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THE STRUCTURE OF LEFT FILIAL ALGEBRAS OVER A FIELD

M. Filipowicz1 and E. R. Puczyl-owski2

Abstract. The structure of left filial algebras over fields is studied. Roughly
speaking, these are algebras in which the relation ”being a left ideal” is tran-
sitive. It is shown that semiprime algebras are left filial if and only if they
are strongly regular and that prime radical algebras are left filial if and only
if they are H-algebras, i.e., algebras in which all subalgebras are ideals. In
the general case structure theorems describing left filial algebras are obtained.
They make it possible to get a complete classification of finite dimensional
left filial algebras over some fields.

1. INTRODUCTION

Many studies concern rings in which some kind of subrings are ideals or left
(right) ideals. Among those are for instance duo rings (i.e., rings in which one-sided
ideals are ideals) or quasi-duo rings (i.e., rings in which maximal one-sided ideals
are ideals). The best known is the structure of H-rings, i.e., rings in which all
subrings are ideals. They were studied in a number of papers (cf. [9]) but still their
classification is not complete. Much wider is the class of filial (left filial) rings, i.e.,
rings R such that if I is an ideal (left ideal) of J and J is an ideal (left ideal) of R,
then I is an ideal (left ideal) of R. These rings were extensively studied in many
papers (cf. [1-5], [11-14]). As these (and some other) papers show the structure of
such rings is very complicated and far from a complete description.

In [8] Liu studied H-algebras over a field, i.e., F -algebras whose all subalgebras
are ideals. It turned out that they are much easier to classify than H-rings and Liu
obtained for them quite satisfactory structure theorems. In that context one may
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expect that the structure of filial and/or left filial algebras over a field is also simpler
than the structure of filial and/or left filial rings. This hope support some results
obtained in [4-6] showing that it concerns algebras over some fields, which are left
filial as rings.

This paper concerns that subject, i.e., we study here associative left filial algebras
over fields. In Section 2 we show that for semiprime algebras the classes of left
(right) filial algebras and strongly regular algebras coincide and they are strictly
contained in the class of filial algebras. For prime radical algebras, the classes
of filial, left (right) filial and H-algebras coincide (Section 3). In the general
case we obtain in Section 4 structure theorems describing left filial algebras almost
completely. They make it possible to classify finite dimensional algebras of such
type over fields over which some quadratic forms are classified, in particular over
algebraically closed and finite fields. We also show that algebras which are filial
and left filial are right filial and describe their structure in Section 5.

Throughout the paper F denotes a field, algebra means associative F -algebra
and ideal (left ideal, right ideal) of an algebra A means F -ideal (left F -ideal, right
F -ideal) of A. To denote that I is an ideal (left ideal, right ideal) of an algebra A
we write I � A (I <l A, I <r A).

For a given F -algebra A we denote by A∗ the F -algebra obtained from A by
adjoining identity. If X is a subset of A, then lA(X) (respectively, rA(X)) denotes
the left (respectively, right) annihilator of X in A.

An algebra A is called filial (left filial, right filial) if I � J � A (respectively,
I <l J <l A, I <r J <r A) implies I � A (respectively, I <l A, I <r A).

We start with characterizations of filial and left filial algebras. They are very
similar to those known for rings but we include their proofs for completeness.

For a given element a of an algebra A, we denote by (a) the ideal of A generated
by a.

Proposition 1.1. (cf. [4]). An algebra A is

(i) filial if and only if for every a ∈ A, (a) = (a) 2 + Fa;
(ii) left filial if and only if for every a ∈ A, A ∗a = A∗a2 + Fa.

Proof.

(i) Note that (a)2+Fa�(a)�A. Hence if A is a filial algebra, then (a)2+Fa�A.
Obviously a ∈ (a)2 + Fa ⊆ (a), so (a) = (a)2 + Fa. Suppose now that
for every a ∈ A, (a) = (a)2 + Fa and J � I � A. Take any j ∈ J . Then
(j) = (j)2 + Fj = ((j)2 + Fj)2 + Fj ⊆ (j)3 + Fj ⊆ IjI + Fj ⊆ J . This
shows that J � A and (i) is proved.

