COMMUTATORS OF FRACTIONAL INTEGRAL OPERATOR ASSOCIATED TO A NONDOUBLING MEASURES ON METRIC SPACES

Canqin Tang ${ }^{1 *}$, Qingguo Li and Bolin Ma^{2}

Abstract

The main purpose of this paper is to prove the boundedness of commutators of fractional integral operators associated to a measure on metric space satisfying just a mild growth condition.

1. Introduction

In classical harmonic analysis, a critical supposition is the Borel measure μ on metric (quasi-metric) space satisfying the so-called "doubling condition", which means that there exists a positive constant C, such that, for every ball $B(x, r)$ of center x and radius r,

$$
\begin{equation*}
\mu(B(x, 2 r)) \leq C \mu(B(x, r)) . \tag{1.1}
\end{equation*}
$$

The commutators in these kinds of space have been studied by many authors for a long time. A well known result which was discovered by Coifman, Rochberg and Weiss $([1,7,15])$ is that the commutators $[b, T]$ of singular integral operators are bounded on some $L^{p}\left(\mathbb{R}^{n}\right)(1<p<\infty)$ if and only if $b \in B M O$, where $[b, T]$ is defined by

$$
[b, T] f(x)=b(x) T f(x)-T(b f)(x)
$$

Let I_{α} be the standard fractional integral, that is,

$$
I_{\alpha} f(x)=\int_{R^{n}} \frac{f(x)}{|x-y|^{n-\alpha}} d y
$$

[^0]The result in [12] states that $\left[b, I_{\alpha}\right]: L^{p} \rightarrow L^{q}$ is bounded, $1<p<n / \alpha, 1 / q=$ $1 / p-\alpha / n$ when $b \in B M O$. And M. Paluszyński [8] proved that the commutators $\left[b, I_{\alpha}\right]$ is a bounded operator from $L^{p}\left(\mathbb{R}^{n}\right)(1<p<\infty)$ to $L^{r}\left(\mathbb{R}^{n}\right)$ when $b \in \operatorname{Lip}_{\beta}$, here $1 / p-1 / r=(\alpha+\beta) / n, 0<\beta<1$ and $\left[b, I_{\alpha}\right] f(x)=b(x) I_{\alpha} f(x)-I_{\alpha}(b f)(x)$.

In recent years, many authors begin to develop the complete theory of CalderonZygmund operators and commutators in a separable metric space, on which the measure is nondoubling measure. A few articles pertaining to this line of research are [2, 4-6, 9-11, 13,14], and so on. In 2004, J.Garc'a and A. Eduardo investigated the behavior of the fractional integral I_{α} associated to an n-dimensional measure μ on a metric space with not assuming that the metric space is separable, and the other related operators K_{α} in [3]. Motivated by their works, we want to obtain the boundedness of commutators of I_{α} and K_{α} in these metric spaces.

2. The Boundedness of the Fractional Integral I_{α}

In this paper, (X, d, μ) will always be a metric measure space, where d is a distance on X and μ is a Borel measure on X, such that, for every ball

$$
B(x, r)=\{y \in X: d(x, y)<r\}, x \in X, r>0,
$$

we have

$$
\begin{equation*}
\mu(B(x, r)) \leq C r^{n} \tag{2.1}
\end{equation*}
$$

where n is some fixed positive real number and C is independent of x and r. Sometimes we shall refer to condition (2.1) by saying that the measure μ is n dimensional. $k B$ will denote the ball having the same center as B and radius k times that of B.

Before we give the results in our paper, we firstly state two lemmas which will be used all throughout the paper.

Lemma 2.1. ([3]). For every $\gamma>0$,

$$
\begin{equation*}
\int_{B(x, r)} \frac{1}{d(x, y)^{n-\gamma}} d \mu(y) \leq C r^{\gamma} \tag{2.2}
\end{equation*}
$$

Lemma 2.2. ([3]). For every $\gamma>0$,

$$
\begin{equation*}
\int_{X \backslash B(x, r)} \frac{1}{d(x, y)^{n+\gamma}} d \mu(y) \leq C r^{-\gamma} . \tag{2.3}
\end{equation*}
$$

In order to discuss the boundedness of commutator of fractional integral, we recall two definitions now.

