[^0]\[

D_{N}(x)= $$
\begin{cases}\frac{\sin \left(N+\frac{1}{2}\right) x}{2 \sin \frac{x}{2}} & \text { for } x \in[-\pi, \pi] \backslash\{0\}, \\ N+\frac{1}{2} & \text { for } x=0,\end{cases}
$$
\]

is the N-th Dirichlet kernel.
Since $L^{2}([-\pi, \pi]) \subset L^{1}([-\pi, \pi])$, the Fourier coefficients of L^{2} functions are also well-defined. The famous Carleson's Theorem is stated as follows.

Theorem 1. [1]. If $f \in L^{2}([-\pi, \pi])$, then

$$
s_{N}(f)(x) \rightarrow f(x) \quad \text { a.e. } x \in[-\pi, \pi], \text { as } N \rightarrow+\infty .
$$

L. Carleson proved this theorem in 1966. The next year, R.A. Hunt [4] further extended this result to $f \in L^{p}([-\pi, \pi]), 1<p<\infty$.

One naturally asks what is the analogous result for the unit sphere Ω_{n} in the n-dimensional Euclidean space \mathbf{R}^{n} ? For any $f \in L^{2}\left(\Omega_{n}\right)$, there is an associated Fourier-Laplace series:

$$
\begin{equation*}
f \sim \sum_{k=0}^{\infty} f_{k} \tag{4}
\end{equation*}
$$

where f_{k} is the homogeneous spherical harmonics of degree k. There has been literature for the study of convergence and summability of Fourier-Laplace series of various kinds on unit sphere of higher dimensional Euclidean spaces (see [99, 5, 10]). However, except for the very lowest dimensional case, pointwise convergence, being the initial motivation of various summabilities, could be said to be very little known. The case $n=2$ seems to be the only well studied case ([12], [1]). Dirichlet ([2]) gave the first detailed study on the case $n=3$, on the so called Laplace series. Koschmieder ([6]) studied the case $n=4$. Roetman ([9]) and Kalf ([5]) considered the general cases, and, under certain conditions, reduced the convergence problem for $n=2 k+2$ to $n=2$; and $n=2 k+3$ to $n=3$. Among others, Meaney ([7]) addressed some related topics, including the L^{p} cases. In this note, we further study convergence of the series (4) in view of the classical Carleson's Theorem and the fundamental properties of Legendre polynomials. Based on the results obtained in [9] and [5], we further obtain a weaker condition that ensures the pointwise convergence of the Fourier-Laplace series of functions in Sobolev spaces. The result is a generalization of Carleson's Theorem to higher dimensional Euclidean spaces.

2. Preliminaries

Referring the reader to Erdélyi([3]), Muller ([8]) and Roetman ([9]) for details, we recall here some notations and main results for surface spherical harmonics that we shall need. Let $\left(x_{1}, \cdots, x_{n}\right)$ be the coordinates of a point of \mathbf{R}^{n} with norm

$$
|x|^{2}=r^{2}=x_{1}^{2}+\cdots+x_{n}^{2} .
$$

Then $x=r \xi$, where $\xi=\left(\xi_{1}, \cdots, \xi_{n}\right)$ is a point on the unit sphere Ω_{n} in \mathbf{R}^{n}. Denote by A_{n} the total surface area of Ω_{n} and by $d \omega_{n}$ the usual Hausdorff surface measure on the $(n-1)$-dimensional unit sphere,

$$
A_{n}=\int_{\Omega_{n}} d \omega_{n} .
$$

If e_{1}, \cdots, e_{n} denote the orthonormal basis vectors in \mathbf{R}^{n}, then we can represent the points of Ω_{n} by

$$
\begin{equation*}
\xi=t e_{n}+\left(1-t^{2}\right)^{\frac{1}{2}} \tilde{\xi}, \tag{5}
\end{equation*}
$$

where $-1 \leq t \leq 1, t=\xi \cdot e_{n}$ and $\tilde{\xi}$ is a vector in the subspace \mathbf{R}^{n-1} generated by e_{1}, \cdots, e_{n-1}. In the coordinates $(r, t, \tilde{\xi})$ the surface measure has the form

