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ON DISCRETE QUASICONVEXITY CONCEPTS
FOR SINGLE VARIABLE SCALAR FUNCTIONS

Riccardo Cambini and Rossana Riccardi

Abstract. The aim of this paper is to propose quasiconvexity concepts for
discrete single variable functions and state some related optimality conditions.
Four classes of discrete quasiconvex single variable functions are introduced,
compared and characterized. Two different algorithm procedures for deter-
mining a minimum are provided.

1. INTRODUCTION

Generalized convexity properties have been widely used in Mathematics and in
Economics due to their usefulness in optimization problems (e.g., both critical points
and local minima are global optimum points). As it is well known, these concepts
regard to functions defined over convex sets. Unfortunately, many applicative prob-
lems arising in Operations Research and in Management Science belong to integer
programming. As a consequence, some efforts have been done in the literature in
order to determine convexity concepts suitable for discrete problems (see for all
[3, 5, 9, 10, 11, 12, 13]). On the other hand, very few results have been presented
regarding quasiconvexity notions [11, 12], expecially from an applicative point of
view.

The aim of this paper is to study discrete generalized convexity concepts fol-
lowing the lines recently proposed by Murota and Shioura in [11] and by Cambini,
Riccardi and Yüceer in [3]. Such an approach resulted to be suitable for concrete
applicative problems (see for example [3, 4, 13]) and for solution algorithms. In par-
ticular, these concepts will allow to generalize some of the results stated by Murota
and Shioura in [11] and to provide optimality conditions and efficient algorithms
for determining the minimum points. It is worth noticing that the optimality proper-
ties of the proposed discrete generalized convex functions do not coincide with the
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known ones related to scalar functions defined over convex sets; just as an example,
it will be shown that the minimum of discrete strictly quasiconvex functions is not
necessarily unique.

In Section 2 the notion of discrete convexity is recalled and the one of discrete
strict convexity is proposed. These concepts are also characterized generalizing
the results in [3]. In Section 3 we introduce the classes of discrete quasiconvex,
discrete strictly quasiconvex, discrete semistriclty quasiconvex, discrete semi quasi-
convex functions, providing various examples and comparing them with the discrete
convex functions and with the discrete strictly convex ones. It will be also pointed
out that the proposed discrete quasiconvexity concepts do not coincide with the
quasiconvexity of the corresponding linear piecewise extensions. In Section 4 the
introduced classes of discrete quasiconvex functions are used in order to generalize
some of the results stated by Murota and Shioura in [11]. In Section 5 some opti-
mality results concerning discrete quasiconvex functions are given and two different
procedures for determining a minimum are provided.

2. DISCRETE CONVEXITY CONCEPTS

In this section we first recall the concept of discrete convexity introduced and
studied by Cambini-Riccardi-Yüceer in [3]. Then, some of the results stated in
[3] will be generalized. With this aim, let us preliminarily provide the following
notations, where x, y ∈ Z:

[x, y]Z = {z ∈ Z : min {x, y} ≤ z ≤ max {x, y}}
]x, y[Z = {z ∈ Z : min {x, y} < z < max {x, y}}

Definition 2.1. A set X ⊆ Z is said to be a discrete reticulum if

[x, y]Z ⊆ X ∀x, y ∈ X.

Definition 2.2. Let f : X → �, where X ⊂ Z is a discrete reticulum. Function
f is said to be a discrete convex function if for all x ∈ X such that x + 1 ∈ X and
x − 1 ∈ X , it is:

f(x + 1) + f(x − 1) ≥ 2f(x) (1)

Function f is said to be a discrete strictly convex function if for all x ∈ X such
that x + 1 ∈ X and x − 1 ∈ X , it is:

f(x + 1) + f(x − 1) > 2f(x) (2)

Notice that, by means of the definitions, a discrete strictly convex function is
also discrete convex. The previous definition tries to implement, in the discrete case,
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the very well known property of convex functions related to the nonnegativeness of
their second order derivatives. Finally, notice that condition (1) has been also used
in [8] with the aim of studying convexity properties on Abelian groups.

The following theorems provide characterizations of the discrete convexity con-
cepts generalizing the results given in [3] with respect to single variable discrete
convex functions.

