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HYBRID PROXIMAL POINT ALGORITHMS FOR SOLVING
CONSTRAINED MINIMIZATION PROBLEMS

IN BANACH SPACES

Lu-Chuan Ceng1, Shuechin Huang2,∗ and Yeong-Cheng Liou

Abstract. The purpose of this paper is to introduce two hybrid proximal point
algorithms to solve the constrained minimization problem for a convex func-
tional in a uniformly convex and uniformly smooth Banach space. Using those
iterative schemes, we establish the strong convergence theorems for relatively
nonexpansive mappings which generalize the recent results in the literature.

1. INTRODUCTION

Let H be a real Hilbert space and let T : H → 2H be a maximal monotone
operator. The problem of finding an element x ∈ H such that 0 ∈ Tx is very
important in the area of optimization and related fields. One well-known method
of solving 0 ∈ Tx is the proximal point algorithm which was first introduced
by Martinet [12] and generally studied by Rockafellar [17] in the framework of a
Hilbert space. This proximal point algorithm generates a sequence {xn} in H by
the iterative scheme

x0 ∈ H,

xn+1 = (I + rnT )−1xn, n = 0, 1, 2, . . . ,
(1)
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where {rn} is a sequence in the interval (0,∞) and I denotes the identity operator
on H . Algorithm (1) is equivalent to

x0 ∈ H,

0 ∈ Txn+1 +
1
rn

(xn+1 − xn), n = 0, 1, 2, . . . .

Many results for the convergence of (1) in a Hilbert space or a Banach space have
been extensively studied; see [5, 6, 9, 21] and the references therein. Rockafellar
[17] proved that if T −10 �= ∅ and lim infn→∞ rn > 0, then the sequence generated
by (1) converges weakly to an element of T−10. He also posed an open question of
whether or not the sequence generated by (1) converges strongly to an element of
T−10. This problem was solved by Güler [9], who presented an example for which
the sequence generated by (1) converges weakly but not strongly. On the other hand,
Kamimura and Takahashi [10] and Solodov and Svaiter [19] modified this proxi-
mal point algorithm to generate a strongly convergent sequence in a Hilbert space.
Moreover, Kamimura and Takahashi [11] introduced a proximal-type algorithm in
a uniformly convex and uniformly smooth Banach space E and derived a strong
convergence theorem which extends Solodov and Svaiter’s result [19] to the setting
of Banach spaces.

Let E be a real Banach space with dual E ∗. A multifunction T : E → 2E∗ is
monotone if 〈x1 − x2, y1 − y2〉 ≥ 0 whenever xi ∈ E and yi ∈ Txi, i = 1, 2. A
monotone operator T is maximal if its graph is not properly contained in the graph of
any other monotone operator. An extended real-valued function f : E → (−∞,∞]
is a proper convex function if it is not identically +∞ such that

f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y),

for all x, y ∈ E and λ ∈ (0, 1). A subdifferential of f at x is the multifunction
∂f : E → 2E∗ defined by

∂f(x) = {x∗ ∈ E∗ : f(y) ≥ f(x) + 〈y − x, x∗〉, for all y ∈ E}.

Then 0 ∈ ∂f(x) is equivalent to f(x) = min{f(z) : z ∈ E}. Rockafellar [18]
proved that if f : E → (−∞,∞] is a lower semicontinuous proper convex function,
then ∂f is a maximal monotone operator. In [3], Alber and Yao considered the
minimization problems for nonsmooth convex functionals in a Banach space E by
using the following non-traditional algorithm:

x0 ∈ E,

xn+1 = ΠC(xn − λnJ−1∂f(xn+1)), n = 0, 1, 2, . . . ,
(2)
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where λn ≥ λ̄ = const. > 0 and xn+1 is assumed to exist for every xn. This
algorithm can be written in an equivalent form:

x0 ∈ E,

0 ∈ −λnJ−1∂f(ΠCyn) + yn − xn,

xn+1 = ΠCyn, n = 0, 1, 2, . . . .