$$
\begin{equation*}
d \omega_{n}=\left(1-t^{2}\right)^{\lambda-\frac{1}{2}} d t d \omega_{n-1}, \tag{6}
\end{equation*}
$$

where $\lambda=\frac{n-2}{2}$.
In accordance with (4), there associates a function $f \in L^{2}\left(\Omega_{n}\right)$ with a series of surface harmonics

$$
\begin{equation*}
S(f ; n ; \xi) \sim \sum_{k=0}^{\infty} Y_{k}(f ; n ; \xi) \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
Y_{k}(f ; n ; \xi)=\alpha_{k}(n) \int_{\Omega_{n}} P_{k}(n ; \xi \cdot \eta) f(\eta) d \omega_{n}(\eta) \tag{8}
\end{equation*}
$$

$P_{k}(n ; s)$ are Legendre polynomials [8] defined by the generating relation

$$
\left(1+x^{2}-2 x s\right)^{-\lambda}=\sum_{k=0}^{\infty} c_{k}(n) x^{k} P_{k}(n ; s)
$$

where

$$
c_{k}(n)=\frac{(n-2) N(n, k)}{2 k+n-2}, \alpha_{k}(n)=\frac{N(n, k)}{A_{n}},
$$

and

$$
N(n, k)= \begin{cases}1 & \text { for } k=0 \\ \frac{(2 k+n-2) \Gamma(k+n-2)}{\Gamma(k+1) \Gamma(n-1)} & \text { for } k \geq 1\end{cases}
$$

The Legendre polynomials of dimension $n>3$ are related to the Gegenbauer polynomials by $C_{k}^{\lambda}(s)=c_{k}(n) P_{k}(n ; s)$.

In particular, we have

$$
\begin{equation*}
N(2, k)=2 ; \quad N(3, k)=2 k+1, \quad k \in \mathbf{N}_{0} \cup\{0\} ; \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{k}(2 ; t)=\cos \left(k \cos ^{-1} t\right), t \in[-1,1] \tag{10}
\end{equation*}
$$

being the well-known Chebyshev polynomial; and

$$
\begin{equation*}
P_{k}(3 ; t)=\frac{(-1)^{k}}{2^{k} k!}\left(\frac{d}{d t}\right)^{k}\left(1-t^{2}\right)^{k} \tag{11}
\end{equation*}
$$

being the ordinary Legendre polynomial. For $n \geq 3$, Müller [8], p.15, gives that the Legendre polynomials are orthogonal polynomials in the sense

$$
\begin{equation*}
\int_{-1}^{1} P_{k}(n ; t) P_{l}(n ; t)\left(1-t^{2}\right)^{\frac{n-3}{2}} d t=\frac{A_{n}}{A_{n-1}} \cdot \frac{1}{N(n, k)} \cdot \delta_{k l} . \tag{12}
\end{equation*}
$$

Let $S_{N}(f ; n ; \xi)$ denote the partial sum through the term with index N for the series (7). Then

$$
\begin{equation*}
S_{N}(f ; n ; \xi)=\int_{\Omega_{n}} f(\eta)\left\{\sum_{k=0}^{N} \alpha_{k} P_{k}(n ; \xi \cdot \eta)\right\} d \omega_{n}(\eta) \tag{13}
\end{equation*}
$$

One is interested in the convergence properties of $S_{N}(f ; n ; \xi)$ at ξ as N goes to infinity. Hold ξ fixed and write $\eta=t \xi+\left(1-t^{2}\right)^{\frac{1}{2}} \tilde{\eta}$, where $\tilde{\eta}$ is orthogonal to ξ. Let $\Omega(\xi)$ denote the unit ball in the $(n-1)$-dimensional space orthogonal to ξ. Equation (13) then yields

$$
\begin{equation*}
S_{N}(f ; n ; \xi)=\int_{-1}^{1}\left\{\sum_{k=0}^{N} \alpha_{k} A_{n-1} P_{k}(n ; t)\right\} \Phi_{\xi}(t)\left(1-t^{2}\right)^{\lambda-\frac{1}{2}} d t \tag{14}
\end{equation*}
$$

where

$$
\begin{equation*}
\Phi_{\xi}(t)=\frac{1}{A_{n-1}} \int_{\Omega(\xi)} f\left(t \xi+\left(1-t^{2}\right)^{\frac{1}{2}} \tilde{\eta}\right) d \omega_{n-1}(\tilde{\eta}) \tag{15}
\end{equation*}
$$

is the average of f over the $(n-1)$-sphere of radius $\left(1-t^{2}\right)^{\frac{1}{2}}$ centered at $t \xi$ in the hyperplane orthogonal to ξ.