Theorem 2.1. Let f : X → �, where X ⊂ Z is a discrete reticulum. The
following conditions are equivalent:

(i) function f is discrete convex;
(ii) the following inequality holds for all h, k ≥ 1 such that x + h, x − k ∈ X:

f(x + h) − f(x)
h

≥ f(x)− f(x − k)
k

(3)

(iii) the following inequality holds for all x, y ∈ X such that x − 1 ∈ X:

f(y) ≥ [f(x)− f(x − 1)] (y − x) + f(x) (4)

Proof. (i) ⇒ (ii) Let us first prove, as a preliminary result, that the discrete
convexity of f implies:

f(x + h) − f(x + h − 1) ≥ f(x + 1) − f(x) ∀h ≥ 1 (5)

This property is trivial in the case h = 1, while for h > 1 condition (1) implies:

(f(x + h) − f(x + h − 1)) − (f(x + 1) − f(x))

=
h−1∑
j=1

((f(x + j + 1)− f(x + j))− (f(x + j)− f(x + j − 1)))

=
h−1∑
j=1

(f(x + j + 1) + f(x + j − 1) − 2f(x + j)) ≥ 0

Notice also that from (5) it yields:

f(x)− f(x − 1) ≥ f(x − k + 1) − f(x − k) ∀k ≥ 1 (6)

Conditions (5) and (6) allow us to prove that:

f(x + h) − f(x) =
h∑

j=1

(f(x + j)− f(x + j − 1)) ≥ h(f(x + 1)− f(x))
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f(x) − f(x − k) =
k∑

j=1

(f(x− j + 1)− f(x− j)) ≤ k(f(x) − f(x − 1))

As a conclusion, the discrete convexity of f implies:

f(x + h) − f(x)
h

≥ f(x + 1)− f(x) ≥ f(x)− f(x − 1) ≥ f(x) − f(x − k)
k

so that the result is proved.
(ii) ⇒ (iii) Follows just setting h = y − x and k = 1.
(iii) ⇒ (i) Follows just setting y = x + 1.

Theorem 2.2. Let f : X → �, where X ⊂ Z is a discrete reticulum. The
following conditions are equivalent:

(i) function f is discrete strictly convex;

(ii) the following inequality holds for all h, k ≥ 1 such that x + h, x − k ∈ X:

f(x + h) − f(x)
h

>
f(x) − f(x− k)

k
(7)

(iii) the following inequality holds for all x, y ∈ X such that x − 1 ∈ X:

f(y) > [f(x)− f(x− 1)] (y − x) + f(x) (8)

Proof. The result follows analogously to Theorem 2.1 noticing that a discrete
strictly convex function is also discrete convex.

Notice that in the previous Theorems 2.1 and 2.2 condition ii) represents, in
the discrete case, the very well known property of convex functions given by the
nondecreaseness of the marginal increments, while condition iii) implements in the
discrete case the relationship existing between the graph of convex functions and
their tangent lines.

3. DISCRETE QUASICONVEXITY CONCEPTS

The aim of this section is to introduce some discrete quasiconvexity concepts
suitable for obtaining optimality conditions and for generalizing some of the results
in [11]. The following concepts of discrete quasiconvex functions are introduced
following the lines of Murota and Shioura in [11] and of Cambini-Riccardi-Yüceer
in [3].
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Definition 3.1. Let f : X → �, where X ⊂ Z is a discrete reticulum. Function
f is said to be:

(i) discrete quasiconvex if for all x, y ∈ X , x 
= y, it holds:

f(y) ≤ f(x) ⇒ f(c) ≤ f(x) ∀c ∈]x, y[Z

(ii) discrete strictly quasiconvex if for all x, y ∈ X , x 
= y, it holds:

f(y) ≤ f(x) ⇒ f(c) < f(x) ∀c ∈]x, y[Z

(iii) discrete semistrictly quasiconvex if for all x, y ∈ X , x 
= y, it holds:

f(y) < f(x) ⇒ f(c) < f(x) ∀c ∈]x, y[Z

(iv) discrete semi quasiconvex if for all x, y ∈ X , x 
= y, it holds:

f(y) < f(x) ⇒ f(c) ≤ f(x) ∀c ∈]x, y[Z

Clearly, a discrete quasiconvex function is also discrete semi quasiconvex, a
discrete strictly quasiconvex function is also discrete quasiconvex and discrete
semistrictly quasiconvex, a discrete semistrictly quasiconvex function is also discrete
semi quasiconvex. It is worth also focusing on the relationships existing between
discrete convexity and discrete quasiconvexity. With this aim, the following result
is provided.

