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OPTIMALITY CONDITIONS AND DUALITY FOR A CLASS
OF NONDIFFERENTIABLE MULTIOBJECTIVE
PROGRAMMING PROBLEMS

Do Sang Kim and Kwan Deok Bae

Abstract. In this paper, we formulate a general dual problem for a class of
nondifferentiable multiobjective programs involving the support function of a
compact convex set and linear functions. Fritz John and Kuhn-Tucker optimal-
ity conditions are presented. In addition, we establish weak and strong duality
theorems for weakly efficient solutions under suitable generalized (F, «, p, d)
convexity assumptions. Some special cases of our duality results are given.

1. INTRODUCTION AND PRELIMINARIES

There has been an increasing interest in developing optimality conditions and
duality relations for nondifferentiable multiobjective programming problems. Mond
and Schechter [12], firstly introduced nondifferentiable symmetric duality, in which
the objective function contains a support function. Duality theorems for nondiffer-
entiable static programming problem with a square root term are obtained by Lal et
al. [7]. In nondifferentiable multiobjective programs involving a support function,
further developments for duality relations are founded in Kim et al. [4] and Liang
et al. [6].

In order to establish sufficient optimality conditions and duality relations we
present the concept of generalized (F, «, p, d)-convexity which is related to various
generalized convexity by several authors ([2, 3, 5, 7, 11, 13]).

Recently, Yang et al. [14] considered a class of nondifferentiable multiobjective
programming problems, involving the support function of a compact convex set and
constructed a more general dual model for a class of nondifferentiable multiobjec-
tive programs and established only weak duality theorems for efficient solutions
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under the generalized (F, p)-convexity assumptions. Subsequently, Kim et al. [8]
established generalized second order symmetric duality in nondifferentiable multi-
objective programming problems.

In this paper, we introduce the concept of generalized (F, «, p, d)-convexity and
consider a class of nondifferentiable multiobjective programs involving the support
function of a compact convex set and linear functions. And we obtain the neces-
sary and sufficient optimality theorems and generalized duality theorems for weakly
efficient solutions under generalized (F, a, p, d)-convexity assumptions.

Not only weak duality theorems but also strong duality theorem are established
by using necessary and sufficient optimality theorems under generalized (F, «, p, d)-
convexity assumptions. Moreover we give some special cases of our duality results.

We consider the following multiobjective programming problem,

(MPE) Minimize (fi(z)+ s(z|D1),---, fp(z) + s(z|Dp))

subjectto g(z) =20, I(z)=0,
where f and g are differentiable functions from R” — RP and R — R™, respec-
tively; [ is a linear vector function from R" — R? and D;, for each i € P =
{1,2,---,p}, is a compact convex set of R™. The support function s(x|D;) of
D; defined by s(z|D;) = max{ (z,y) | v € D;} [1]. Further let, S := {z €
R™ ‘ gz(x) 20, lk(fL‘) =0,i=1,---m, k=1, 7Q} and](x) = {Z ’gz(x) =
0} for any =z € R". Let hy(x) = s(z|D;), i = 1,---,p. Then h; is a con-
vex function and 0h;(z) = {w € D;| (w,x) = s(z|D;)} [12], where Oh; is the
subdifferential of ;.

We recall the definitions of (F, a, p, d)-convexity due to Liang et al. [6].

Let F: R” x R™ x R™ — R be a sublinear functional; let the function ¢ : R" —
R be differentiable at u € R, p € R, and d(-, ) : R" x R" — R.

Definition 1.1. The function ¢ is said to be (F, «, p, d)-convex at , if
(z) — p(u) 2 F(z,u; a(z, u)Vé(u)) + pd*(z,u), YreR"
Definition 1.2. The function ¢ is (F, «, p, d)-quasiconvex at u, if
¢(x) < ¢(u) = Flo,u; oz, u)Ve(u) S —pd*(z,u), Ve eR"™

Definition 1.3. The function ¢ is (F, «, p, d)-pseudoconvex at u, if

F(z,u;a(z,u)Vo(u)) = —pd*(x,u) = ¢(x) = ¢(u), Vo€ R™
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Definition 1.4. The function ¢ is strictly (F, «, p, d)-pseudoconvex at u, if for
all z € R™, x # u such that

F(x,u; oz, u)Vo(u)) = —pd*(x,u) = ¢(x) > d(u), Vo€ R™.