In particular, suppose that E be a uniformly convex and uniformly smooth Banach
space, the minimizer set of the convex functional f(x) is nonempty, the operator
∂f is bounded and the set {x ∈ E : f(x) ≤ f(x1)} is bounded. Then Alber and
Yao [3, Theorem 2.3] proved that the sequence {f(xn)} converges to the minimum
f∗ of f(x), where {xn} is generated by (2).

Motivated by the recent work in [3, 11], we introduce two hybrid proximal
point algorithms (see (4) and (25) in §3) in a uniformly convex and uniformly
smooth Banach space E . Suppose that C is a nonempty closed convex subset
of E , f : E → [0,∞) is a lower semicontinuous proper convex function and
S : E → E is a relatively nonexpansive mapping (see §2 for the definition) such
that (∂f)−10 ∩ F (S) �= ∅, where F (S) is the fixed point set of S. The purpose
of this paper is to prove that under certain conditions, each of the sequences {xn}
generated by (4) and (25) converges strongly to the point Π(∂f)−10∩F (S)x0. These
strong convergence theorems of finding a minimizer of a convex functional in a
uniformly convex and uniformly smooth Banach space generalize the results in
[3, 11, 15].

The authors are very grateful to Professor Wataru Takahashi and Professor Jong-
Kyu Kim for valuable comments and suggestions about this paper.

2. PRELIMINARIES

Let E be a real Banach space with dual E ∗ and let SE = {x ∈ E : ‖x‖ = 1}
be the unit sphere of E . The normalized duality mapping J : E → 2 E∗ is defined
by

J(x) = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2},
where 〈·, ·〉 denotes the duality pairing.

We say that E is smooth if the limit

lim
t→0

‖x + ty‖ − ‖x‖
t

(3)

exists for all x, y ∈ SE; if the limit (3) exists and is attained uniformly in x, y ∈
SE , E is said to be uniformly smooth. It is well known that if E is smooth,
then the duality mapping J is single-valued. We still denote the single-valued
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duality mapping by J . If E is uniformly smooth, then J is uniformly norm-to-norm
continuous on bounded subsets of E .

A Banach space E is strictly convex if∥∥∥∥x + y

2

∥∥∥∥ < 1, for x, y ∈ SE and x �= y.

It is said to be uniformly convex if for each ε > 0, there exists δ > 0 such that∥∥∥∥x + y

2

∥∥∥∥ ≤ 1 − δ, for x, y ∈ SE and ‖x− y‖ ≥ ε.

If E is uniformly convex, then E has the Kadec-Klee property [8, 20], that is, for
any sequence {xn} in E which converges weakly to x ∈ E and ‖xn‖ → ‖x‖,
we have {xn} converges strongly to x. All uniformly smooth or uniformly convex
Banach spaces are reflexive.

Recall that if C is a nonempty closed convex subset of a Hilbert space H and
PC : H → C is the metric projection of H onto C, then PC is nonexpansive. This
fact characterizes Hilbert spaces and it is not available in general Banach spaces.

Let E be a smooth Banach space and define a Lyapunov function φ : E×E → R
by

φ(x, y) = ‖x‖2 − 2〈x, Jy〉+ ‖y‖2, x, y ∈ E.

Suppose that E is a smooth, strictly convex and reflexive Banach space and C is a
nonempty closed convex subset of E . Then (see [2]) for each x ∈ E , there exists
a unique element x0 ∈ C, denoted by ΠCx, such that

φ(x0, x) = min{φ(y, x) : y ∈ C}.

The mapping ΠC is called the generalized projection from E onto C which was
introduced by Alber [1] in 1994. If E is a Hilbert space, then φ(x, y) = ‖x− y‖2,
for all x, y ∈ E , and so ΠC is coincident with the metric projection PC .

Let C be a closed convex subset of a Banach space E and let S be a mapping
from C into itself. A point p of C is called an asymptotic fixed point of S [16] if C

contains a sequence {xn} which converges weakly to p such that limn→∞ ‖Sxn −
xn‖ = 0. Let the set of asymptotic fixed points of S be denoted by F̂ (S). Then S is
said to be relatively nonexpansive [4, 7, 13] if F̂ (S) = F (S) and φ(p, Sx) ≤ φ(p, x)
for all x ∈ C and p ∈ F (S).