(ii) Note that for every a ∈ A, A∗a2 + Fa <l A∗a <l A. Hence if A is left filial
a ∈ A∗a2 + Fa <l A and we get that A∗a2 + Fa = A∗a. Conversely, let
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K <l L <l A. Take any k ∈ K. Then A∗k = A∗k2 + Fk ⊆ Lk + Fk ⊆ K.
This shows that K <l A and we are done.

2. SEMIPRIME ALGEBRAS

An algebra A is called strongly regular if for every a ∈ A there exists x ∈ A
such that a = xa2, equivalently, a ∈ Aa2.

Now we quickly recall some properties of strongly regular and related algebras,
which will be needed later. More information concerning such algebras one can
find in [7].

It is clear that strongly regular algebras are reduced (i.e., they do not contain
non-zero nilpotent elements) and it is not hard to check that if A is a reduced algebra,
then for arbitrary elements a, x ∈ A, a = xa2 if and only if a = a2x if and only
if a = axa. In particular, an algebra is strongly regular if and only if it is reduced
and von Neumann regular. An algebra is von Neumann regular if and only if every
finitely generated left (equivalently, right) ideal is generated by an idempotent. In
reduced rings idempotents are central. Consequently strongly regular rings are duo
rings, i.e., their one-side ideals are ideals.

It is clear that ideals of strongly regular algebras are strongly regular algebras as
well and they are idempotent. Now if J�K�A and J2 = J , then AJ = AKJ = J

and JA = JKA = J , so J � A. These in particular show that strongly regular
algebras are filial and left (right) filial.

Now we will show that semiprime left filial algebras are strongly regular.
We start with the following simple lemma.

Lemma 2.1. If A is a reduced algebra and for some a, b ∈ A and a positive
integer n, abn = 0, then ab = 0.

Proof. Let k be the smallest positive integer such that abk = 0. If k ≥ 2, then
(babk−1)2 = 0. Hence, since A is reduced, babk−1 = 0. Now (abk−1)2 = 0, so
abk−1 = 0, a contradiction. Thus k = 1 and hence ab = 0.

Theorem 2.2. Every left filial semiprime algebra A is strongly regular.

Proof. By Proposition 1.1, if a ∈ A and a2 = 0, then A∗a = Fa, so (A∗a)2 =
0. Hence, since A is semiprime, A∗a = 0. Consequently A∗ is a reduced algebra.

Applying Proposition 1.1 we get that for every a ∈ A, A∗a2 = A∗a4 + Fa2.
Hence there exist x ∈ A∗ and α ∈ F such that a3 = xa4 + αa2. Now (a − xa2 −
α)a2 = 0, so by Lemma 2.1, (a− xa2 − α)a = 0. This implies that if α �= 0, then
a ∈ A∗a2. If α = 0, then (a − xa2)a = 0, so (1 − xa)a2 = 0 and by Lemma 2.1,
(1− xa)a = 0. Thus in both cases a ∈ A∗a2 = (A∗a)a ⊆ (A∗a2)a ⊆ Aa2 and we
are done.
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The above results show in particular that semiprime algebras are left filial if and
only if they are right filial (so they are filial). Obviously every simple algebra is
filial but a strongly regular algebra is simple if and only if it is a division algebra.
Thus there are many semiprime filial algebras which are not left filial.

Let us note that also semiprime rings are left filial if and only if they are right
filial ([4]) but the example of the ring of integers shows that it is not true that they
are strongly regular. The proof of that result for rings is much more complicated
than for algebras.

3. PRIME RADICAL ALGEBRAS

In this section we study the structure of prime radical algebras, which are filial
or left filial. We start with the following

Theorem 3.1. If a prime radical algebra A is filial or left filial, then A 3 = 0.

Proof. Suppose first that A is nilpotent and let k be the smallest positive
integer such that Ak = 0. If k ≥ 4, then for every a ∈ Ak−2, (a)2 = 0. Hence
by Proposition 1.1, A∗a = Fa when A is a left filial algebra and (a) = Fa when
A is a filial algebra. In both cases, for every x ∈ A there exists α ∈ F such that
xa = αa. However x ∈ A is nilpotent, so if 0 �= α ∈ F , then α− x is invertible in
A∗ and a = 0. Consequently for every a ∈ Ak−2, Aa = 0, so Ak−1 = AAk−2 = 0,
which contradicts minimality of k. Therefore k ≤ 3 and we are done.