By [8] and [9], we have

$$
\begin{equation*}
S_{N}(f ; 2 ; \xi)=\int_{-1}^{1} D_{N}(t) \Phi_{\xi}(t)\left(1-t^{2}\right)^{-\frac{1}{2}} d t \tag{16}
\end{equation*}
$$

where

$$
\begin{equation*}
D_{N}(t)=\frac{\sin \left(\left(N+\frac{1}{2}\right) \cos ^{-1} t\right)}{\pi \sin \frac{1}{2} \cos ^{-1} t} \tag{17}
\end{equation*}
$$

is a substitution of the Dirichlet kernel(see section 1 or [12]), and if $n=2 l+2$, $l \in \mathbf{N}_{0}$,

$$
\begin{gather*}
S_{N}(f ; 2 l+2 ; \xi)=\frac{2^{-l}}{\sqrt{\pi} \Gamma\left(l+\frac{1}{2}\right)} \tag{18}\\
\int_{-1}^{1} \frac{d^{l+1}}{d t^{l+1}}\left[\frac{1}{N+l} P_{N+l}(2 ; t)+\frac{1}{N+l+1} P_{N+l+1}(2 ; t)\right] \Phi_{\xi}(t)\left(1-t^{2}\right)^{l-\frac{1}{2}} d t \\
S_{N}(f ; 3 ; \xi)=\int_{-1}^{1} K_{N}(t) \Phi_{\xi}(t) d t \tag{19}
\end{gather*}
$$

where

$$
\begin{equation*}
K_{N}(t)=\frac{1}{2}\left(P_{N}^{\prime}(3 ; t)+P_{N+1}^{\prime}(3 ; t)\right) \tag{20}
\end{equation*}
$$

and if $n=2 l+3, l \in \mathbf{N}_{0}$,

$$
\begin{align*}
& S_{N}(f ; 2 l+3 ; \xi)=\frac{2^{-l-1}}{\Gamma(l+1)} \\
& \int_{-1}^{1} \frac{d^{l+1}}{d t^{l+1}}\left[P_{N+l}(3 ; t)+P_{N+l+1}(3 ; t)\right] \Phi_{\xi}(t)\left(1-t^{2}\right)^{l} d t \tag{21}
\end{align*}
$$

3. Main Results

Let $n>3$. We use $W^{\left[\frac{n-1}{2}\right]}([-1,1])$ for the Sobolev space

$$
\begin{aligned}
& W^{\left[\frac{n-1}{2}\right]}([-1,1])=\left\{g \in L^{2}([-1,1] ;\right. \\
& \left.\quad d \mu(t)) \left\lvert\, \frac{d^{l}}{d t^{l}} g \in L^{2-\mu}([-1,1] ; d \mu(t))\right., l=1,2, \cdots,\left[\frac{n-1}{2}\right]\right\},
\end{aligned}
$$

where $d \mu(t)=\left(1-t^{2}\right)^{-\frac{\mu}{2}} d t, \mu$ is defined by the relation $1-\mu=\mathrm{n} \bmod 2$, i.e., μ equals to 0 or 1 . This definition is also valid when n is 2 or $3,(l=0)$.