We will need the following lemmas.

Lemma 2.1. (Kamimura and Takahashi [11]). Let E be a smooth and uniformly
convex Banach space and let {xn} and {yn} be two sequences in E such that either
{xn} or {yn} is bounded. If limn→∞ φ(xn, yn) = 0, then limn→∞ ‖xn −yn‖ = 0.
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Lemma 2.2. (Alber [1]). Let C be a nonempty closed convex subset of a smooth
Banach space E and x ∈ E . Then x0 = ΠCx if and only if 〈y−x0, Jx−Jx0〉 ≤ 0,
for all y ∈ C.

Lemma 2.3. (Alber [1]). Let E be a smooth, strictly convex and reflexive
Banach space, and let C be a nonempty closed convex subset of E . Then

φ(y, ΠCx) + φ(ΠCx, x) ≤ φ(y, x), for all x ∈ E, y ∈ C.

Lemma 2.4. (Matsushita and Takahashi [14]). Let E be a smooth and strictly
convex Banach space, let C be a closed convex subset of E , and let S a relatively
nonexpansive mapping from C into itself. Then F (S) is closed and convex.

3. STRONG CONVERGENCE THEOREMS

In this section we will establish the strong convergence theorems for relatively
nonexpansive mappings by using our algorithms. The first hybrid proximal point
algorithm is defined as follows:

x0 ∈ E,

x̃n = ΠCJ−1(Jxn − λn∂f(x̃n)),

zn = J−1(βnJx̃n + (1− βn)JSx̃n),

yn = J−1(αnJx̃n + (1 − αn)JSzn),

Hn = {v ∈ C : φ(v, yn) ≤ αnφ(v, x̃n)

+(1 − αn)φ(v, zn), 〈v − x̃n, ∂f(x̃n)〉 ≤ 0},
Wn = {v ∈ C : 〈v − xn, Jx0 − Jxn〉 ≤ 0},

xn+1 = ΠHn∩Wnx0, n = 0, 1, 2, ...,

(4)

where {λn}∞n=0 ⊂ (0,∞), {αn}∞n=0 ⊂ [0, 1], {βn}∞n=0 ⊂ [0, 1], and x̃n is assumed
to exist for every xn.

We investigate the conditions under which the algorithm (4) is well defined and
obtain the following result.

Lemma 3.1. Let E be a smooth, strictly convex and reflexive Banach space,
f : E → (−∞,∞] a lower semicontinuous proper convex function and S : C → C
is a relatively nonexpansive mapping. Suppose that x̃ n exists for any xn in (4). If
(∂f)−10 ∩ F (S) �= ∅, then the sequence {xn} generated by (4) is well defined.
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Proof. It is seen that each Wn is closed and convex. To prove that for each
n ≥ 0, Hn is a closed convex set, let Cn and Dn be two subsets of C defined by

Cn = {v ∈ C : φ(v, yn) ≤ αnφ(v, x̃n) + (1 − αn)φ(v, zn)}

and
Dn = {v ∈ C : 〈v − x̃n, ∂f(x̃n)〉 ≤ 0};

so that Hn = Cn ∩ Dn, Cn is closed and Dn is closed and convex. Hence Hn is
closed. Since

φ(v, yn) ≤ αnφ(v, x̃n) + (1− αn)φ(v, zn)

is equivalent to

2αn〈v, Jx̃n〉+ 2(1− αn)〈v, Jzn〉 − 2〈v, Jyn〉
≤ αn‖x̃n‖2 + (1 − αn)‖zn‖2 − ‖yn‖2,

it follows that Cn is convex and so is Hn. Therefore Hn is closed and convex.
Next we claim that F (S) ⊂ Cn for all n ≥ 0. Let w ∈ F (S). Since S is

relatively nonexpansive, we have

φ(w, Szn) ≤ φ(w, zn), for all n ≥ 0,

and so it follows from (4) that

φ(w, yn) = ‖w‖2 − 2〈w, αnJx̃n + (1− αn)JSzn〉
+ ‖αnJx̃n + (1 − αn)JSzn‖2

≤ ‖w‖2 − 2αn〈w, Jx̃n〉 − 2(1− αn)〈w, JSzn〉

+ αn‖x̃n‖2 + (1 − αn)‖Szn‖2

= αnφ(w, x̃n) + (1− αn)φ(w, Szn)