Now let A be an arbitrary prime radical filial or left filial algebra. Applying
Zorn’s lemma one easily notes that there exists an ideal M maximal in the family of
ideals I of A such that I 3 = 0. If A �= M , then A/M , as a non-zero prime radical
algebra, contains a non-zero nilpotent ideal I/M . Obviously I is a nilpotent filial
or left filial algebra. Hence by the foregoing, I3 = 0. This contradiction shows that
A = M , so A3 = 0.

Corollary 3.2. A prime radical algebra is filial if and only if it is an H-algebra.

Proof. Suppose that A is a prime radical filial algebra. By Theorem 3.1,
A3 = 0. Let B be a subalgebra of A. Note that B � B + A2 � A. Hence, since
A is a filial algebra, B � A. This shows that A is an H-algebra. The opposite
implication is clear.

The next theorem shows in particular that also the class of prime radical left
filial algebras coincides with the class of prime radical H-algebras.

Theorem 3.3. For a given prime radical algebra A the following conditions
are equivalent
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(i) A is left filial;

(ii) A3 = 0 and for every a ∈ A, Aa = Fa2;

(iii) A3 = 0 and for every x ∈ A, Ax = xA = Fx2;

(iv) A is an H-algebra.

Proof. (i) ⇒ (ii). Theorem 3.1 shows that A3 = 0 and from Proposition 1.1
we get that for every a ∈ A, A∗a = A∗a2 + Fa. Hence A∗a = Fa + Fa2. Take
any x ∈ A. Then xa = αa + βa2 for some α, β ∈ F . Now x2a = αxa + βxa2

and, since A3 = 0, αxa = 0. If α �= 0, then xa = 0. If α = 0, then xa = βa2. In
both cases xa ∈ Fa2. Hence Aa = Fa2 and (ii) follows.

(ii) ⇒ (iii). It suffices to show that for every y ∈ A, xy ∈ Fx2. Applying (ii) to
a = y we get that xy = αy2 for some α ∈ F . If α = 0, then obviously xy ∈ Fx2.
Thus assume that α �= 0. Note that (x − αy)2 = x2 − αyx. Hence applying (ii) to
a = x−αy and next to a = x we get that x(x−αy) ∈ F (x2 −αyx) ⊆ Fx2. This
obviously implies that xy ∈ Fx2.

(iii) ⇒ (iv). Let B be any subalgebra of A. From (iii) we immediately get that
for every b ∈ B, Fb + Fb2 � A. Obviously B =

∑
b∈B(Fb + Bb2). Hence B � A

and (iv) follows.
The implication (iv) ⇒ (i) is clear.

Remark 3.4. In [5] it was proved that also prime radical filial rings are H-
rings. However the proof for rings is much harder than for algebras. The examples
nZ/nkZ, where Z is the ring of integers, show that Theorem 3.1 does not hold for
rings. Note also that there are left filial, nilpotent of index 3 rings, which are not
filial ([5]). Obviously they are not H-rings.

The following result can be derived from the main theorem proved in [8]. We
include its quick proof based on Theorem 3.3 (iii).

Corollary 3.5. A prime radical algebra A is left filial if and only if A 2 = 0 or
A = B ⊕C, where C2 = 0, B2 = Fb for some 0 �= b ∈ B with Bb = bB = 0 and
for every x ∈ B \ Fb, x2 �= 0.

Proof. Suppose that A is left filial and x, y ∈ A are such that x 2 �= 0 �= y2.
If xy �= 0 or yx �= 0, then by Theorem 3.3 (iii), Fxy + Fyx = Fx2 = Fy2. If
xy = yx = 0, then x2 = x(x+y) ∈ F (x+y)2 = F (x2 +y2), so x2 = α(x2 +y2)
for some α ∈ F and (1− α)x2 = αy2. This easily implies that again Fx2 = Fy2.
Consequently A2 = 0 or there is a ∈ A such that A2 = Fa2 �= 0. From Theorem
3.3 (iii) it also follows that T = {x ∈ A | x2 = 0} = {x ∈ A | xA = Ax = 0}
and b = a2 ∈ T . Let C be a maximal F -subspace of T , which does not contain
b and let B be the F -linear complement of C in A containing b. The relations
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obtained above immediately show that B, C and b satisfy the conditions stated in
the corollary.