Theorem 3.1. Let f : X → �, where X ⊂ Z is a discrete reticulum. The
following properties hold:

(i) if f is a discrete convex function then it is also discrete semistrictly quasi-
convex;

(ii) if f is a discrete convex function then it is also discrete quasiconvex;
(iii) if f is a discrete strictly convex function then it is also discrete strictly

quasiconvex.

Proof. (i) Suppose by contradiction that f is not discrete semistrictly quasi-
convex, that is to say that there exist x, y, a ∈ X , with x 
= y and a ∈]x, y[Z, such
that f(y) < f(x) ≤ f(a). Let us assume, without loss of generality, that y < x;
from Theorem 2.1 we get:

f(x) − f(a)
x − a

≥ f(a) − f(y)
a − y
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Table 1: Inclusion relationships among the classes

cx ⊂ qcx ⊂ sm.qcx
∪ ∪

s.qcx ⊂ ss.qcx
∪ ∪

s.cx ⊂ cx

Since x − a > 0, a − y > 0 and f(x) − f(a) ≤ 0, it yields that f(a) − f(y) ≤ 0
which contradicts the discrete convexity of function f .

(ii), (iii) The proofs are analogous to the one of (i).

The inclusion relationships between the classes of functions defined so far are
represented in Table 1.

In Examples 3.1 it is pointed out that these various classes of functions do not
coincide.

Example 3.1. Let us present now some counterexamples showing that the
classes of functions defined so far do not coincide.

(i) The following function f : Z → � is both discrete semistrictly quasiconvex
and discrete semi quasiconvex but neither discrete quasiconvex nor discrete
convex:

f(x) =

{
0 if x ∈ Z, x 
= 0

1 if x = 0

(ii) The following function f : Z → � is discrete quasiconvex but not discrete
semistrictly quasiconvex:

f(x) =

{
0 if x ∈ Z, x 
= 0

−1 if x = 0

(iii) The function f : Z → � given by f(x) = |x|−x is both discrete quasiconvex
and discrete semistrictly quasiconvex but not discrete strictly quasiconvex.

(iv) The function f : Z++ → � given by f(x) = log(x) is discrete strictly
quasiconvex but not discrete convex.

(v) The function f : Z → � given by f(x) = x is discrete convex but not
discrete strictly convex.

It is worth pointing out that the previously introduced discrete quasiconvexity
concepts do not guarantee that their continuous extensions verify the corresponding
quasiconvex property. With this aim, given a discrete function f : Z → �, we will
say that f̃ : � → � is:
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• an extension of f if f(Z) = f̃(Z),

• a linear piecewise extension of f if f(Z) = f̃ (Z) and for all x ∈ Z, for all
y ∈ (x, x + 1), it is f̃(y) = f(x) + [f(x + 1)− f(x)](y − x).

First of all consider the discrete function f : Z → � given by f(x) =
∣∣x − 1

2

∣∣−
1
2 which is discrete strictly quasiconvex while its corresponding linear piecewise
extension is not strictly quasiconvex. Then, consider the discrete function f : Z →
� in i) of Examples 3.1. Such a function is both discrete semistrictly quasiconvex
and discrete semi quasiconvex while its corresponding linear piecewise extension is
not generalized convex.

Nevertheless, the following properties hold for a discrete function f : Z → �
(see [2] for real scalar semi quasiconvex functions):

• f is discrete quasiconvex if and only if its linear piecewise extension is qua-
siconvex;

• f is discrete semi quasiconvex [discrete semistrictly quasiconvex, discrete
strictly quasiconvex] if and only if there exists at least an extension f̃ :
� → � of f which is semi quasiconvex [semistrictly quasiconvex, strictly
quasiconvex].

Notice that a discrete semistrictly quasiconvex function could not allow continuous
generalized convex extensions (see the function in i) of Examples 3.1). The existence
of generalized convex extensions is a theoretical tool which results to be not so useful
in stating optimality conditions, since it does not guarantee integer optima, while it
can be used for example in order to show that the classical result by Fenchel [6]
holds also for discrete quasiconvex functions.