≤ αnφ(w, x̃n) + (1− αn)φ(w, zn),

for all n ≥ 0. So w ∈ Cn for all n ≥ 0. This asserts that

F (S) ⊂ Cn, for all n ≥ 0. (5)

We will use the mathematical induction to verify that

(∂f)−10 ∩ F (S) ⊂ Hn ∩ Wn, for all n ≥ 0; (6)
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hence {xn} generated by (4) is well defined. Take u ∈ (∂f)−10∩F (S) arbitrarily.
Then (5) implies that u ∈ Cn for all n ≥ 0. By hypothesis given any x0 ∈ E there
exists x̃0 ∈ C such that x̃0 = ΠCJ−1(Jx0 − λ0∂f(x̃0)). Since ∂f is monotone,
we obtain

〈x̃0 − u, ∂f(x̃0)〉 ≥ 0,

which implies that u ∈ D0 and hence u ∈ H0. It is of course u ∈ W0 = C. So
u ∈ H0∩W0 and x1 = ΠH0∩W0x0 is well defined. Suppose that u ∈ Hn−1∩Wn−1

for some n ≥ 2. Then xn = ΠHn−1∩Wn−1x0 is well defined. Again, by hypothesis
there exists x̃n ∈ C such that x̃n = ΠCJ−1(Jxn − λn∂f(x̃n)). The monotonicity
of ∂f implies that

〈x̃n − u, ∂f(x̃n)〉 ≥ 0;

hence u ∈ Dn and so u ∈ Hn. Since xn = ΠHn−1∩Wn−1x0, it follows from Lemma
2.2 that

〈u − xn, Jx0 − Jxn〉 ≤ 0,

and therefore u ∈ Wn. We conclude that u ∈ Hn ∩ Wn and xn+1 = ΠHn∩Wnx0 is
well defined.

Theorem 3.2. Let E be a uniformly convex and uniformly smooth Banach
space, f : E → (−∞,∞] a lower semicontinuous proper convex function and
S : C → C a relatively nonexpansive and uniformly continuous mapping such that
(∂f)−10∩F (S) �= ∅. Suppose that x̃n exists for any xn in (4), {λn}∞n=0 ⊂ [a,∞)
for some a > 0, and {αn}∞n=0, {βn}∞n=0 are two sequences in [0, 1] such that
lim supn→∞ αn < 1 and limn→∞ βn = 1. Then the following hold:

(i) The sequence{xn}generated by (4) converges strongly toΠ (∂f)−10∩F (S)x0.
(ii) If ∂f is bounded, then {f(xn)} converges to the minimum f ∗ of f .

Proof. The proof of conclusion (i) is divided into five steps.

Step 1. We first prove that

lim
n→∞ φ(xn+1, xn) = 0, (7)

and therefore by Lemma 2.1,

lim
n→∞ ‖xn+1 − xn‖ = 0. (8)

It follows from the definition of Wn and Lemma 2.2 that

xn = ΠWnx0, for all n ≥ 0. (9)
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Since xn+1 = ΠHn∩Wnx0 ∈ Wn, it follows that

φ(xn, x0) ≤ φ(xn+1, x0), for all n ≥ 0.

Thus {φ(xn, x0)} is nondecreasing. ¿From xn = ΠWnx0 and Lemma 2.3 we have

φ(xn, x0) ≤ φ(w, x0) − φ(w, xn) ≤ φ(w, x0),

for w ∈ (∂f)−10 ∩ F (S) ⊂ Wn and for n ≥ 0. This shows that {φ(xn, x0)} is
bounded and so converges. Moreover, according to the inequality

(‖xn‖ − ‖x0‖)2 ≤ φ(xn, x0) ≤ (‖xn‖ + ‖x0‖)2,
the sequence {xn} is bounded. We use Lemma 2.3 and (9) to derive that

φ(xn+1, xn) ≤ φ(xn+1, x0) − φ(xn, x0), for all n ≥ 0.