Then we have our main theorem,
Theorem 2. Let $\Phi_{\xi}(t) \in W^{\left[\frac{n-1}{2}\right]}([-1,1])$, if $\Phi_{\xi}(1)=\lim _{t \rightarrow 1} \Phi_{\xi}(t)$ exists, then

$$
\lim _{N \rightarrow \infty} S_{N}(f ; n ; \xi)=\Phi_{\xi}(1)
$$

If, in particular, f is continuous at ξ, then

$$
\lim _{N \rightarrow \infty} S_{N}(f ; n ; \xi)=f(\xi)
$$

Proof. Define on $-1 \leq t \leq 1$

$$
\begin{equation*}
\Psi_{\xi}^{\mu}(t)=\frac{(-1)^{l} \Gamma\left(\frac{\mu}{2}\right) 2^{-l}}{\Gamma\left(l+1-\frac{\mu}{2}\right)}\left(1-t^{2}\right)^{\frac{\mu}{2}} \frac{d^{l}}{d t^{l}}\left[\Phi_{\xi}(t)\left(1-t^{2}\right)^{l-\frac{\mu}{2}}\right], \tag{22}
\end{equation*}
$$

By integration by parts, the partial sums of (18) and (21) reduce to

$$
\begin{equation*}
S_{N}(f ; 2 l+2 ; \xi)=\int_{-1}^{1} D_{N+l}(t) \Psi_{\xi}^{1}(t)\left(1-t^{2}\right)^{-\frac{1}{2}} d t \tag{23}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{N}(f ; 2 l+3 ; \xi)=\int_{-1}^{1} K_{N+l}(t) \Psi_{\xi}^{0}(t) d t \tag{24}
\end{equation*}
$$

Now we distinguish two cases.
(a) \mathbf{n} even. Let $n=2 l+2, l \in \mathbf{N}_{0}$. From (22), we have

$$
\begin{aligned}
\Psi_{\xi}^{1}(t)= & \frac{(-1)^{l} \Gamma\left(\frac{1}{2}\right)}{2^{l} \Gamma\left(l+\frac{1}{2}\right)}\left(1-t^{2}\right)^{\frac{1}{2}} \frac{d^{l}}{d t^{l}}\left[\Phi_{\xi}(t)\left(1-t^{2}\right)^{l-\frac{1}{2}}\right] \\
= & \frac{(-1)^{l} \Gamma\left(\frac{1}{2}\right)}{2^{l} \Gamma\left(l+\frac{1}{2}\right)}\left(1-t^{2}\right)^{\frac{1}{2}}\left\{\Phi_{\xi}(t) \frac{d^{l}}{d t^{l}}\left(1-t^{2}\right)^{l-\frac{1}{2}}\right. \\
& \left.+\sum_{j=1}^{l} C_{l}^{j} \Phi_{\xi}^{(j)}(t) \frac{d^{l-j}}{d t^{l-j}}\left(1-t^{2}\right)^{l-\frac{1}{2}}\right\} \\
= & \Phi_{\xi}(t) t^{l}+\left(1-t^{2}\right)^{\frac{1}{2}} \sum_{j=1}^{l} C_{l}^{j} \Phi_{\xi}^{(j)}(t)\left(1-t^{2}\right)^{j-\frac{1}{2}} P_{l-j}(t) \\
= & \Phi_{\xi}(t) t^{l}+\left(1-t^{2}\right)^{\frac{1}{2}} \sum_{j=1}^{l} \Phi_{\xi}^{(j)}(t)\left(1-t^{2}\right)^{j-\frac{1}{2}} Q_{l-j}(t),
\end{aligned}
$$

where $P_{l-j}(t)$ and $Q_{l-j}(t)$ are polynomials of degree $\leq l-j$.
Then (23) becomes

$$
\begin{aligned}
& S_{N}(f ; 2 l+2 ; \xi) \\
= & \int_{-1}^{1} D_{N+l}(t) \Phi_{\xi}(t) t^{l}\left(1-t^{2}\right)^{-\frac{1}{2}} d t \\
& +\int_{-1}^{1} D_{N+l}(t) \sum_{j=1}^{l} \Phi_{\xi}^{(j)}(t)\left(1-t^{2}\right)^{j-\frac{1}{2}} Q_{l-j}(t) d t \\
= & \frac{1}{\pi} \int_{0}^{\pi} \frac{\sin \left(N+l+\frac{1}{2}\right) \theta}{\sin \frac{1}{2} \theta} \Phi_{\xi}(\cos \theta)(\cos \theta)^{l} d \theta \\
& +\frac{2}{\pi} \sum_{j=1}^{l} \int_{0}^{\pi} \sin \left(N+l+\frac{1}{2}\right) \theta \Phi_{\xi}^{(j)}(\cos \theta)(\sin \theta)^{2 j-1} Q_{l-j}(\cos \theta) \cos \frac{1}{2} \theta d \theta .
\end{aligned}
$$