Definition 2.1. Let $0<\alpha<n$. The fractional integral I_{α} associated to the measure μ will be defined, for appropriate functions f on X as

$$
\begin{equation*}
I_{\alpha} f(x)=\int_{X} \frac{f(y)}{d(x, y)^{n-\alpha}} d \mu(y) . \tag{2.4}
\end{equation*}
$$

Definition 2.2. Given $0<\beta<1$. We shall say that the function $f: X \rightarrow C$ satisfies a Lipschitz condition of order β provided with

$$
\begin{equation*}
|f(x)-f(y)| \leq C d(x, y)^{\beta} \quad \forall x, y \in X \tag{2.5}
\end{equation*}
$$

and the infimum of constants C in (2.5) will be denoted by $\|f\|_{\operatorname{Lip}(\beta)}$.
It is easy to see that the linear space of all Lipschitz functions of order β, modulo constants, becomes, with the norm $\|\cdot\|_{\operatorname{Lip}(\beta)}$, a Banach space, which is denoted by $\operatorname{Lip}(\beta)$.

Theorem 2.1. Let $0<\beta<1$ and $b \in \operatorname{Lip}(\beta)$. If $0<\alpha+\beta<n, 1 \leq p<\frac{n}{\alpha+\beta}$ and $\frac{1}{q}=\frac{1}{p}-\frac{\alpha+\beta}{n}$, then $\left[b, I_{\alpha}\right]$ is a bounded operator from $L^{p}(\mu)$ into Lorentz space $L^{q, \infty}(\mu)$, that is,

$$
\begin{equation*}
\mu\left(\left\{x \in X:\left|\left[b, I_{\alpha}\right] f(x)\right|>\lambda\right\}\right) \leq\left(\frac{C\|f\|_{L^{p}(\mu)}}{\lambda}\right)^{q} \tag{2.6}
\end{equation*}
$$

Proof. By the definition of commutator,

$$
\begin{aligned}
\left|\left[b, I_{\alpha}\right] f(x)\right| & =\left|b(x) I_{\alpha} f(x)-I_{\alpha}(b f)(x)\right| \\
& \leq \int_{X} \frac{|b(x)-b(y)||f(y)|}{d(x, y)^{n-\alpha}} d \mu(y) \\
& \leq C\|b\|_{\operatorname{Lip}(\beta)} \int_{X} \frac{|f(y)|}{d(x, y)^{n-\alpha-\beta}} d \mu(y),
\end{aligned}
$$

since $b \in \operatorname{Lip}(\beta)$. Using the estimate in the proof of Theorem 3.2 in [3], we can easily prove Theorem 2.1.

Applying Marcinkiewicz's interpolation theorem with induices, we have following result.

Corollary 2.1 For $0<\beta<1$ and $b \in \operatorname{Lip}(\beta), 1<p<\frac{n}{\alpha+\beta}$ and $\frac{1}{q}=\frac{1}{p}$ $-\frac{\alpha+\beta}{n}$, we have

$$
\begin{equation*}
\left\|\left[b, I_{\alpha}\right] f\right\|_{L^{q}(\mu)} \leq C\|f\|_{L^{p}(\mu)} \tag{2.7}
\end{equation*}
$$

3. The Boundedness of the Fractional Integral Operator K_{α}

In this section, we will concentrate on the behave of fractional integral operator.
Definition 3.1. Let $0<\alpha<n$ and $0<\varepsilon \leq 1$. A function $k_{\alpha}: X \times X \rightarrow C$ is said to be a fractional kernel of order α and regularity ε if it satisfies the following two conditions:

$$
\begin{equation*}
\left|k_{\alpha}(x, y)\right| \leq \frac{C}{d(x, y)^{n-\alpha}}, \quad \text { for } \quad \text { all } \quad x \neq y \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|k_{\alpha}(x, y)-k_{\alpha}\left(x^{\prime}, y\right)\right| \leq C \frac{d\left(x, x^{\prime}\right)^{\varepsilon}}{d(x, y)^{n-\alpha+\varepsilon}}, \quad \text { for } \quad d(x, y) \geq 2 d\left(x, x^{\prime}\right) \tag{3.2}
\end{equation*}
$$