Since {φ(xn, x0)} converges, we have φ(xn+1, xn) → 0.

Step 2. Claim that
lim

n→∞φ(x̃n, xn) = 0

and therefore by Lemma 2.1

lim
n→∞ ‖x̃n − xn‖ = 0. (10)

It suffices to prove that

φ(xn+1, xn) ≥ φ(ΠHnxn, xn) ≥ φ(x̃n, xn), (11)

which implies that φ(x̃n, xn) → 0 by (7). The first inequality in (11) holds because
xn+1 ∈ Hn. We now prove the second inequality in (11). Since ‖x̃n‖2 = 〈x̃n, Jx̃n〉,
it follows that

‖ΠHnxn‖2 − ‖x̃n‖2 ≥ 2〈ΠHnxn, Jx̃n〉 − 2‖x̃n‖2

≥ −2〈x̃n − ΠHnxn, Jx̃n〉,
and so we have

φ(ΠHnxn, xn) − φ(x̃n, xn)

= ‖ΠHnxn‖2 − ‖x̃n‖2 + 2〈x̃n − ΠHnxn, Jxn〉
≥ 2〈x̃n − ΠHnxn, Jxn − Jx̃n〉
= 2λn〈x̃n − ΠHnxn, ∂f(x̃n)〉

+2〈x̃n − ΠHnxn, Jxn − Jx̃n − λn∂f(x̃n)〉.

(12)
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Since ΠHnxn ∈ Hn, we obtain

〈x̃n − ΠHnxn, ∂f(x̃n)〉 ≥ 0,

and since x̃n = ΠCJ−1(Jxn − λn∂f(x̃n)), Lemma 2.2 asserts that

〈x̃n − ΠHnxn, Jxn − λn∂f(x̃n) − Jx̃n〉 ≥ 0.

Therefore (12) yields φ(ΠHnxn, xn) ≥ φ(x̃n, xn) and (11) holds. Further, it follows
immediately from (10) and the boundedness of {xn} that {x̃n} is also bounded.

Step 3. Observe that

lim
n→∞φ(xn+1, x̃n) = lim

n→∞φ(xn+1, zn) = lim
n→∞φ(xn+1, yn) = 0 (13)

and therefore

lim
n→∞ ‖xn+1 − x̃n‖ = lim

n→∞ ‖xn+1 − zn‖ = lim
n→∞ ‖xn+1 − yn‖ = 0. (14)

In fact, we have

φ(xn+1, x̃n) = 〈xn+1, Jxn+1 − Jx̃n〉+ 〈x̃n − xn+1, Jx̃n〉
≤ ‖xn+1‖‖Jxn+1 − Jx̃n‖ + ‖x̃n − xn+1‖‖x̃n‖
≤ ‖xn+1‖(‖Jxn+1 − Jxn‖+ ‖Jxn − Jx̃n‖)

+(‖x̃n − xn‖ + ‖xn − xn+1‖)‖x̃n‖.

(15)

By (8), (10) and the uniform norm-to-norm continuity of J on bounded subsets of
E , it follows that Jx̃n − Jxn → 0 and Jxn+1 − Jxn → 0. Since {xn} and {x̃n}
are bounded, (15) shows that φ(xn+1, x̃n) → 0.

Again, since {x̃n} is bounded and φ(p, Sx̃n) ≤ φ(p, x̃n) where p ∈ F (S), we
obtain that {Sx̃n} is also bounded. It follows that

φ(xn+1, zn) = ‖xn+1‖2 − 2〈xn+1, βnJx̃n + (1 − βn)JSx̃n〉

+ ‖βnJx̃n + (1− βn)JSx̃n‖2

≤ ‖xn+1‖2 − 2βn〈xn+1, Jx̃n〉 − 2(1− βn)〈xn+1, JSx̃n〉
+ βn‖x̃n‖2 + (1− βn)‖Sx̃n‖2

= βnφ(xn+1, x̃n) + (1 − βn)φ(xn+1, Sx̃n) → 0, as βn → 1.