Remark 1.1.

(i) When a(x,u) = 1, the concept of (F, «, p, d)-convexity is the same as that
of (F, p)-convexity in [13].

(if) When F(z, u; oz, u)Vp(u)) = oz, u)Vé(u)n(z, u), for a certain function
n: R" xR"™ — R, the concept of (F, a, p, d)-convexity is the same as (V, p)-
invexity in [6].

We give a generalization of Gordan’s theorem for the convex and linear functions
due to Mangasarian [9] and Mangasarian and Fromovitz [10].

Theorem 1.1. [9]. Let I" be a nonempty convex set in R™, let F' be an m-
dimensional convex vector function on I" and let [ be a g-dimensional linear vector
function on R™. If

(F(x) <0, l(x) = 0) has no solution z € T’
then there exist p € R™ and ¢ € R? such that

(pF(z) + ql(z)z0)forallz €T, p=0, (p,q)#0.

2. OpTIMALITY CONDITIONS

In this section, we establish both Fritz John necessary and sufficient optimal-
ity conditions and Kuhn-Tucker necessary and sufficient optimality conditions for
weakly efficient solutions of (MPE).

Theorem 2.1. (Fritz John Necessary Optimality Conditions).  Suppose that
fi,g; :R" =R, i=1,---,p, j=1,---,m, are differentiable and [/, : R" —
R, k = 1,---,q, is a linear vector function. If z € S is a weakly efficient
solution of (MPE), then there exist \;, i =1,---,p, pj, j=1,---,m, v, k=
1,---,q, w; € D;, i=1,---,psuch that

p p m q
SOANVL@E) D Nwi— Y p V(@) + > wVik(@) =0,
i=1 i=1 j=1 k=1
<w17‘T> = S(E‘DZ% 1= 17 Ry 2
Zujgj({f) =0,
j=1

()‘17"'7)‘]77M17"'7Mm)207
()‘17"'7)‘127”17"'7Mm7’/17"'7’/q)7é0-
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Proof. Let h;(x) = s(z|D;), i =1,---,p. Since D; is convex and compact,
h; : R™ — R is a convex function and hence Vd € R",
h;(i‘7 d) — lim hz(x + )\d) — hz(x)
A—0+ A

is finite. Also, Vd € R",

(fi + h)(z;d) = lim fi(Z + Ad) + hi(z + Ad) — fi(x) — hi(%)

A—0+ A\
_ i @A) = fi@) L ha(@ + Ad) — hi(T)
A—0+ A A0t h\

[i(&; d) + hi(%; d)

= (V/i(2),d) + hi(z; d).

Since z is a weakly efficient solution of (MPE),
(Vfi(z),d)+ h(z;d) <0, i=1,---,p

< —(Vyg,(z),d) <0, j €I(x) >
<vzk(‘i‘)7d> :07 k= 17 4
has no solution d € R™. By Gordan theorem for convex functions, there exist

Xiz20,i=1,---,p, uj 20, jeI(z)and vy, k=1,---,q are not all zero
such that for any d € R”,

q

p
> N (Vfi(z +ZA (@ d)- > g (Vgi(a), dHY vk (Vik(2),d) 20. (1)
i=1 jeI(aE) k=1
Let A= {320, X [Vfil@) +&] = 3 erm 15V 95(@) + 34 vk VIk(2) | & €
Ohi(z), i =1,---,p}. Then 0 € A. Ab absurdo, suppose that 0 ¢ A. By separa-
tion theorem, there exists d* € R",d* # (0,---,0), such that Va € A, (a,d*) <
0, that is, > 74 Ai (V£i(@),d*) + 2202 Ai (i d*) — Xjeqa 1 (V;(2),d%) +
St vk (Vig(z),d*) < 0, V& € 0hi(z). Hence D°F N (V fi(Z),d*) +>°F
Nili (23 d) = 35z 1 (V95(Z), d) + 200 v (VIk(Z), d) < 0, which contra-
dicts (1). Letting ; =0, Vj & I(z), we have
0€ >3 MV fil@) + 377 Nidhi(@) =320 iV g;(@) + 370 vk Vik(z
ZT1MJ9J( ) - 07 ()‘17"' 7)‘p7M17"' y Hm, V1, 7Vq7) 7& 0. Slnce 8h(
{w; | (w;, ) = s(z|D;)}, we obtain the desired result.