Theorem 3.2. Let f : X → Z, where X ⊂ Z is a discrete reticulum, let g :
f(X) → � and consider the composite function g(f(x)). The following properties
hold:

(i) if f is discrete quasiconvex and g is nondecreasing then g(f(x)) is also
discrete quasiconvex;

(ii) if f is discrete semi quasiconvex, discrete semistrictly quasiconvex, discrete
strictly quasiconvex, and g is increasing then g(f(x)) is also discrete semi
quasiconvex, discrete semistrictly quasiconvex, discrete strictly quasiconvex,
respectively.

4. CHARACTERIZATIONS OF QUASICONVEXITY CONCEPTS

The aim of this section is to generalize some of the results stated by Murota
and Shioura in [11]. These results are related to characterizations for the various
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classes of generalized discrete quasiconvex functions. Notice that the following
results are related to discrete functions and cannot be used in order to characterize
real functions.

Theorem 4.1. Let f : X → �, where X ⊂ Z is a discrete reticulum. The
following conditions are equivalent:

(i) function f is discrete quasiconvex;
(ii) for all x, y ∈ X , x < y, it holds f(c) ≤ max{f(x), f(y)} ∀c ∈]x, y[Z;
(iii) the following inequality holds for all x, y ∈ X , x < y:

min{f(x + 1), f(y − 1)} ≤ max {f(x), f(y)}

(iv) 
 ∃x, y ∈ X , x < y, such that f(x) < f(x + 1) and f(y) < f(y − 1);
(v) for all x, y ∈ X , x < y, the following implication holds:

f(x) < f(x + 1) ⇒ f(y) ≥ f(y − 1)

Proof. (i) ⇔ (ii) The equivalence follows straightforward from the definition.
(ii) ⇒ (iii) The result follows being {x + 1, y − 1} ⊂]x, y[Z.
(iii) ⇒(iv) Suppose by contradiction that ∃x, y ∈ X , x < y, such that f(x) <

f(x + 1) and f(y) < f(y − 1); define also M = maxz∈[x,y]Z{f(z)}. Then, there
necessarily exists m1, m2 ∈ [x, y]Z, m1 < m2, such that M = f(m1 + 1) =
f(m2 − 1), f(m1) < f(m1 + 1) and f(m2) < f(m2 − 1) (notice that m1 + 1 and
m2−1 may coincide); as a consequence it is M = min{f(m1 + 1), f(m2 − 1)} >

max {f(m1), f(m2)} which contradicts the hypothesis for the values m1 and m2.
(iv) ⇒ (v) The result is trivial.
(v) ⇒ (ii) Suppose by contradiction that ∃x, y ∈ X , x < y, ∃c ∈]x, y[Z such

that f(c) > max{f(x), f(y)}; define also M = maxz∈[x,y]Z{f(z)} ≥ f(c) >
max{f(x), f(y)}. Then, there necessarily exists m1, m2 ∈ [x, y]Z, m1 < m2, such
that M = f(m1 + 1) = f(m2 − 1), f(m1) < f(m1 + 1) and f(m2) < f(m2 − 1)
(notice that m1 + 1 and m2 − 1 may coincide), and this contradicts the hypothesis
for the values m1 and m2.

Notice that condition ii) of the previous theorem has been used by Murota and
Shioura in [11] as the definition of discrete quasiconvexity and that in the same paper
also condition iii) has been given. Notice also that condition v) implicitly handles
a sort of monotonicity property of discrete generalized convex functions. Finally,
it is worth pointing out that condition v) is the most useful in order to concretely
verify the discrete quasiconvexity of a function. Analogous results can be proved
similarly also for the other classes of generalized discrete convex functions.
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Theorem 4.2. Let f : X → �, where X ⊂ Z is a discrete reticulum. The
following conditions are equivalent:

(i) function f is discrete strictly quasiconvex;
(ii) for all x, y ∈ X , x < y, it holds f(c) < max{f(x), f(y)} ∀c ∈]x, y[Z;
(iii) the following inequality holds for all x, y ∈ X , x < y:

min{f(x + 1), f(y − 1)} < max {f(x), f(y)}
(iv) 
 ∃x, y ∈ X , x < y, such that f(x) ≤ f(x + 1) and f(y) ≤ f(y − 1);
(v) for all x, y ∈ X , x < y, the following implication holds:

f(x) ≤ f(x + 1) ⇒ f(y) > f(y − 1)

Theorem 4.3. Let f : X → �, where X ⊂ Z is a discrete reticulum. The
following conditions are equivalent:

(i) function f is discrete semistrictly quasiconvex;
(ii) for all x, y ∈ X , x < y, f(x) 
= f(y), it holds:

f(c) < max{f(x), f(y)} ∀c ∈]x, y[Z

(iii) the following inequality holds for all x, y ∈ X , x < y, f(x) 
= f(y):

min{f(x + 1), f(y − 1)} < max {f(x), f(y)}

(iv) 
 ∃x, y ∈ X , x < y, f(x) 
= f(y), such that f(x) ≤ f(x + 1) and f(y) ≤
f(y − 1);

(v) for all x, y ∈ X , x < y, f(x) 
= f(y), the following implication holds:

f(x) ≤ f(x + 1) ⇒ f(y) > f(y − 1)

Theorem 4.4. Let f : X → �, where X ⊂ Z is a discrete reticulum. The
following conditions are equivalent:

(i) function f is discrete semi quasiconvex;
(ii) for all x, y ∈ X , x < y, f(x) 
= f(y), it holds:

f(c) ≤ max{f(x), f(y)} ∀c ∈]x, y[Z

(iii) the following inequality holds for all x, y ∈ X , x < y, f(x) 
= f(y):

min{f(x + 1), f(y − 1)} ≤ max {f(x), f(y)}
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(iv) 
 ∃x, y ∈ X , x < y, f(x) 
= f(y), such that f(x) < f(x + 1) and f(y) <

f(y − 1);
(v) for all x, y ∈ X , x < y, f(x) 
= f(y), the following implication holds:

f(x) < f(x + 1) ⇒ f(y) ≥ f(y − 1)

Notice that the definition proposed in this paper for the discrete semistrictly
quasiconvex functions is weaker than the one proposed by Murota and Shioura
in [11], where a discrete semistrictly quasiconvex function is requested to be also
discrete quasiconvex. This is pointed out in the following result.

Theorem 4.5. Let f : X → �, where X ⊂ Z is a discrete reticulum. The
following conditions are equivalent:

(i) function f is both discrete quasiconvex and discrete semistrictly quasiconvex

(ii) for all x, y ∈ X , x < y, both the two following implications hold:

f(x) = f(y) ⇒ f(c) ≤ f(x) ∀c ∈]x, y[Z

f(x) 
= f(y) ⇒ f(c) < max{f(x), f(y)} ∀c ∈]x, y[Z

(iii) for all x, y ∈ X , x < y, both the two following implications hold:

f(x) = f(y) ⇒ min{f(x + 1), f(y − 1)} ≤ f(x)

f(x) 
= f(y) ⇒ min{f(x + 1), f(y − 1)} < max {f(x), f(y)}

(iv) 
 ∃x, y ∈ X , x < y, such that either f(x) ≤ f(x + 1) and f(y) < f(y − 1)
or f(x) < f(x + 1) and f(y) ≤ f(y − 1)

(v) for all x, y ∈ X , x < y, both the two following implications hold:

f(x) ≤ f(x + 1) ⇒ f(y) ≥ f(y − 1)

f(x) < f(x + 1) ⇒ f(y) > f(y − 1)

Proof. (i) ⇔ (ii) The equivalence follows straightforward from the definitions.
(ii) ⇒ (iii) The result follows being {x + 1, y − 1} ⊂]x, y[Z.
(iii) ⇒ (iv) Suppose by contradiction that ∃x, y ∈ X , x < y, such that either

f(x) ≤ f(x + 1) and f(y) < f(y − 1) or f(y) ≤ f(y − 1) and f(x) < f(x + 1);
define also M = maxz∈[x,y]Z{f(z)}.