The get the opposite implication it suffices to note that if A is an algebra of
the form described in the ”if” part and U is a subalgebra of A, then b ∈ U or
AU = UA = 0. In both cases U is an ideal of A.

As we have proved in Theorem 3.3 all prime radical left filial algebras are H-
algebras. Thus the results concerning the structure of H-algebras obtained in [8]
apply to prime radical left filial algebras. In particular from Corollary 2 proved in
[8] it follows that if every polynomial over F of degree 2 has a root in F , then a
prime radical algebra A is left filial if and only if A2 = 0 or A = B ⊕ C, where
B2 = 0 and C � xF [x]/x3F [x]. From results proved in [8] it also follows that
for an arbitrary F the classification problem of finite dimensional prime radical left
filial algebras is equivalent to a linear algebra problem (roughly speaking concerning
a classification of F -bilinear mappings).

We close this section with two results concerning a classification of indecom-
posable prime radical left filial algebras.

We say that an algebra is indecomposable if it is not isomorphic to a direct sum
of two non-zero algebras.

The quadratic form
∑

1≤i,j≤n fijxixj in indeterminates x1, · · · , xn over F is
called isotropic if there are α1, · · · , αn ∈ F , not all equal 0, such that

∑
1≤i,j≤n

fijαiαj = 0.

Proposition 3.6. If every quadratic form over F in n indeterminates is isotropic
and A is a prime radical left filial indecomposable algebra, then dim FA ≤ n.

Proof. If A2 = 0, then, since A is indecomposable, dimFA ≤ 1. Thus assume
that A2 �= 0. Then by Corollary 3.5, there is 0 �= a ∈ A such that A2 = Fa2 �= 0
and x2 �= 0 for every 0 �= x ∈ A \ Fa2. Let e1 = a, e2, · · · , en ∈ A. For arbitrary
1 ≤ i, j ≤ n there is fij ∈ F such that eiej = fija

2. By the assumption the
quadratic form

∑
1≤i,j≤n fijxixj is isotropic. Hence there are α1, · · · , αn ∈ F ,

not all equal 0, such that
∑

1≤i,j≤n fijαiαj = 0. Then (α1e1 + · · ·+ αnen)2 = 0.
Hence α1e1 + · · ·+ αnen ∈ Fa2. This shows that dimFA ≤ n.

It is known (cf. [10]) that if F is a finite field, then the assumption of Proposition
3.6 is satisfied for n = 3. Thus indecomposable prime radical left filial algebras
over such fields are of dimension ≤ 3.

It is clear that a non-zero prime radical indecomposable algebra is of dimension
≤ 2 if and only if A � xF [x]/x2F [x] or A � xF [x]/x3F [x]. In the following
proposition we describe indecomposable prime radical left filial algebras of dimen-
sion 3.
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Proposition 3.7. An indecomposable prime radical algebra with dim FA = 3 is
left filial if and only if it contains a basis {e 1, e2, e3} such that e2

1 = e3, e2
2 = αe3,

e1e2 = 0, e2e1 = βe3 and eie3 = e3ei = 0 for all 1 ≤ i ≤ 3, where 0 �= α ∈ F

and β ∈ F are such that the equation 1 + βt + αt2 = 0 has no solution in F .

Proof. Suppose that A is an indecomposable prime radical left filial algebra
with dimF A = 3. By Corollary 3.5 there is e1 ∈ A such that e3 = e2

1 �= 0 and
A2 = Fe3. Since dimFA = 3, there exists e2 �= 0 such that e1e2 = 0. It is
clear that e1, e2, e3 form a basis of A. Moreover since for every x ∈ A \ Fe3,
x2 �= 0, there is 0 �= α ∈ F such that e2

2 = αe3. Since A2 = Fe3, there
is β ∈ F such that e2e1 = βe3 and, since A3 = 0, eie3 = e3ei = 0 for all
1 ≤ i ≤ 3. Let f ∈ F and x = e1 + fe2. Obviously x ∈ A \ Fe3. Hence
x2 = (1 + βf + αf2)e3 �= 0. Consequently 1 + βf + αf2 �= 0 and hence the
equation 1 + βt + αt2 = 0 has no solution in F . This proves the ”only if” part of
the proposition. It is not hard to see that, in view of Corollary 3.5, to get the ”if”
part it suffices to prove that for arbitrary f1, f2 ∈ F , if (f1e1 + f2e2)2 = 0, then
f1 = f2 = 0. Now (f1e1 + f2e2)2 = f2