and
) =

)
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Theorem 2.2. (Kuhn-Tucker Necessary Optimality Conditions). Suppose that
fi,g; R =R, i=1,---,p, j =1,---,m are differentiable and the vectors
Vik(z), k=1,---,q, are linearly independent. Assume that 3z* € R™ such that
(Vgi(z),2*) >0, j € I(z), (Vig(z),z*) =0, k=1,---,¢q. Ifz € Sisa
weakly efficient solution of (MPE), then there exist A;, i = 1,---,p, pj, j =
1,---.m, vp, k=1,---,q, w; € D;, i=1,---,p, such that

q
Z)\sz +Z)\wz Zujvgj Z)+ Y wVik(z) =
k=1

<wi7x>_$(x‘DZ)7 _17"'7p7
m

> wigi(x) =

j=1

()‘17"'7)‘177M17"'7Mm) 207
()\17...7)\12)7&(07...70)_

Proof. Since z is a weakly efficient solution of (MPE), by Theorem 2.1, there
exists )\iv i = 17"'7p7 Hj, .]: 17"'7m7 Vg, k= 17"'7qandwi € D’iv 1=
1,---,p such that

p p m q
SONVEE) Y Niwi =Y Vg (@) + > v ViIK(E) =
i=1 i—1 =1 =1

<w’”{z-> = S(E‘Dl)v 1= 17 Dy
m

> wigi(x) =

j=1

()‘17"'7)‘]77”17"'7“771)207
()‘17"'7)‘127”17"'7Mm7’/17"'7’/q)7é0-

Assume that there exists z* € R" such that (Vg;(z), 2 > >0, Vj € I(z),
(Vig(z),z*) = 0, k = 1,---,¢q. Then (Ay,---,),) # (0,---,0). Ab ab-
surdo, suppose that (A, Ap) = (0,---,0). Then (1, -, fim, V1, -+, Vg) #
(0,---,0). If w =0, then v # 0. Since Vig(z), k = 1,---,q, are linearly
independent, v1VI1(Z) + --- 4+ v, Viy(Z) = 0 has trivial solution v = 0, this
contradicts v # 0. So p > 0. Since (Vg;(z),z*) > 0, j € I(z). Defin-
ing w; > 0 for some j € {1,---,m} then >, 11; (Vg;(Z),2*) > 0 and so
Doty i (Vg5(@), 2%) + 2oh vk <Vlk( ), 2*) > 0. This is contradiction. Hence

()‘17 7)‘p)7é(7"'70)' |

Theorem 2.3. (Fritz John Sufficient Optimality Conditions). Let (z, A, w, u, v)
satisfy the Fritz John optimality conditions as follows:
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P

q
Z)\sz +Z)\wz Zujvgj )+ Y v Vig(x) =0,
k=1

(wi,x> = s(x\DZ), i=1,---,p

)
m

Z 1ig;(T) =

(Alv"'vApvulv"'vum)z()?
()‘17"'7)‘p7M17"'7Mm7V17"'7Vq)#0'

(a) fi(-) + () Tw; is (F,a, p;, d)-pseudoconvex at z, and — Z;’;l wigi(-) +
St vili(+) isstrictly (F, o, 3, d)-pseudoconvex at z, with 5+ "%, X;p; =
0; or

() P N(fi()+C)Tw;) is (F, «, p, d)-quasiconvex at z, and — > e g () +
> keq veli(:) is strictly (F, o, 8, d)-pseudoconvex at z, with G+ p 2 0.
Then z is a weakly efficient solution of (MPE).