On Discrete Quasiconvexity Functions 847

In the case f(x) = f(y), there exists m1, m2 ∈ [x, y]Z, m1 < m2, such
that M = f(m1 + 1) = f(m2 − 1) > f(x) = f(y), f(m1) < f(m1 + 1) and
f(m2) < f(m2−1) (notice that m1+1 and m2−1 may coincide), as a consequence
M = min{f(m1 + 1), f(m2 − 1)} > max {f(m1), f(m2)}, and this contradicts
the first assumption for the values m1 and m2.

In the case f(x) 
= f(y), there exists m1, m2 ∈ [x, y]Z, m1 < m2, such
that M = f(m1 + 1) = f(m2 − 1) and such that either f(m1) < f(m1 + 1)
and f(m2) ≤ f(m2 − 1) or f(m1) ≤ f(m1 + 1) and f(m2) < f(m2 − 1) (the
two cases depends on the point x or y which provides the maximum value between
f(x) and f(y)); if f(m1) = f(m2) it results M = min{f(m1 + 1), f(m2 − 1)} >
max {f(m1), f(m2)} which contradicts the first assumption for the values m1 and
m2. Otherwise, if f(m1) 
= f(m2) then we have M = min {f(m1 + 1), f(m2 − 1)}
≥ max {f(m1), f(m2)} which contradicts the second assumption for the values m1

and m2.
(iv) ⇒ (v) The result is trivial.
(v) ⇒ (ii) Suppose by contradiction that ∃x, y, c ∈ X , x < c < y, such that

either f(c) > f(x) = f(y) or f(x) 
= f(y) and f(c) ≥ max{f(x), f(y)}; define
also M = maxz∈[x,y]Z{f(z)}.

In the case f(c) > f(x) = f(y), there exists m1, m2 ∈ [x, y]Z, m1 < m2, such
that M = f(m1 + 1) = f(m2 − 1), f(m1) < f(m1 + 1) and f(m2) < f(m2 − 1)
(notice that m1 +1 and m2 −1 may coincide) and this contradicts the assumptions.

In the case f(x) 
= f(y) with f(c) ≥ max{f(x), f(y)}, there exists m1, m2 ∈
[x, y]Z, m1 < m2, such that M = f(m1 + 1) = f(m2 − 1) and such that either
f(m1) < f(m1 + 1) and f(m2) ≤ f(m2 − 1) or f(m1) ≤ f(m1 + 1) and
f(m2) < f(m2 − 1) (the two cases depends on the point x or y which provides
the maximum value between f(x) and f(y)); in both the cases the assumptions are
contradicted.

Notice that there exist functions which are both discrete quasiconvex and discrete
semistrictly quasiconvex but which are not discrete strictly quasiconvex, as it is
pointed out in iii) of Example 3.1.

Finally, it is worth providing the following further pointwise characterizations
of discrete quasiconvex and of discrete strictly quasiconvex functions.

Theorem 4.6. Let f : X → �, where X ⊂ Z is a discrete reticulum. The
following properties hold:

(i) function f is discrete quasiconvex if and only if the following logical impli-
cation holds for all x, y ∈ X , x 
= y:

f(y) ≤ f(x) ⇒ f

(
x +

y − x

|y − x|
)

≤ f(x) (9)
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(ii) function f is discrete strictly quasiconvex if and only if the following logical
implication holds for all x, y ∈ X , x 
= y:

f(y) ≤ f(x) ⇒ f

(
x +

y − x

|y − x|
)

< f(x) (10)

Proof.

(i) If function f is discrete quasiconvex then (9) holds trivially since
(
x + y−x

|y−x|
)

∈]x, y[Z. Assume now that (9) holds and suppose by contradiction that f is
not discrete quasiconvex, that is to say that there exist x, y, c ∈ X , x 
= y and
c ∈]x, y[Z, such that f(y) ≤ f(x) < f(c). Let M be the maximum value of
function f over the finite set [x, y]Z and notice that it results M > f(x) ≥
f(y). As a consequence, it is possible to determine m1, m2 ∈ [x, y]Z, with
m1 < m2, such that f(m1) < f(m1+1) = M and f(m2) < f(m2−1) = M
(notice that m1 +1 and m2−1 may coincide). It yields that (9) is not verified
for the couple of points m1 and m2, and this contradicts the assumptions.

(ii) The proof is analogous to the previous one.