The corresponding operator K_{α}, which is called a "fractional integral operator", is given by

$$
\begin{equation*}
K_{\alpha}(f)(x)=\int_{X} k_{\alpha}(x, y) f(y) d \mu(y) \tag{3.3}
\end{equation*}
$$

From (3.1), we know that $K_{\alpha}(f)$ is well defined for $f \in L^{p}(\mu)$ and $1 \leq p<n / \alpha$. And (2.6), (2.7) are also hold on in this case.

Definition 3.2. Let k_{α} be a fractional kernel of order α and regularity ε. For $f \in L^{p}(\mu)$, We define

$$
\begin{equation*}
\widetilde{K}_{\alpha}(f)(x)=\int_{X}\left\{k_{\alpha}(x, y)-k_{\alpha}\left(x_{0}, y\right)\right\} f(y) d \mu(y) \tag{3.4}
\end{equation*}
$$

where x_{0} is some fixed point of X.
Of course the function just defined depends on the point x_{0}. But the difference between any two functions obtained in (3.4) for different choice of x_{0} is just a constant. In fact, let $\widetilde{K}_{\alpha}^{x_{0}}(f)(x)=\int_{X}\left\{k_{\alpha}(x, y)-k_{\alpha}\left(x_{0}, y\right)\right\} f(y) d \mu(y)$ and $\widetilde{K}_{\alpha}^{x_{1}}(f)(x)=\int_{X}\left\{k_{\alpha}(x, y)-k_{\alpha}\left(x_{1}, y\right)\right\} f(y) d \mu(y)$. We know

$$
\begin{aligned}
& \widetilde{K}_{\alpha}^{x_{1}}(f)(x)-\widetilde{K}_{\alpha}^{x_{0}}(f)(x) \\
= & \int_{X}\left\{k_{\alpha}(x, y)-k_{\alpha}\left(x_{1}, y\right)\right\} f(y) d \mu(y)-\int_{X}\left\{k_{\alpha}(x, y)-k_{\alpha}\left(x_{0}, y\right)\right\} f(y) d \mu(y) \\
= & \left.\int_{X}\left\{k_{\alpha}\left(x_{0}, y\right)-k_{\alpha}\left(x_{1}, y\right)\right\} f(y) d \mu(y)\right) .
\end{aligned}
$$

and this is independent on x.

Making use of the above fact, we can discuss the boundedness of commutators of $\widetilde{K}_{\alpha}(f)(x)$.

Theorem 3.1. Let k_{α} be a fractional kernel with regularity ε and $b \in \operatorname{Lip}(\beta)$, $0<\beta<1$. If $1<\frac{n}{\alpha+\beta}<p<\infty$ and $\alpha+\beta-\frac{n}{p}<\varepsilon$, then $\left[b, \widetilde{K}_{\alpha}\right]$ maps $L^{p}(\mu)$ boundedly into $\operatorname{Lip}\left(\alpha+\beta-\frac{\mathrm{n}}{\mathrm{p}}\right)$.

Proof. Suppose $p<\infty$. Assume $x \neq y$. Let B be the ball with center x and radius $r=d(x, y)$. Since the difference between any two functioned defined in (3.4) for different elections of x_{0} is just a constant, we can choose $x_{0} \in 2 B$. Write

$$
\begin{aligned}
{\left[b, \widetilde{K}_{\alpha}\right] f(x)=} & b(x) \widetilde{K}_{\alpha}(f)(x)-\widetilde{K}_{\alpha}(b f)(x) \\
= & b(x) \int_{X}\left\{k_{\alpha}(x, y)-k_{\alpha}\left(x_{0}, y\right)\right\} f(y) d \mu(y) \\
& -\int_{X}\left\{k_{\alpha}(x, y)-k_{\alpha}\left(x_{0}, y\right)\right\} b(y) f(y) d \mu(y) \\
= & \int_{X} k_{\alpha}(x, y)[b(x)-b(y)] f(y) d \mu(y) \\
& -\int_{X} k_{\alpha}\left(x_{0}, y\right)\left[b\left(x_{0}\right)-b(y)\right] f(y) d \mu(y) \\
& +\left[b\left(x_{0}\right)-b(x)\right] \int_{X} k_{\alpha}\left(x_{0}, y\right) f(y) d \mu(y) .
\end{aligned}
$$