1 + f1f2β + f2
2 α, so if it is equal to 0, then

f2
1 + βf1f2 + αf2

2 = 0. Note that if f1 = 0, then, since α �= 0, f2 = 0 and we
are done. Otherwise the equation 1 + βt + αt2 = 0 would have a solution in F , a
contradiction.

Applying Corollary 3.5, Proposition 3.6, Proposition 3.7 and the fact that over
finite fields quadratic forms in 3 indeterminates are isotropic, we immediately obtain
the following complete classification of prime radical left filial algebras over finite
fields.

Corollary 3.8. A prime radical algebra over a finite field F is left filial if and
only if A � B ⊕ C, where B is an algebra such that B 2 = 0 and C = 0 or
C � xF [x]/x3F [x] or C is isomorphic to the algebra described in Proposition
3.7.

4. GENERAL CASE

In what follows we denote by R(A) the prime radical of the algebra A.
We start with two lemmas.

Lemma 4.1. If A is a left filial algebra, then for every idempotent e ∈ A,
eR(A) = 0 or ea = a for all a ∈ R(A).

Proof. Take any a ∈ R(A). From Theorem 3.3 it follows that a3 = 0 and
Fa + Fa2 <l A. Thus ea = αa + βa2 for some α, β ∈ F . If α = 0, then ea
= e(ea) = β(ea)a = β2a3 = 0. If α �= 0 and a2 �= 0, then αa + βa2 = ea =
e(ea) = e(αa + βa2) = α(αa + βa2) + β(αa + βa2)a = α2a + 2αβa2. Since
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a2 �= 0 and a3 = 0, a and a2 are linearly independent over F . Consequently α2 = α

and β = 2αβ. This gives that α = 1 and β = 0. Hence ea = a. Finally, if α �= 0,
a �= 0 and a2 = 0, then ea = αa and ea = e(ea) = α2a. Consequently α = α2, so
α = 1 and ea = a. Therefore in all cases ea = a or ea = 0.

Suppose now that there exists 0 �= x ∈ R(A) such that ex = x. Take any
a ∈ R(A). By the forgoing x + ea = e(x + a) = x + a or x + ea = e(x + a) = 0.
In the former case ea = a and in the latter ea = −x �= 0. Hence ea = a. Thus
indeed eR(A) = 0 or ea = a for all a ∈ R(A).

Lemma 4.2. If A is a left filial algebra, then for every x ∈ A there exist y ∈ A
and an idempotent e ∈ A such that x − xyx, yx− e, x − xe ∈ R(A).

Proof. By Theorem 2.2, A/R(A) is strongly regular. Hence for every x ∈ A

there exists y ∈ A such that x−xyx ∈ R(A). Moreover yx+R(A) is an idempotent
of A/R(A). It can be lifted to an idempotent in A, i.e., there exists an idempotent
e ∈ A such that yx − e ∈ R(A). Finally x−xe=x−xyx+x(yx−e)∈R(A).

Now we are ready to describe the structure of left filial algebras.

Theorem 4.3. A is a left filial algebra if and only if A/R(A) is strongly regular,
R(A) is an H-algebra and

(i) A = lA(R(A)) + R(A)
or

(ii) A = Fe + lA(R(A))+R(A), where R(A) �= 0 and e is an idempotent of A
such that eb = b for every b ∈ R(A).

Proof. Suppose that A is a left filial algebra. If R(A) = 0, then obviously
A = lA(R(A)) and (i) holds. Thus suppose that there is 0 �= a ∈ R(A). We
can assume that a2 = 0. Then by Theorem 3.3, R(A) ⊆ lA(a). Obviously
Fa <l A. Hence lA(a) = A or codimF lA(a) = 1. If the latter holds, then there
is x ∈ A \ lA(a) such that Fx + lA(a) = A. Applying Lemma 4.2 we get that
there exists an idempotent e ∈ A such that x− xe ∈ R(A). Since R(A)a = 0 and
xa �= 0, we have ea �= 0. Hence by Lemma 4.1, eb = b for every b ∈ R(A).