Remark 4.1. It is worth noticing that in conditions (9) and (10) it is fundamental
to compare points x and y such that f(y) = f(x). In other words, conditions of
the kind

f(y) < f(x) ⇒ f

(
x +

y − x

|y − x|
)

< f(x) (11)

do not guarantee function f to be discrete semi quasiconvex, as it is shown by the
following function f : [−2, 2]Z → �:

f(x) =

{ |x| if x ∈ [−2, 2]Z, x 
= 0

3 if x = 0

This function verifies (11) for all x, y ∈ [−2, 2]Z, x 
= y, but it is not discrete semi
quasiconvex.

5. OPTIMALITY PROPERTIES

The aim of this section is to point out the usefulness in optimization of the
quasiconvexity concepts introduced in Section 3.

In this light, it is worth pointing out that the optimality properties of discrete
functions do not coincide with the ones verified by functions defined over convex
sets. For example, consider the discrete function f : Z → � given by f(x) =∣∣x − 1

2

∣∣− 1
2 which is discrete strictly quasiconvex. This function admits two different

global minima, that are x1 = 0 and x2 = 1. In other words, discrete strictly
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quasiconvex functions allows more than one global minimum while it is very well
known that for real strictly quasiconvex functions the minimum, if it exists, is
unique. This behavior is described in the following result which provides a sort of
“convexity property” for the set of global minima.

Theorem 5.1. Let f : X → �, where X ⊂ Z is a discrete reticulum and let
S ⊆ X , S 
= ∅, be the set of global minima for f over X . The following properties
hold:

(i) if f is discrete quasiconvex then S is a discrete reticulum;
(ii) if f is discrete strictly quasiconvex then S is a discrete reticulum having no

more than two elements.

Proof. (i) It follows directly from the definition.
(ii) From (i) S results to be a discrete reticulum. Suppose by contradiction that

S has at least three elements and let x = min{S} and y = max{S}, then the
discrete strict quasiconvexity of f implies that f(c) < f(x) ∀c ∈]x, y[Z, which
contradicts the global minimality of x and y.

Some results useful for determining minimum points are stated in the following
theorem.

Theorem 5.2. Let f : X → �, where X ⊂ Z is a discrete reticulum, and let
x0 ∈ X such that x0 − 1 ∈ X and x0 + 1 ∈ X . The following properties hold:

(i) if f is discrete semi quasiconvex then:

f(x0) < f(x0 + 1) ⇒ f(x0) ≤ f(x) ∀x ∈ X, x > x0 + 1;

f(x0) < f(x0 − 1) ⇒ f(x0) ≤ f(x) ∀x ∈ X, x < x0 − 1;

(ii) if f is discrete quasiconvex then:

f(x0) < f(x0 + 1) ⇒ f(x0) < f(x) ∀x ∈ X, x > x0 + 1;

f(x0) < f(x0 − 1) ⇒ f(x0) < f(x) ∀x ∈ X, x < x0 − 1;

(iii) if f is discrete strictly quasiconvex then:

f(x0) ≤ f(x0 + 1) ⇒ f(x0) < f(x) ∀x ∈ X, x > x0 + 1;

f(x0) ≤ f(x0 − 1) ⇒ f(x0) < f(x) ∀x ∈ X, x < x0 − 1;

f(x0) = f(x0 + 1) ⇒ f(x0) < f(x) ∀x ∈ X \ {x0, x0 + 1};
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(iv) if f is discrete semistrictly quasiconvex then:

f(x0) ≤ f(x0 + 1) ⇒ f(x0) ≤ f(x) ∀x ∈ X, x > x0 + 1;

f(x0) ≤ f(x0 − 1) ⇒ f(x0) ≤ f(x) ∀x ∈ X, x < x0 − 1;

f(x0) = f(x0 + 1) ⇒ f(x0) ≤ f(x) ∀x ∈ X.

Proof.

(i) Assume by contradiction that there exists y ∈ X , y ≥ x0, such that f(y) <

f(x0) < f(x0 +1); hence y > x0 +1, so that for the discrete semi quasicon-
vexity of f it is f(c) ≤ f(x0) ∀c ∈]x0, y[Z and this is a contradiction since
x0 +1 ∈]x0, y[Z and f(x0 +1) > f(x0). The proof of the second implication
is analogous.