Proof. (a) Suppose that z is not a weakly efficient solution of (MPE). Then
there exists x* € S such that f;(z*) +s(2z*|D;) < f;(Z)+s(Z|D;). Since (w;,T) =
S(E‘DZ% i = 17 Dy

file®) + @ Tw; = fi(z*) + s(z*|Dy)
< fi(T) + s(z|Dy)
= fz( )+x ws.
By the (F, a, p;, d)-pseudoconvexity of f;(z) + z7w;, we have
F(II)*, z; Oé(fI,'*, ‘T)(sz(i‘) + ’U)Z)) < _p’id2(x*7 ‘i.)
By sublinearity, there exists \; = 0,

P

F(a*, 702", 2) Y M(Vi(@) + w)) < ZAzpz

i=1
Since B+>F  Aipi 20,
F(z*,z; —a(z*, ZMZVQJ (Z) Zulek ) = —ﬁd2(x*,5v).
7=1

Since — 770, 1159;(%) + Yoy vilk(Z) s strictly (F, a, 3, d)-pseudoconvex,

m q m q
= igi(@) > wklk(a®) > =Y g (E) + > vele(7)
j=1 k=1 j=1 k=1
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Since pjg;(z) =0, j=1,---,m, l(@) =0, vlp(z*)=0, k=1,---,q, we
obtain

m

> pigi*) <0,

j=1

which contradicts the condition x; = 0 and g;(z*) = 0.
By a method similar to that used in the proof of (a), we can prove for (b). m

Theorem 2.4. (Kuhn-Tucker Sufficient Optimality Conditions). Let (z, A, w, i, v)
satisfy the Kuhn-Tucker optimality conditions as follows:

ZAVfZ Z)\wz Zujvgjf ZVlek

<’U)Z‘,II,'> - S(x‘DZ)7 - 17 Dy

> pigi(x) =

j=1

()‘17"' 7)‘p7M17"' 7Mm) 2 (07 70)7 ()‘17"' 7)‘p) 7& (07 70)

(a) fi(-) + () Tw; is (F,a, p;, d)-pseudoconvex at z, and — > e kigi () +
kg vklk(+) is (F,a, B, d)-quasiconvex at z, with 3 + > | \ip; = 0;
or

() P N(fi()+C)Tw;) is (F, «, p, d)-pseudoconvex at z, and — > e kigi () +
>ty vklk(+) is (F, a, B, d)-quasiconvex at Z, with 3+ p = 0.
Then z is a weakly efficient solution of (MPE).

Proof. (a) Suppose that z is not a weakly efficient solution of (MPE). Then
there exists x* € S such that f;(z*) +s(z*|D;) < f;(Z)+s(Z|D;). Since (w;, T) =
S(E‘Dl)v i = 17 Dy

fil@) + 2w = fi(a®) + s(z*|Dy)
< fi(Z) + s(z|Dy)
= fil

By the (F, a, p;, d)-pseudoconvexity of f;(z) + z7 w;, we have

z) + 27 w;.

F(a*, 7 0(a*, 2)(VF(T) + wi)) < —pid(a*, 7).
By sublinearity, there exists \; > 0,

P

F(x*,a’v;a(x*,a’v)Z)\z(sz( )+ w;)) Z)\szcﬂx z)

=1
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Since B+ >F  Aipi 20,
m q
Fla*, 3 —a(@®, 3)(Y 1V (@) — S V(@) > —Ad (", 7).
j=1 k=1

Since — 771 115 9;(@) + Y of_q vkl (2) is (F, o, 3, d)-quasiconvex,
m q m q
- Zujgj(x*) + Z Vgl (z®) > — Z wig;(Z) + Z VEli(Z).
j=1 k=1 j=1 k=1

Since :ujgj(‘i.) = 07 .] = 17 s, MMy Vklk(‘rf) =0, Vklk(x*) = 07 k= 17 c, g, WE
obtain

m
> wigi(a*) <0,
=1

which contradicts the condition ; = 0 and g;(«*) = 0.
By a method similar to that used in the proof of (a), we can prove for (b). m

3. DuALITY THEOREMS

In this section, we formulate the generalized dual programming problem and
establish weak and strong duality theorems under generalized (F, o, p, d)-convexity
assumptions. Now we propose the following general dual (MDE) to (MPE):