Since xn+1 ∈ Hn, we have

φ(xn+1, yn) ≤ αnφ(xn+1, x̃n) + (1 − αn)φ(xn+1, zn) → 0 as n → ∞.
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Consequently (13) holds.

Step 4. Claim that
lim

n→∞ ‖xn − Sxn‖ = 0. (16)

We first prove that
lim

n→∞ ‖xn+1 − Szn‖ = 0. (17)

Since
‖xn − zn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − zn‖,

it follows from (8) and (14) that

lim
n→∞ ‖xn − zn‖ = 0. (18)

Using

‖Jxn+1 − Jyn‖ = ‖αn(Jxn+1 − Jx̃n) + (1− αn)(Jxn+1 − JSzn)‖
≥ (1− αn)‖Jxn+1 − JSzn‖ − αn‖Jx̃n − Jxn+1‖,

we have

‖Jxn+1 − JSzn‖ ≤ 1
1 − αn

(‖Jxn+1 − Jyn‖+ αn‖Jx̃n − Jxn+1‖). (19)

Since lim supn→∞ αn < 1 and J is uniformly norm-to-norm continuous on bounded
subsets of E , it follows from (14) and (19) that limn→∞ ‖Jxn+1 − JSzn‖ = 0.
Since J−1 is also uniformly norm-to-norm continuous on bounded subsets of E∗,
we obtain limn→∞ ‖xn+1 − Szn‖ = 0. Since S is uniformly continuous, by (8),
(17) and (18)

‖xn − Sxn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − Szn‖ + ‖Szn − Sxn‖ → 0 as n → ∞.

Step 5. We now prove that {xn} converges strongly to Π(∂f)−10∩F (S)x0. Let
{xni} be any subsequence of {xn} which converges weakly to x̂ ∈ C. Then by (16),
x̂ is an asymptotic fixed point of S. Since S is relatively nonexpansive, x̂ ∈ F (S).

To prove that x̂ ∈ (∂f)−10, let

un = J−1(Jxn − λn∂f(x̃n))

so that x̃n = ΠCun and

∂f(x̃n) = − 1
λn

(Jyn − Jxn).
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Since (∂f)−10∩F (S) �= ∅ and f∗ is the minimum of f , there exists w ∈ (∂f)−10∩
F (S) such that f(w) = f ∗ and hence

f(x̃n) − f(w) ≤ 〈x̃n − w, ∂f(x̃n)〉

= − 1
λn

〈x̃n − w, Jyn − Jxn〉

= − 1
λn

〈x̃n − w, Jyn − Jx̃n〉 − 1
λn

〈x̃n − w, Jx̃n − Jxn〉.
(20)

Since x̃n = ΠCyn and w ∈ (∂f)−10 ∩ F (S) ⊂ C, by Lemma 2.2 we have

〈x̃n − w, Jyn − Jx̃n〉 ≥ 0.

It follows from (20) that

f(x̃n) − f∗ ≤ − 1
λn

〈x̃n − w, Jx̃n − Jxn〉

≤ 1
a
‖x̃n − w‖‖Jx̃n − Jxn‖.

Since f is convex and lower semicontinuous, it is weakly lower semicontinuous.
Thus from x̃ni ⇀ x̂ and Jx̃n − Jxn → 0 we have

0 ≤ f(x̂) − f∗

≤ lim inf
i→∞

[f(x̃ni) − f(w)]

≤ lim sup
i→∞

[f(x̃ni) − f(w)]

≤ lim sup
i→∞

1
a
‖x̃ni − w‖‖Jx̃ni − Jxni‖ = 0.

This implies that
lim
i→∞

f(x̃ni) = f(x̂) = f∗, (21)

and so x̂ ∈ (∂f)−10. Therefore x̂ ∈ (∂f)−10 ∩ F (S).
Next we shall prove that {xni} converges strongly to x̂ and x̂ = Π(∂f)−10∩F (S)x0.