(ii) The proofs for (ii), (iii)) and (iv) are analogous.

Notice that these results imply the global optimality of local optima.

Corollary 5.1. Let f : X → �, where X ⊂ Z is a discrete reticulum, and let
x0 ∈ X . If one of the following conditions hold:

(i) function f is discrete semistrictly quasiconvex and
f(x0) ≤ f(x) ∀x ∈ {x0 − 1, x0 + 1} ∩ X;

(ii) function f is discrete semi quasiconvex and
f(x0) < f(x) ∀x ∈ {x0 − 1, x0 + 1} ∩ X;
then, x0 is a global minimum for f over X . Furthermore, if the following
condition holds:

(iii) function f is discrete quasiconvex and
f(x0) < f(x) ∀x ∈ {x0 − 1, x0 + 1} ∩ X;
then, x0 is the unique global minimum for f over X .

Corollary 5.2. Let f : X → �, where X ⊂ Z is a discrete reticulum, and let
x0 ∈ X such that x0 + 1 ∈ X and f(x0) = f(x0 + 1). The following properties
hold:

(i) if function f is discrete semistrictly quasiconvex then x 0 and x0+1 are global
minima for f over X;

(ii) if function f is discrete strictly quasiconvex then x 0 and x0 + 1 are the only
global minima for f over X .

Theorem 5.2 allows to propose the following algorithm for determining a global
minimum of a discrete semistrictly quasiconvex function over a bounded discrete
reticulum [m, M ]Z.
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Procedure MinDiscrConv(inputs: f , m, M ; output: ris)
Let a := m and b := M ;
while a < b do

let c :=
⌊

a+b
2

⌋
;

if f(c + 1) < f(c) then a := c + 1
elseif f(c + 1) > f(c) then b := c

else a := c and b := c

end if;
end while;
ris := a;

end proc.

It worth noticing that the proposed algorithm has a logarithmic complexity since
in every iteration the current interval is divided into two equally long subintervals.
In other words, it can be easily seen that after n iterations we have (b − a) ≈(

1
2

)n (M − m), the solution is then found when (b − a) < 1 and this happens for:

n �
⌈

log(M − m)
log(2)

⌉

Notice that in every iteration function f has to be evaluated twice, that is in c and
c + 1.

In order to reduce the total number of evaluations of function f we propose the
following further algorithm based on the Golden Section method.

Procedure MinDiscrGolden(inputs: f , m, M ; output: ris)
Let a := m and b := M ;
if b − a > 2 then

let R :=
√

5−1
2 , δ := �R(b − a)�;

let α := b − δ, β := max{a + δ, α + 1}, fα := f(α), fβ := f(β);
while b − a > 2 do

if fα < fβ then
b := β, β := α, fβ := fα;
δ := �R(b − a)�, α := min{b − δ, β − 1}, fα := f(α);

else-if fα > fβ then
a := α, α := β, fα := fβ ;
δ := �R(b − a)�, β := max{a + δ, α + 1}, fβ := f(β);
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else
a := α, b := β, δ := �R(b − a)�;
α := b − δ, β := max{a + δ, α + 1}, fα := f(α), fβ := f(β);

end if;
end do;

end if;
ris := arg min

x∈[a,b]∩Z
{f(x)};

end proc.

It can be easily seen that after n iterations it is (b − a) ≈
(√

5−1
2

)n
(M − m);

the algorithm leaves the while cycle when (b − a) ≤ 2 and this happens for:

n �



log(M − m)

log
(√

5+1
2

)



Notice that in every iteration function f has to be evaluated just once, that is in
either α or β; as a consequence, the total number of evaluated points is smaller
than the ones used in the bisection method even if the total number of iterations is
greater (notice that 1

2 log(2) < log
(√

5+1
2

)
< log(2)).

6. CONCLUSIONS

In this paper discrete convexity and discrete quasiconvexity concepts for single
variable discrete functions have been proposed and studied in an unified framework.
Their usefulness in optimization has been pointed out from both a theoretical and an
algorithmic point of view. Some of the results in [3, 11] have been generalized. The
applicative use of these concepts in Operations Research and Management Science
suggests to deep on this research topic for both single variable and multi variables
functions.
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