To get the ”only if” part of the result it remains to prove that lA(a) ⊆ lA(R(A))+
R(A). Take any x ∈ lA(a). Lemma 4.2 implies that there exist y ∈ A and
an idempotent e ∈ A such that x − xyx ∈ R(A) and yx − e ∈ R(A). Since
xa = 0 and R(A)a = 0, we get ea = 0. Hence by Lemma 4.1, eR(A) = 0. Now
x = x−xyx+xyx−xe+xe. Since x−xyx ∈ R(A), xyx−xe = x(yx−e) ∈ R(A)
and xe ∈ lA(a), we get that x ∈ lA(a)+R(A). Hence the ”only if” part is proved.

To prove the ”if” part suppose that A is of the described form and K <l L <l A.
From Theorem 3.3 and the form of A it immediately follows that K ∩R(A) <l A.
Take any k ∈ K. Since A/R(A) is strongly regular there exist x ∈ A and b ∈ R(A)



Structure of Left Filial Algebras 1025

such that k−xk2 = b. Note that k−xk2 ∈ K, so b ∈ K ∩R(A). Now Axk2 ⊆ K

and Ab ⊆ K. Consequently Ak ⊆ K and the result is proved.

Now we will describe more precisely the structure of algebras satisfying Theorem
4.3 (ii).

Let U be an algebra with identity, T an algebra and M a U − T−bimodule,
which is unitary as the left U -module. The set (U M

0 T ) of matrices of the form (u m
0 t ),

where u ∈ U , m ∈ M and t ∈ T , is an algebra with respect to the obvious matrix
operations.

Theorem 4.4. A is an algebra satisfying Theorem 4.3 (ii) if and only if A �
(S∗ M
0 T ), where S is a left filial algebra such that S = l S(R(S)) + R(S) and
R(S) �= 0, T is a strongly regular algebra, M is an S ∗ − T−bimodule, which is
unitary as the left S ∗-module and such that SM = 0.

Proof. Suppose that A satisfies Theorem 4.3 (ii). It is clear that eAe � S ∗,
where S = elA(R(A))e + eR(A)e. Note that ((1 − e)Ae)2 = 0. Hence, since
A is left filial, (1 − e)Ae ⊆ R(A). Now for every b ∈ R(A), eb = b and
e(1 − e)A = 0, so ((1 − e)A) ∩ R(A) = 0. In particular (1 − e)Ae = 0 and
(1−e)A(1−e)∩R(A) = 0. Set M = eA(1−e). Clearly M2 = 0, so M ⊆ R(A)
and by Theorem 3.3, R(A)M = 0. This implies that SM = 0. It is not hard to
check that R(eAe) = eR(A)e, so A/R(A) � e(A/R(A))e ⊕ (1 − e)A(1 − e).
Hence T = (1 − e)A(1 − e) is a strongly regular algebra. It is clear that M is
an S∗ − T−bimodule, which is unitary as the left S∗−module. Now applying the
usual Pierce decomposition of A one immediately gets that A � (S

∗ M
0 T ).

Conversely, it is not hard to check that R((S
∗ M

0 T )) = (R(S) M
0 0 ) � R(S)⊕ M0,

where M0 denotes the algebra with zero multiplication on the F -space M . It is clear
that (S∗ M

0 T )/R((S∗ M
0 T )) is a strongly regular algebra. Moreover l(S∗ M

0 T )(R((S∗ M
0 T ))) =

(lS(R(S)) M
0 T ), so (S

∗ M
0 T ) = F (1 0

0 0) + l(S∗ M
0 T )(R((S∗ M

0 T ))) + R((S∗ M
0 T )) and (S∗ M

0 T )
is of the form described in Theorem 4.3 (ii).

We can get a more precise description of algebras satisfying Theorem 4.3 when
A/R(A) is a finite dimensional algebra.

Let T an algebra with identity and M a unitary right T -module. The set (T 0
M 0 )

of matrices of the form (t 0
m 0), where t ∈ T and m ∈ M , is an algebra with respect

to obvious matrix operations.