(MDE) Maximize
(f1(u) +ulw; — Z yigi(u) + 211 (u),

i€lp
©y fplu) + uTwp - Z vigi(u) + ZTZ(U))

i€lp

p q

subject to Z N(V fi(u) + w;) — y" Vg(u) + Z 2kVig(u) =0, (2)

i=1 k=1
Zyzgz(u)§07 Ckzl,"',’l", (3)
i€ly

yz(), WieDi,izl,"',p,
)\:(Al,---,)\p)eA+,

where I, Cc M ={1,---,m}, a=0,1,--- ,rwithU_,I, = M and I,NIz =0
ifa#3 LetAT={AcRP: A 20, NTe=1, e=(1,---,1)T € RP}.
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Theorem 3.1. (Weak Duality). Assume that for all feasible x of (MPE) and all
feasible (u, A, w,y, 2) of (MDE), if =3, vigi(-) (a =1, ,7)is (F, v, B, p)-
quasiconvex at u and assuming that one of the following condltlons hold:

(a) fi()+()Twi—=Ycp, wigi(-)+2T1(-) is (F, a, pi, d)-pseudoconvex at u, with
Za 1ﬁo¢+21 1 zpz‘20 ; or

(0) Ni(fi()+ () Twi) =5 g 9i9i () + 24y 2kl () 18 (F, ev, p, d)-pseudo-
convex atu, with >0, B +p 2 0.

Then the following cannot hold:
f(@) +s(z[D) < flu) +u"w =3, vigi(u)e + 2T l(w)e. (4)
Proof. As x is feasible for (MPE) and (u, A\, w, y, z) is feasible for (MDE), we

have
Z Yigi(r) =20 2 Z vigi(u), a=1,-+-,r.

1€l i€ly

By the (F, a, fa, d)-quasiconvexity of —>_,; wigi(u), a = 1,---,r, it follows
that

F(z,u; —o(z, u)(zz‘ela yiVgi(u) £ —Bad?(x,u), a=1,---,7. (5)
On the other hand, by (2) and the sublinearity of F', we have

F(z,u; a(z,u) (Z i (Vfi(u) +w;) —Z ¥ Vgi(u) —|—Z szlk(u))>
i=1 k=1

i€l

+ Z F(z,u; —a(z,u) <Z yZVgi(u)) 2> F(z,u; a(x,u) (6)

i€l
P
<Z N(Vfi(uw) +w;) — yTVg(u) + szVlk > = 0.
i=1

Combination (5) and (6) gives
p

F(xv'UJ;a(xvu)(Z (vfz +wz Zyzv.%
i=1 i€lp (7)

q
+> " 2 Vig(w)) = ( Zﬁa )d2(z, u).
k=1

Now suppose, contrary to the result, that (4) holds. Since z7w; < s(z|D;), we
have for all i € {1,---, p}

o)+ 2w =Y yigi(e) + 2" 1(@) £ filx) + 2w

®
§fz(x)—|—s(x\D) <fz +u Wi — Zyzgz +ZTZ )

i€ly
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By (a), we get

F(xv Uu; O‘(xv u) (sz(u) + w; — ZyZVQZ(u) + ZTVZ(U))) (9)
i€ly
< —pid*(z,u), Yie{l,---p}.

From A € AT, (9) and the sublinearity of F', we obtain

p q
F(z,u; a(x,u) Z Ai [V fi(w) + w;) —Z yiVgi(u) —1—2 szlk(u)))
i=1 i€lp k=1 (10)
p
< (—Z)\sz) d*(x,u)
i=1
Since Y7 Ba + D b1 Xipi 2 0, it follows from (10) that
q
F(z,u; a(x,u (Z)\ (sz u) + w;) Z%ng )—i—szVlk(u)))
i€lp k=1
< <Z ﬂa> d“(z,u
a=1

which contradicts (7). Hence (4) cannot hold.
Suppose now that (b) is satisfied. From A € A™ and (8), it follows that

Z (fz + 1’ ’U)z Z yzgz + ZTZ )
=1 ZEIO
p
Z (fz + ’LL ’U)z Z yzgz + ZTZ )
=1 ZEIO

Then, by the (F, o, p, d)-pseudoconvexity of S0, Xi(fi()+() Twi) =3 e, vigi(*)
+>°0_ zklik(e) at w,

F(xju;a(x,u)@:&(wz w)+wi) = yiVgi(u)+2"Vi(u ))) (11)
i=1

i€ly
< —pd?(z,u).