Since $\Phi_{\xi}(t) \in W^{\left[\frac{n-1}{2}\right]}([-1,1])$, then

$$
\Phi_{\xi}(\cos \theta) \in L^{2}([0, \pi]) \text { and } \Phi_{\xi}^{(j)}(\cos \theta) \in L^{1}([0, \pi]), j=1,2, \cdots, l .
$$

Further,

$$
\Phi_{\xi}(\cos \theta)(\cos \theta)^{l} \in L^{2}([0, \pi])
$$

and

$$
\Phi_{\xi}^{(j)}(\cos \theta)(\sin \theta)^{2 j-1} Q_{l-j}(\cos \theta) \cos \frac{1}{2} \theta \in L^{1}([0, \pi]), j=1,2, \cdots, l .
$$

Therefore, using Carleson's Theorem for the first part of the above expression and using Riemann-Lebesgue Lemma for the second part, we have

$$
\begin{aligned}
\lim _{N \rightarrow \infty} S_{N}(f ; 2 l+2 ; \xi) & =\Phi_{\xi}(\cos 0)(\cos 0)^{l}+0 \\
& =\Phi_{\xi}(1)
\end{aligned}
$$

(b) \mathbf{n} odd. Let $n=2 l+3, l \in \mathbf{N}_{0}$. From (22), we have

$$
\Psi_{\xi}^{0}(t)=\frac{(-1)^{l}}{2^{l} \Gamma(l+1)} \frac{d^{l}}{d t^{l}}\left[\Phi_{\xi}(t)\left(1-t^{2}\right)^{l}\right] .
$$

Let $G_{\xi}(t)=\Phi_{\xi}(t)\left(1-t^{2}\right)^{l}$, then (24) becomes

$$
S_{N}(f ; 2 l+3 ; \xi)=\frac{(-1)^{l}}{2^{l+1} \Gamma(l+1)} \int_{-1}^{1}\left[P_{N+l}^{\prime}(3 ; t)+P_{N+l+1}^{\prime}(3 ; t)\right] G_{\xi}^{(l)}(t) d t
$$

Since $\Phi_{\xi}(t) \in W^{\left[\frac{n-1}{2}\right]}$, i.e. $\frac{d^{k}}{d t^{\Phi}} \Phi_{\xi}(t) \in L^{2}([-1,1]), k=0,1, \cdots, l+1$.
Then

$$
\frac{d^{k}}{d t^{k}} G_{\xi}(t) \in L^{2}([-1,1]), k=0,1, \cdots, l+1
$$

Thus, we can integrate the above integral by parts to obtain

$$
\begin{aligned}
& S_{N}(f ; 2 l+3 ; \xi) \\
= & \frac{(-1)^{l}}{2^{l+1} \Gamma(l+1)}\left\{\left.\left[P_{N+l}(3 ; t)+P_{N+l+1}(3 ; t)\right] G_{\xi}^{(l)}(t)\right|_{-1} ^{1}\right. \\
& \left.-\int_{-1}^{1}\left[P_{N+l}(3 ; t)+P_{N+l+1}(3 ; t)\right] G_{\xi}^{(l+1)}(t) d t\right\} \\
= & \Phi_{\xi}(1)-\frac{(-1)^{l}}{2^{l+1} \Gamma(l+1)} \int_{-1}^{1}\left[P_{N+l}(3 ; t)+P_{N+l+1}(3 ; t)\right] G_{\xi}^{(l+1)}(t) d t .
\end{aligned}
$$

So, the assertion of the theorem follows if we can show

$$
\int_{-1}^{1}\left|P_{m}(3 ; t) G_{\xi}^{(l+1)}(t)\right| d t \rightarrow 0, \text { as } m \rightarrow \infty .
$$