Then, we have

$$
\begin{aligned}
\left|\left[b, \widetilde{K}_{\alpha}\right] f(x)-\left[b, \widetilde{K}_{\alpha}\right] f(y)\right|= & \mid \int_{X}(b(x)-b(z)) k_{\alpha}(x, z) f(z) d \mu(z) \\
& -\int_{X}(b(y)-b(z)) k_{\alpha}(y, z) f(z) d \mu(z) \\
& +\int_{X}(b(y)-b(x)) k_{\alpha}\left(x_{0}, z\right) f(z) d \mu(z) \mid \\
\leq & \int_{2 B(x, r)}|b(x)-b(z)|\left|k_{\alpha}(x, z) f(z)\right| d \mu(z) \\
& +\int_{2 B(x, r)}|b(y)-b(z)|\left|k_{\alpha}(y, z) f(z)\right| d \mu(z)
\end{aligned}
$$

$$
\begin{aligned}
& +\int_{2 B(x, r)}|b(y)-b(x)|\left|k_{\alpha}\left(x_{0}, z\right) f(z)\right| d \mu(z) \\
& +\int_{X \backslash 2 B(x, r)}|b(x)-b(z)|\left|k_{\alpha}(x, z)-k_{\alpha}\left(x_{0}, z\right)\right||f(z)| d \mu(z) \\
& +\int_{X \backslash 2 B(x, r)}|b(y)-b(z)|\left|k_{\alpha}\left(x_{0}, z\right)-k_{\alpha}(y, z)\right||f(z)| d \mu(z) \\
& = \\
& \mathrm{I}+\mathrm{II}+\mathrm{III}+\mathrm{IV}+\mathrm{V} .
\end{aligned}
$$

We shall estimate each of these five terms separately.
For the first term, using the condition (3.1), Lemma 2.1 and Hölder inequality, we obtain that

$$
\begin{aligned}
\mathrm{I} & \leq C\|b\|_{\operatorname{Lip}(\beta)} \int_{2 B(x, r)} \frac{d(x, z)^{\beta}}{d(x, z)^{n-\alpha}}|f(z)| d \mu(z) \\
& \leq C\|b\|_{\operatorname{Lip}(\beta)}\|f\|_{L^{p}(\mu)}\left(\int_{2 B(x, r)} \frac{d \mu(z)}{d(x, z)^{(n-\alpha-\beta) p^{\prime}}}\right)^{1 / p^{\prime}} \\
& \leq C\|b\|_{\operatorname{Lip}(\beta)}\|f\|_{L^{p}(\mu)}(2 r)^{\alpha+\beta-\frac{n}{p}}
\end{aligned}
$$

here $(n-\alpha-\beta) p^{\prime}=n-p^{\prime}\left(\alpha+\beta-\frac{n}{p}\right)$ and $\alpha+\beta-\frac{n}{p}>0$.
The second term and the third term are estimated in a similar way after noticing that $2 B \subset B(y, 3 r)$ and $2 B \subset B\left(x_{0}, 4 r\right)$.