Let x̄ = Π(∂f)−10∩F (S)x0. Since xn+1 = ΠHn∩Wnx0 and x̄ ∈ (∂f)−10 ∩ F (S) ⊂
Hn ∩ Wn, we have φ(xn+1, x0) ≤ φ(x̄, x0). On the other hand from the weak
lower semicontinuity of the norm, we have

φ(x̂, x0) = ‖x̂‖2 − 2〈x̂, Jx0〉 + ‖x0‖2

≤ lim inf
i→∞

(‖xni‖2 − 2〈xni , Jx0〉 + ‖x0‖2)

= lim inf
i→∞

φ(xni , x0)

≤ lim sup
i→∞

φ(xni , x0)

≤ φ(x̄, x0)

(22)
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which shows that x̂ = x̄ and hence

lim
i→∞

φ(xni , x0) = φ(x̄, x0).

Therefore limi→∞ ‖xni‖ = ‖x̄‖. Applying the Kadec-Klee property of E , we
conclude that {xni} converges strongly to x̄. Since {xni} is an arbitrary weakly
convergent subsequence of {xn}, {xn} converges strongly to x̄. This completes the
proof of conclusion (i).

To prove conclusion (ii), suppose that the operator ∂f is bounded. Then
{∂f(xn)} is bounded. Since {xn} converges strongly to x̄, it follows from (21)
that

lim
n→∞ f(x̃n) = f(x̄) = f∗. (23)

Observe that for all n ≥ 0

f(xn) ≤ f(x̃n) + 〈xn − x̃n, ∂f(xn)〉
≤ f(x̃n) + ‖xn − x̃n‖‖∂f(xn)‖.

(24)

Since f is lower semicontinuous, by (10) and (23) we obtain

f∗ = f(x̄) ≤ lim inf
n→∞ f(xn) ≤ lim sup

n→∞
f(xn) ≤ lim

n→∞ f(x̃n) = f∗.

Hence

lim
n→∞ f(xn) = f(x̄) = f∗.

In Theorem 3.2, if f(x) = 0 for all x ∈ E , then ∂f(x) = 0 for all x ∈ E and
hence F (S) = (∂f)−10 ∩ F (S) �= ∅. So we have

x̃n = ΠCJ−1(Jxn − λn∂f(x̃n)) = ΠCxn =

{
ΠCx0, if n = 0,

xn, if n ≥ 1.

This is the case of Theorem 2.1 in [15].
Next we use the second algorithm to establish our main result which includes

[15, Theorem 2.2] as a special case.

Theorem 3.3. Let E be a uniformly convex and uniformly smooth Banach
space, f : E → (−∞,∞] a lower semicontinuous proper convex function and
S : C → C a relatively nonexpansive and uniformly continuous mapping such that
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(∂f)−10 ∩ F (S) �= ∅. Define a sequence {xn} by the following algorithm

x0 ∈ E,

x̃n = ΠCJ−1(Jxn − λn∂f(x̃n)),

yn = J−1(αnJx0 + (1− αn)JSx̃n),

Hn = {v ∈ C : φ(v, yn) ≤ αnφ(v, x0)

+(1 − αn)φ(v, x̃n), 〈v − x̃n, ∂f(x̃n)〉 ≤ 0},
Wn = {v ∈ C : 〈v − xn, Jx0 − Jxn〉 ≤ 0},

xn+1 = ΠHn∩Wnx0, n = 0, 1, 2, . . . ,

(25)

where {λn}∞n=0 ⊂ [a,∞) for some a > 0, and {αn}∞n=0 ⊂ (0, 1). Suppose that x̃n

exists for any xn in (25) and limn→∞ αn = 0. Then the following hold:

(i) The sequence{xn} generated by (25)converges strongly toΠ (∂f)−10∩F (S)x0.
(ii) If ∂f is bounded, then {f(xn)} converges to the minimum f ∗ of f .