From (12) we have

$$
\int_{-1}^{1}\left|P_{m}(3 ; t)\right|^{2} d t=\frac{2}{2 m+1}, m \in \mathbf{N}_{0} .
$$

By Holder's inequality, we have

$$
\begin{aligned}
\int_{-1}^{1}\left|P_{m}(3 ; t) G_{\xi}^{(l+1)}(t)\right| d t & \leq\left(\int_{-1}^{1}\left|P_{m}(3 ; t)\right|^{2} d t\right)^{\frac{1}{2}} \cdot\left(\int_{-1}^{1}\left|G_{\xi}^{(l+1)}(t)\right|^{2} d t\right)^{\frac{1}{2}} \\
& =\left\|G_{\xi}^{(l+1)}\right\|_{L^{2}} \cdot \sqrt{\frac{2}{2 m+1}}
\end{aligned}
$$

Owing to the assumption of $\Phi_{\xi}(t)$, we have $G_{\xi}^{(l+1)}(t) \in L^{2}([-1,1])$, then

$$
\lim _{m \rightarrow \infty} \int_{-1}^{1}\left|P_{m}(3 ; t) G_{\xi}^{(l+1)}(t)\right| d t=0
$$

Thus,

$$
\lim _{N \rightarrow \infty} S_{N}(f ; 2 l+3 ; \xi)=\Phi_{\xi}(1) .
$$

Remark 1. The above proof of Theorem 2 is also valid for $n=2$ and, in fact, directly reduced to Carleson's Theorem. It is observed that for $n=2$, i.e., $l=0$.

In the first part of Theorem 2, the average $\Phi_{\xi}(t)$ becomes simply evaluation at two endpoints of the interval $\left(-\cos ^{-1} t, \cos ^{-1} t\right)$,

$$
\Phi_{\xi}(t)=\frac{1}{2}\left[f\left(\theta_{\xi}+\cos ^{-1} t\right)+f\left(\theta_{\xi}-\cos ^{-1} t\right)\right],
$$

where θ_{ξ} is the angle between ξ and e_{1}. The required Sobolev space reduces to L^{2} space. From the condition of Theorem 2, let $t=\cos \theta$, the Dirichlet kernel is just the same as the one in the complex plane, and $\Phi_{\xi} \in L^{2}([0, \pi])$ if and only if $\frac{1}{2}\left[f\left(\theta_{\xi}+\theta\right)+f\left(\theta_{\xi}-\theta\right)\right] \in L^{2}([0, \pi])$. In particular, if $\xi=1$, Theorem 2 reduces to the classical Carleson's Theorem.

Remark 2. By the result of R.A. Hunt [4], we can obviously extend the first part of Theorem 2, which n is an even number, to L^{p} cases, $1<p<\infty$.

Remark 3. We prefer to impose the condition on the average of f, but not on f, since the former is weaker than the latter. By the definition of $\Phi_{\xi}(t)$ and the Whitney's extension theorem(see [10] or [9]), the continuity property of $\Phi_{\xi}(t)$ can be inherited from f. But the L^{2}-bounded property can not. In general, $f \in L^{p}\left(\Omega_{n}\right)$, $p \geq 1$, implies $\Phi_{\xi}(t) \in L^{p}\left([-1 ; 1] ;\left(1-t^{2}\right)^{\lambda-\frac{1}{2}} d t\right)$, in fact, by Jensen's Inequality, since $x^{p}, p \geq 1$, is a convex function when $x \geq 0$,