Now, we turn to the last two parts. By the regularity condition of fractional kernel (3.2) and Lemma 2.2, we obtain

$$
\begin{aligned}
\text { IV } & \leq \int_{X \backslash 2 B(x, r)}|b(x)-b(z)|\left|k_{\alpha}(x, z)-k_{\alpha}\left(x_{0}, z\right)\right||f(z)| d \mu(z) \\
& \leq C\|b\|_{\operatorname{Lip}(\beta)} \int_{X \backslash 2 B(x, r)} d(x, z)^{\beta} \frac{d\left(x, x_{0}\right)^{\varepsilon}}{d(x, z)^{n-\alpha+\varepsilon}}|f(z)| d \mu(z) \\
& \leq C\|b\|_{\operatorname{Lip}(\beta)} d(x, y)^{\varepsilon}\|f\|_{L^{p}(\mu)}\left(\int_{X \backslash 2 B(x, r)} \frac{d \mu(z)}{d(x, z)^{(n-\alpha-\beta+\varepsilon) p^{\prime}}}\right)^{1 / p^{\prime}} \\
& \leq C\|b\|_{\operatorname{Lip}(\beta)}\|f\|_{L^{p}(\mu)} d(x, y)^{\alpha+\beta-\frac{n}{p}}
\end{aligned}
$$

here $(n-\alpha-\beta+\varepsilon) p^{\prime}=n+p^{\prime}\left(\frac{n}{p}+\varepsilon-\alpha-\beta\right)$ and $\frac{n}{p}+\varepsilon-\alpha-\beta>0$.
For V , since $r=d(x, y)$, we have $B(y, r) \subset B(x, 2 r) \subset B(y, 3 r)$, and $X \backslash B(y, r) \supset X \backslash 2 B(x, r)$. Using the size condition (3.1) and Lemma 2.2, similar to IV, we have

$$
\begin{aligned}
\mathrm{V} & \leq \int_{X \backslash 2 B(x, r)}|b(y)-b(z)|\left|k_{\alpha}\left(x_{0}, z\right)-k_{\alpha}(y, z)\right||f(z)| d \mu(z) \\
& \leq C\|b\|_{\operatorname{Lip}(\beta)} \int_{X \backslash 2 B(x, r)} d(y, z)^{\beta} \frac{d\left(y, x_{0}\right)^{\varepsilon}}{d(y, z)^{n-\alpha+\varepsilon}}|f(z)| d \mu(z) \\
& \leq C\|b\|_{\operatorname{Lip}(\beta)} d\left(y, x_{0}\right)^{\varepsilon} \int_{X \backslash B(y, r)} \frac{d(y, z)^{\beta}}{d(y, z)^{n-\alpha+\varepsilon}}|f(z)| d \mu(z) \\
& \leq C\|b\|_{\operatorname{Lip}(\beta)} d(x, y)^{\varepsilon}\|f\|_{L^{p}(\mu)}\left(\int_{X \backslash B(y, r)} \frac{d \mu(z)}{d(x, z)^{(n-\alpha-\beta+\varepsilon) p^{\prime}}}\right)^{1 / p^{\prime}} \\
& \leq C\|b\|_{\operatorname{Lip}(\beta)}\|f\|_{L^{p}(\mu)} d(x, y)^{\alpha+\beta-\frac{n}{p}}
\end{aligned}
$$

Here $d\left(y, x_{0}\right) \leq d(x, y)+d\left(x, x_{0}\right) \leq 3 d(x, y)$.
Combining with all the estimates above, we obtain that

$$
\left|\left[b, \widetilde{K}_{\alpha}\right] f(x)-\left[b, \widetilde{K}_{\alpha}\right] f(y)\right| \leq C\|b\|_{\operatorname{Lip}(\beta)}\|f\|_{L^{p}(\mu)} d(x, y)^{\alpha+\beta-\frac{n}{p}}
$$

This finishes the proof of Theorem 3.1.
Furthermore, we can consider the boundedness of commutator in Lipschitz spaces.

Theorem 3.2 Let k_{α} be a fractional kernel with regularity $\varepsilon, \alpha, \gamma>0$ and $0<\beta<1$ such that $\alpha+\beta+\gamma<\varepsilon$. Suppose that $b \in \operatorname{Lip}(\beta)$. Then $\left[b, \widetilde{K}_{\alpha}\right]$ is bounded mapping from $\operatorname{Lip}(\gamma)$ to $\operatorname{Lip}(\alpha+\beta+\gamma)$ if and only if $\left[b, \widetilde{K}_{\alpha}\right](1)=C$.