Proof. By applying the same arguments as in the proof of Lemma 3.1, all the
sets Hn and Wn, n ≥ 0, are closed and convex and

(∂f)−10 ∩ F (S) ⊂ Hn ∩ Wn, for all n ≥ 0;

hence {xn} generated by (25) is well defined. The rest of the proof are the same
as that of Theorem 3.2. First observe that

lim
n→∞ φ(xn+1, xn) = lim

n→∞ φ(xn, x̃n) = 0 = lim
n→∞ φ(xn+1, x̃n) = 0 (26)

and the sequences {xn} and {x̃n} are bounded. Since xn+1 = ΠHn∩Wnx0 ∈ Hn,
we have

φ(xn+1, yn) ≤ αnφ(xn+1, x0) + (1− αn)φ(xn+1, x̃n).

It follows from (26) and limn→∞ αn = 0 that

lim
n→∞φ(xn+1, yn) = 0. (27)

Therefore (26) and (27) imply that

lim
n→∞ ‖xn+1 − xn‖ = lim

n→∞ ‖xn − x̃n‖

= lim
n→∞ ‖xn+1 − x̃n‖ = lim

n→∞ ‖xn+1 − yn‖ = 0.
(28)
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The inequality

‖Jxn+1 − Jyn‖ = ‖Jxn+1 − [αnJx0 + (1− αn)JSx̃n]‖
≥ (1 − αn)‖Jxn+1 − JSx̃n]‖ − αn‖Jxn+1 − Jx0‖

yields

‖Jxn+1 − JSx̃n‖ ≤ 1
1 − αn

[‖Jxn+1 − Jyn‖ + αn‖Jxn+1 − Jx0‖] .

Since limn→∞ αn = 0 and J is uniformly norm-to-norm continuous on bounded
subsets of E , the previous inequality and (28) imply that

lim
n→∞ ‖Jxn+1 − JSx̃n‖ = 0.

Since J−1 is also uniformly norm-to-norm continuous on bounded subsets of E∗,
we obtain

lim
n→∞ ‖xn+1 − Sx̃n‖ = 0. (29)

Now
‖xn − Sxn‖ ≤ ‖xn − xn+1‖ + ‖xn+1 − Sx̃n‖ + ‖Sx̃n − Sxn‖.

Therefore by uniform continuity of S, (28) and (29),

lim
n→∞ ‖xn − Sxn‖ = 0. (30)

To prove {xn} converges strongly to x̄ = Π(∂f)−10∩F (S)x0, we see that if {xni}
is a subsequence of {xn} which converges weakly to a point x̂ ∈ E , then x̂ ∈ F (S)
by (30). Since (∂f)−10 ∩ F (S) �= ∅ and f∗ is the minimum of f , there exists
w ∈ (∂f)−10 ∩ F (S) such that f(w) = f ∗. Hence (20) still holds in this case.
Since f is convex and lower semicontinuous, f is weakly lower semicontinuous.
Therefore we have the inequality

0 ≤ f(x̂) − f∗ ≤ lim sup
i→∞

1
a
‖x̃ni − w‖‖Jx̃ni − Jxni‖ = 0,

because limn→∞ ‖Jx̃n − Jxn‖ = 0. This shows that

lim
i→∞

f(x̃ni) = f(x̂) = f∗, (31)

and so x̂ ∈ (∂f)−10. Hence x̂ ∈ (∂f)−10 ∩ F (S). By (22) and the Kadec-Klee
property of E , x̂ = x̄ and {xn} converges strongly to x̄. The proof of (i) is complete.

Next, suppose that ∂f is bounded. Since {xn} converges strongly to x̄, it
follows from (31) that
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lim
n→∞ f(x̃n) = f(x̄) = f∗.

Since f is lower semicontinuous, by (23), () and (28) we then have

f∗ = f(x̄) ≤ lim inf
n→∞ f(xn) ≤ lim sup

n→∞
f(xn) ≤ lim

n→∞ f(x̃n) = f∗.

Hence
lim

n→∞ f(xn) = f(x̄) = f∗.

Conclusion (ii) holds.
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