$$
\begin{aligned}
& \int_{-1}^{1}\left|\Phi_{\xi}(t)\right|^{p}\left(1-t^{2}\right)^{\lambda-\frac{1}{2}} d t \\
= & \int_{-1}^{1}\left|\int_{\Omega(\xi)} f\left(t \xi+\left(1-t^{2}\right)^{\frac{1}{2}} \tilde{\eta}\right) d \omega_{n-1}(\tilde{\eta}) / A_{n-1}\right|^{p}\left(1-t^{2}\right)^{\lambda-\frac{1}{2}} d t \\
\leq & \int_{-1}^{1}\left(\int_{\Omega(\xi)}\left|f\left(t \xi+\left(1-t^{2}\right)^{\frac{1}{2}} \tilde{\eta}\right)\right| d \omega_{n-1}(\tilde{\eta}) / A_{n-1}\right)^{p}\left(1-t^{2}\right)^{\lambda-\frac{1}{2}} d t \\
\leq & \left.\int_{-1}^{1} \int_{\Omega(\xi)}\left|f\left(t \xi+\left(1-t^{2}\right)^{\frac{1}{2}} \tilde{\eta}\right)\right|^{p} d \omega_{n-1}(\tilde{\eta}) / A_{n-1}\right)\left(1-t^{2}\right)^{\lambda-\frac{1}{2}} d t \\
= & \int_{\Omega_{n}}|f(\eta)|^{p} d \omega_{n}(\eta) .
\end{aligned}
$$

In particular, when $n=3$, for any $p \geq 1, f \in L^{p}\left(\Omega_{n}\right)$ implies $\Phi_{\xi}(t) \in L^{p}([-1 ; 1])$ since $\lambda-\frac{1}{2}=0$ in the case. Note that, $\Phi_{\xi}(t) \in L^{p}([-1 ; 1])$ implies $\Phi_{\xi}(t) \in$ $L^{p}\left([-1 ; 1] ;\left(1-t^{2}\right)^{\lambda-\frac{1}{2}} d t\right)$ for any $p \geq 1$, but not vice versa.

References

1. L. Carleson, On convergence and growth of partial sums of Fourier series, Acta. Math., 116 (1966), 135-157.
2. P. G. L. Dirichlet, Sur les séries dont le terme general dépend de deux angle, et qui servent á exprimer des fonctions arbitraires entre des limites données, J. Reine Angew. Math., 17 (1873), 35-56.
3. A. Erdelyi, Higher transcendental functions, Vol. 1, McGraw-Hill, 1953.
4. R. A. Hunt, On the convergence of Fourier series, Orthogonal Expansions and Their continuous Analogues, Proc. Conf. Edwardsville, I11.(1967), 235-255; Southern Illinois Univ. Press, Carbondale, I11.(1968).
5. H. Kalf, On the expasion of a function in terms of spherical harmonics in arbitray dimensions, Bull. Bel. Math. Soc., 2 (1995), 361-380.
6. L. Koschmieder, Unmittelbarer Beweis der Konvergenz einiger Riehen, die von mehrern Verånderlichen abhăngen, Monatsh Math. Phys., 41 (1934), 58-63.
7. C. Meaney, Divergence Jacob: Polynomial series, Proc. Amer. Math. Soc., 87(3) (1983), 601-630.
8. C. Muller, Spherical harmonics, Lecture notes in Mathematics 17, Berlin, Springer 1966.
9. E. L. Roetman, Pointwise convergence for expansios in surface harmonics of arbitrary dimension, J. Reine Angew. Math., 282 (1976), 1-10.
10. H. Whitney, Differentiable functions defined in closed set. I, Trans. Amer. Math. Soc., 36 (1934), 369-387.
11. K. Y. Wang and L. Q. Li, Harmonic analysis and approximation on the unit sphere, Science Press, Beijing/New York, 2000.
12. A. Zygmund, Trigonometric series (2nd edition), 2 Vols., Cambridge, Eng. 1959.

Ming-gang Fei
School of Applied Mathematics,
University of Electronic Science and Technology of China,
Chengdu 610054,
P. R. China

E-mail: fei@uestc.edu.cn

Tao Qian
Department of Mathematics, Faculty of Science and Technology,
University of Macau,
P. O. Box 3001,

Macao, P. R. China
E-mail: fsttq@umac.mo

[^0]: Received February 7, 2007, accepted March 16, 2007.
 Communicated by Der-Chen Chang.
 2000 Mathematics Subject Classification: 42B05, 42A38, 30 G35.
 Key words and phrases: Spherical Harmonics, Fourier-Laplace series, Carleson's Theorem, Legendre polynomials.