Proof. Noticing that the continuity of the operator $\left[b, \widetilde{K}_{\alpha}\right]$ implies that $\left[b, \widetilde{K}_{\alpha}\right](1)=$ C, the necessity of Theorem 3.2 is obvious.

To prove the sufficiency, let $x \neq y, r=d(x, y), B=B(x, r)$ and choose $x_{0} \in 2 B$. We want to estimate $\left|\left[b, \widetilde{K}_{\alpha}\right](f)(x)-\left[b, \widetilde{K}_{\alpha}\right](f)(y)\right|$. Observe that $\left[b, \widetilde{K}_{\alpha}\right](1)=C$, therefore, $\left[b, \widetilde{K}_{\alpha}\right](1)(x)-\left[b, \widetilde{K}_{\alpha}\right](1)(y)=0$, that is,

$$
\begin{aligned}
& \int_{X}(b(x)-b(z)) k_{\alpha}(x, z) d \mu(z)-\int_{X}(b(y)-b(z)) k_{\alpha}(y, z) d \mu(z) \\
& \quad+\int_{X}(b(y)-b(x)) k_{\alpha}\left(x_{0}, z\right) d \mu(z)=0
\end{aligned}
$$

As the proof in Theorem 3.1, we can write

$$
\begin{aligned}
& \left|\left[b, \widetilde{K}_{\alpha}\right] f(x)-\left[b, \widetilde{K}_{\alpha}\right] f(y)\right| \\
= & \mid \int_{X}(b(x)-b(z)) k_{\alpha}(x, z) f(z) d \mu(z)-\int_{X}(b(y)-b(z)) k_{\alpha}(y, z) f(z) d \mu(z) \\
& +\int_{X}(b(y)-b(x)) k_{\alpha}\left(x_{0}, z\right) f(z) d \mu(z) \mid
\end{aligned}
$$

$$
\begin{aligned}
= & \mid \int_{X}(b(x)-b(z)) k_{\alpha}(x, z)(f(z)-f(x)) d \mu(z) \\
& -\int_{X}(b(y)-b(z)) k_{\alpha}(y, z)(f(z)-f(x)) d \mu(z) \\
& +\int_{X}(b(y)-b(x)) k_{\alpha}\left(x_{0}, z\right)(f(z)-f(x)) d \mu(z) \mid \\
\leq & \int_{2 B}|b(x)-b(z)|\left|k_{\alpha}(x, z)\right||f(z)-f(x)| d \mu(z) \\
& +\int_{2 B}|b(y)-b(z)|\left|k_{\alpha}(y, z)\right||f(z)-f(x)| d \mu(z) \\
& +\int_{2 B}|b(y)-b(x)|\left|k_{\alpha}\left(x_{0}, z\right)\right||f(z)-f(x)| d \mu(z) \\
& +\int_{X \backslash 2 B}|b(x)-b(z)|\left|k_{\alpha}(x, z)-k_{\alpha}\left(x_{0}, z\right)\right||f(z)-f(x)| d \mu(z) \\
& +\int_{X \backslash 2 B}(b(y)-b(z))\left|k_{\alpha}\left(x_{0}, z\right)-k_{\alpha}(y, z)\right||f(z)-f(x)| d \mu(z) \\
= & \mathrm{I}+\mathrm{II}+\mathrm{III}+\mathrm{IV}+\mathrm{V} .
\end{aligned}
$$

For the first part, using the size condition of the kernel k_{α} and Lemma 2.1, we have

$$
\begin{aligned}
\mathrm{I} & \leq C\|b\|_{\operatorname{Lip}(\beta)}\|f\|_{\operatorname{Lip}(\gamma)} \int_{2 B} \frac{d(x, z)^{\beta} d(x, z)^{\gamma}}{d(x, z)^{n-\alpha}} d \mu(z) \\
& \leq C\|b\|_{\operatorname{Lip}(\beta)}\|f\|_{\operatorname{Lip}(\gamma)} d(x, y)^{\alpha+\beta+\gamma} .
\end{aligned}
$$