Theorem 4.5. An algebra A such that dimF (A/R(A)) < ∞ satisfies Theorem
4.3 (i) if and only if A � (T 0

M 0 ) ⊕ B, where T is a finite dimensional strongly
regular algebra with identity, M is a unitary right T -module and B is a nilpotent
left filial algebra.
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Proof. Suppose that A is an algebra satisfying Theorem 4.3 (i) and such
that A/R(A) < ∞. Since A is left filial, (R(A))3 = 0. By the assumption
A = lA(R(A)) + R(A). These imply that A2R(A) = 0.

Since dimF A/R(A) < ∞ and A/R(A) is strongly regular it has an identity,
which can be lifted to an idempotent e of A. Then A = eA+R(A). Note that if
ex∈eA∩R(A), then, since eR(A) = e2R(A) ⊆ A2R(A) = 0 and e(ex) = ex, we
get that ex = 0. Thus eA∩R(A) = 0. This in particular shows that eA is a strongly
regular algebra. Since idempotents in reduced algebras are central, e is the identity
element of eA. In particular eA = eAe. Obviously B = {r − re | r ∈ R(A)}
is a subalgebra of A contained in R(A). Hence, since A is a left filial algebra,
B � R(A). Moreover eAB = BeA = 0. Hence B � A. One easily checks that
eA + R(A)e � A. Obviously (eA + R(A)e)∩ B = 0 and A = eA + R(A)e + B.
Hence A = (eA + R(A)e) ⊕ B. This in particular shows that M = eR(A) is a
unitary right T -module, where T = eA. Now it is clear that A � (T 0

M 0 )⊕B. This
proves the ”only if” part of the theorem. The ”if” part is obvious.

We do not know whether Theorem 4.5 can be extended to all algebras. One can
prove that it would be so if every algebra A such that AR(A) = 0 and A/R(A) is
strongly regular, contained a right ideal I such that I∩R(A) = 0 and A = I+R(A).

Combining Theorems 4.3, 4.4, 4.5 and the results obtained in Section 3 it is
routine to get a complete classification of finite dimensional left filial algebras for
fields over which finite dimensional prime radical H-algebras are classified, in
particular for algebraically closed and finite fields.

5. THE STRUCTURE OF ALGEBRAS WHICH ARE FILIAL AND LEFT FILIAL

As we have seen earlier semiprime left filial algebras are filial and prime radical
algebras are left filial if and only if they are filial. There are semiprime filial algebras
(e.g., the algebra of 2× 2-matrices over F ), which are not left filial. The following
example shows that, in general, left filial algebras need not be filial.

Example. Let A = F (e11 + e22) + F (e12 + e21) + Fe31 + Fe32, where eij

denote the standard matrix units of the algebra M3(F ) of 3 × 3-matrices over F

with chF �= 2. It is not hard to see that A is a subalgebra of M3(F ), R(A) =
Fe31 + Fe32, A/R(A) � F ⊕ F and AR(A) = 0. Hence by Theorem 4.3, A is
left filial. Now Fe31 � Fe31 + Fe32 = R(A)� A. However e31(e12 + e21) = e32,
so Fe31 � A. Hence A is not filial.

It is clear that left and right filial algebras are also filial. It turns out that
arbitrary two of these conditions imply the third.

Theorem 5.1. Every algebra A, which is left filial and filial is also right filial.
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Proof. Suppose that K <r I <r A. We have to show that K <r A. Obviously
K ∩ R(A) is a subalgebra of R(A) and R(A) is a left filial algebra. Hence by
Theorem 3.3, K ∩R(A) � R(A) and, since A is a filial algebra, K ∩R(A) � A.
Factoring out K ∩R(A), we can assume that K ∩R(A) = 0. Since A/R(A) is a
semiprime left filial algebra, we get that K � (K +R(A))/R(A) is an idempotent
algebra. Hence KA = K2A = K(KA) ⊆ KI ⊆ K , so K <r A.

Dual arguments show that every algebra, which is right filial and filial is also
left filial.

It is well known and not hard to check that the class of strongly regular algebras
is a radical class. For a given algebra A we denote by S(A) the strongly regular
radical of A, i.e., the largest strongly regular ideal of A.

Now we describe the structure of algebras, which are left filial and filial. We
start with the following proposition.