Since $2 B(x, r) \subset B(y, 3 r)$ and $2 B \subset B\left(x_{0}, 4 r\right)$,similar to the estimation of part I , we obtain

$$
\begin{aligned}
\mathrm{II} & \leq\|b\|_{\operatorname{Lip}(\beta)}\|f\|_{\operatorname{Lip}(\gamma)} \int_{B(y, 3 r)} \frac{d(y, z)^{\beta} d(x, z)^{\gamma}}{d(y, z)^{n-\alpha}} d \mu(z) \\
& \leq C\|b\|_{\operatorname{Lip}(\beta)}\|f\|_{\operatorname{Lip}(\gamma)} r^{\alpha+\beta+\gamma}
\end{aligned}
$$

and

$$
\begin{aligned}
\mathrm{III} & \leq\|b\|_{\operatorname{Lip}(\beta)}\|f\|_{\operatorname{Lip}(\gamma)} \int_{B\left(x_{0}, 4 r\right)} \frac{d(x, y)^{\beta} d(x, z)^{\gamma}}{d\left(x_{0}, z\right)^{n-\alpha}} d \mu(z) \\
& \leq C\|b\|_{\operatorname{Lip}(\beta)}\|f\|_{\operatorname{Lip}(\gamma)^{r}}{ }^{\alpha+\beta+\gamma}
\end{aligned}
$$

Now, we turn to estimate the last two parts. Similar to the proof of Theorem 3.1,
by the regular condition (3.2) and Lemma 2.2, we have

$$
\begin{aligned}
\mathrm{IV} & \leq \int_{X \backslash 2 B}|b(x)-b(z)|\left|k_{\alpha}(x, z)-k_{\alpha}\left(x_{0}, z\right)\right||f(z)-f(x)| d \mu(z) \\
& \leq C\|b\|_{\operatorname{Lip}(\beta)}\|f\|_{\operatorname{Lip}(\gamma)} \int_{X \backslash 2 B} d(x, z)^{\beta}\left|k_{\alpha}(x, z)-k_{\alpha}\left(x_{0}, z\right)\right| d(x, z)^{\gamma} d \mu(z) \\
& \leq C\|b\|_{\operatorname{Lip}(\beta)}\|f\|_{\operatorname{Lip}(\gamma)} \int_{X \backslash 2 B} d(x, z)^{\beta+\gamma} \frac{d\left(x, x_{0}\right)^{\varepsilon}}{d(x, z)^{n-\alpha+\varepsilon}} d \mu(z) \\
& \leq C\|b\|_{\operatorname{Lip}(\beta)}\|f\|_{\operatorname{Lip}(\gamma)} d(x, y)^{\varepsilon} \int_{X \backslash 2 B} \frac{1}{d(x, z)^{n+\varepsilon-\alpha-\beta-\gamma}} d \mu(z) \\
& \leq C\|b\|_{\operatorname{Lip}(\beta)}\|f\|_{\operatorname{Lip}(\gamma)} d(x, y)^{\alpha+\beta+\gamma},
\end{aligned}
$$

here we used $\alpha+\beta+\gamma<\varepsilon$.
For V, as the above proof, since $d(x, z) \leq d(x, y)+d(y, z) \leq 2 d(y, z)$, we obtain

$$
\begin{aligned}
\mathrm{V} & \leq \int_{X \backslash 2 B}|b(y)-b(z)|\left|k_{\alpha}(y, z)-k_{\alpha}\left(x_{0}, z\right)\right||f(z)-f(x)| d \mu(z) \\
& \leq C\|b\|_{\operatorname{Lip}(\beta)}\|f\|_{\operatorname{Lip}(\gamma)} \int_{X \backslash 2 B} d(y, z)^{\beta}\left|k_{\alpha}(y, z)-k_{\alpha}\left(x_{0}, z\right)\right| d(x, z)^{\gamma} d \mu(z) \\
& \leq C\|b\|_{\operatorname{Lip}(\beta)}\|f\|_{\operatorname{Lip}(\gamma)} \int_{X \backslash B(y, r)} d(y, z)^{\beta+\gamma} \frac{d\left(y, x_{0}\right)^{\varepsilon}}{d(y, z)^{n-\alpha+\varepsilon}} d \mu(z) \\
& \leq C\|b\|_{\operatorname{Lip}(\beta)}\|f\|_{\operatorname{Lip}(\gamma)} d(x, y)^{\varepsilon} \int_{X \backslash B(y, r)} \frac{1}{d(y, z)^{n+\varepsilon-\alpha-\beta-\gamma}} d \mu(z) \\
& \leq C\|b\|_{\operatorname{Lip}(\beta)}\|f\|_{\operatorname{Lip}(\gamma)} d(x, y)^{\alpha+\beta+\gamma},
\end{aligned}
$$

Therefore, Theorem 3.2 is proved.

References

1. R. R. Coifman, R. Rochberg and G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math., 103 (1976), 611-635.
2. G. Chen and E. Sawyer, A note on commutators of fractional integrals with $\operatorname{RBMO}(\mu)$ functions, Illinois. of Math., 46 (2002), 1287-1298.
3. J. Garc ía-Cuerva and A. E.Gatto, Boundedness peoperties of fractional integral operators associated to non-doubling measures, Studia. Math., 162 (2004), 245-261.
4. J.Garc ía-Cuerva and J. M. Martell, Weighted inequalities and vector-valued CalderonZygmund operators on non-homogeneous space. Public. Math., 44, (2000), 613-640.
5. J. Garc ía-Cuerva and J. M. Martell, Two-weight norm inequalities for maximal operators and fractional integrals on non-homogeneous space, Indiana Univ. Math. J., 50 (2001), 1241-1280.
6. G. Hu, Y. Meng and D. Yang, Multilinear commutators of singular integrals with non-doubling measure, Integral Equations Operator Theory, 51 (2005), 235-255.
7. S. Janson, Mean oscillation and commutators of singular integral operators, Ark. Math., 16 (1978), 263-270.
8. M. Paluszyński, Characterization of the besov spaces via the commutator operator of Coifman, Rochberg and Weiss [J], Indiana Univ. Math. J., 44 (1995), 1-17.
9. Y. Meng and D.Yang, Boundedness of commutators with Lipschitz function in nonhomogeneous spaces, Taiwan Math. J., 10 (2006), 1443-1464.
10. F. Nazarov, S. Treil and A. Volberg, Cauchy integral and Calderon-Zygmund operators on non-homogeneous spaces, Int. Math. Res. Not., 15 (1997), 703-726.
11. F. Nazarov, S. Treil and A. Volberg, Weak type estimates and Coltar inequalities for Calderon-Zygmund operators in non-homogeneous spaces, Int. Math. Res. Not., 9 (1998), 463-487.
12. S. Chanillo, A note on commutators, Indiana Univ. Math. J., 31 (1982), 7-16.
13. X. Tolsa. L^{2}-boundedness of the Cauchy integral for continuous measure, Duke Math. J., 98 (1999), 269-304.
14. X. Tolsa. Coltar inequalities and existence of principal values for the Cauchy integral without the doubling condition, J. Reine Angew. Math., 502 (1998), 199-235.
15. A. Uchiyama, On the compactness of operators of Hankel type, Tohoku Math. J., 30 (1978), 163-171.

Canqin Tang
Department of Mathematics,
Dalian Maritime University,
Dalian 116026,
P. R. China
E-mail: tangcq2000@yahoo.com.cn
Qingguo Li and Bolin Ma
College of Mathematics and Econometrics,
Hunan University,
Changsha, P. R. China
E-mail: liqingguoli@yahoo.com.cn
blma@hnu.cn

[^0]: Received April 14, 2007, accepted October 26, 2007.
 Communicated by Yongsheng Han.
 2000 Mathematics Subject Classification: 42B20, 47B38.
 Key words and phrases: Commutator, Fractional integral operator, Lipschitz space, Mild growth condition.
 ${ }^{1}$ Supported by Hunan Provincial Natural Science Foundation of China 06A0074.
 ${ }^{2}$ The work is partially supported by NSF of China (10771054).
 *Corresponding author.