Proposition 5.2. If A is an algebra such that AR(A) = 0 = R(A)A and
A/R(A) is strongly regular, then A = S(A)⊕R(A).

Proof. It is clear that S(A) ∩ R(A) = 0. Take any a ∈ A. Since A/R(A) is
strongly regular, there is an idempotent t ∈ A/R(A) such that (aA+R(A))/R(A) =
t(A/R(A)). Lifting t to an idempotent e of A we get that aA+R(A) = eA+R(A).
If for some x ∈ A, ex ∈ R(A), then ex = e(ex) ∈ AR(A) = 0, so eA∩R(A) = 0.
Since A/R(A) is strongly regular, so is eA and (eA + R(A))/R(A) � A/R(A).
Thus A(eA) ⊆ eA + R(A) and A(eA) = A(eA)2 ⊆ (eA + R(A))eA ⊆ eA +
R(A)A = eA. These show that eA � A, so eA ⊆ S(A). Consequently a ∈
eA + R(A) ⊆ S(A) + R(A). Hence A = S(A)⊕R(A).

The following theorem describes the structure of left and right filial algebras
(equivalently, filial and left (right) filial algebras).

Theorem 5.3. An algebra A is left and right filial if and only if R(A) is an
H-algebra and one of the following cases holds

(i) A = S(A)⊕R(A);

(ii) A = Ff + (S(A) ⊕R(A)), where R(A) �= 0 and f is an idempotent of A

such that fb = 0 and bf = b for every b ∈ R(A);

(iii) A = Fe + (S(A) ⊕ R(A)), where R(A) �= 0 and e is an idempotent of A

such that eb = b and be = 0 for every b ∈ R(A);

(iv) A = Fe + Ff + (S(A)⊕R(A)), where R(A) �= 0 and e, f are idempotents
of A such that eb = b, be = 0 and fb = 0, bf = b for every b ∈ R(A).
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Proof. Suppose that A is left and right filial. Set R = R(A) and I = lA(R).
Obviously I � A and R(I) = I ∩R(A).

By Theorem 4.3, R is an H-algebra and A/R is strongly regular. Moreover

(a) A = I + R
or

(b) A = Fe+ I +R, where R �= 0 and e is an idempotent of A such that eb = b

for every b ∈ R.

Suppose that a) holds. Obviously S(I) ⊆ S(A). On the other hand S(A) =
(S(A))3 ⊆ (I + R)3 ⊆ I + R3 = I . Hence S(A) = S(I). If R(I)I = 0, then by
Proposition 5.2, I = S(I)⊕R(I). Then A = I+R = S(I)+R(I)+R = S(A)+R
and, since S(A) ∩ R = 0, we get that A = S(A) ⊕ R, so (i) holds. Suppose now
that R(I)I �= 0. Then applying the dual version of Theorem 4.3 and Proposition
5.2 we get that I = Ff +(S(I)⊕R(I)) for an idempotent f of I such that bf = b

for every b ∈ R(I). The dual version of Lemma 4.1 implies that also bf = b for
every b ∈ R. Now A = I + R = Ff + S(I) + R = Ff + S(A) + R and, since
S(A) ∩ R = 0, we get A = Ff + (S(A)⊕ R). Thus (ii) follows.

Suppose now that b) holds. As we have seen above S(I + R) = S(I). Now
for every r ∈ R such that r2 = 0, (I + R)r = 0. Hence if for some α ∈ F and
t ∈ I + R, u = αe + t ∈ S(A), then αr = αer = ur ∈ S(A) ∩ R = 0. These
show that S(A) = S(I + R) = S(I). Now applying to I + R the arguments used
in the proof in case a) one obtains that A satisfies (iii) or (iv).

If A satisfies (i), (ii) or (iii), then Theorem 4.3 or its dual version immediately
imply that A is left and right filial. If A satisfies (iv), then lA(R) ⊇ Ff + S(A)
and eb = b for every b ∈ R. Hence by Theorem 4.3, A is left filial. Next,
rA(R) ⊇ Fe + S(A) and bf = b for every b ∈ R. Hence the dual version of
Theorem 4.3 gives that A is right filial. The result follows.

Theorem 5.3 reduces a classification of left filial algebras to classifications of
strongly regular algebras and prime radical H-algebras.
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