Since >.! _; Ba +p 2 0, it follows from (11) that



Nondifferentiable Programming 799

F(z,u;a(z,u (Z)\ (sz u)+w;) Z%ng +ZTVZ( )))
i€ly
< <Zﬁa> d2((L',’U,),
a=1

which contradicts (7). Hence (4) cannot hold. |

Theorem 3.2. (Weak Duality). Assume that for all feasible = of (MPE) and all
feasible (u, A, w,y, 2) of (MDE), if =3,/ vigi(-) (a =1, ,7)is (F, , B, p)-
quasiconvex at u and assuming that one of the following three condltlons hold

(@) fi(-)+ () Tw; — Zielo vigi(-) + 2T1(-) is both (F, o, p;, d)-quasiconvex and
(F, v, p;, d)-pseudoconvex at u, i € P with > 7 _ B+ > b N\ip; =0 ; or

(0) fi()+() T wi=Y e, vigi(-)+211(-) is (F, a, p;, d)-quasiconvexat u, Vi € P
and there exist k € P such that f1.(-) + (-)Twr — > ;cp %igi(-) + 271(-) is
strictly (F, a, pi, d)-pseudoconvex at u, with 7 | Ba+> 4 Xip; =0 ; or

(¢) Ai(fi()+ () wi) = 3ie, wigi () + 300 2wtk () is (F v, p, d)-pseudo-

convex at u, with >0 _, B, + p = 0, then the following cannot hold:

f(@)+s(x|D) < f(u)+u"w— Zyzgz Ye+2T1(u)e, for all i€ P, (12)
iy

and

f(x) + s(z|D) < f(u) + ulw— Z:yzgZ Je + 2T 1(u)e, some i € P. (13)
i€ly

Proof. As x is feasible for (MPE) and (u, A\, w, y, z) is feasible for (MDE), we
have

Z Yigi(r) =20 2 Z vigi(u), a=1,---,r.

1€l i€ly
By the (F, a, fa, d)-quasiconvexity of —>_,; wigi(u), a = 1,---,r, it follows
that
F(z,u; —a(z,u) (Z yZVgi(u)) < —Bad*(z,u), a=1,---,7. (14)
i€l

On the other hand, by (2) and the sublinearity of F', we have
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F(x,u;a(x,u)(Z:)\i<sz u) +w;) Z%ng )—i—szVlk(u)))
=1 k=1

i€l

+3 Fa,u; —a(z,u) Y 3 Vgi(uw)) (15)
a=1

i€l
p
ZF(m,u;a(m,u)(yZ)\i<sz u)+w;) —y' Vg(u) szVlk >>
=1

Combination (14) and (15) gives

F(z,u; a(z,u) (Z i (sz u) +w;) Z YV gi( )—i—z szlk(u)))
i=1 i€lp k=1 (16)
> (z m) o
a=1

Now suppose, contrary to the result, that (12)and (13) hold. Since z7w; <
s(z|D;), we have

—|—1‘ Wi — Zyzgz +ZTZ f(x)+xTwz§fz(x)+s(x‘Dz)

i€lo (17)
) +ulw; = wigi(u) + 27 1(w), Vi€ P,

i€l

x)—i—xTwi—Z yigi(x) + 271(2) £ fi(x) +2Tw; < fi(2) +s(z| Dy)

et (18)
< filu) +ulw; — Zyzgz (u), for some i € P.

i€l

By (a), we get

v ( s, ) (me Fwi— Y uVilu) + ZTW(“))) (1)

i€ly
§ _p’id2(x7u)7 Vi € P7

F (w u; o, u) (Vfi(U) +wi— Y 4iVgilu) + zTVl(u)) ) (20)
i€l
< —pid*(z,u), for some i€ P.

From A € AT, (19), (20) and the sublinearity of F', we have
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F (x, w; oz, u) (Z Xi(V fi(u) + w;)— Z yiVgi(u) —|—Z szlk(u)))
k=1

i=1 i€lp (21)
p
< (=) Aipi)d® ().
i=1
Since >0 1 Ba + D81 Xip; = 0, it follows from (21) that
p q
Flauole,u) [ Y XN(VE@) +w) = 4iVgi(u) + > 2 Vik(u)
i=1 icly k=1
< Zm) d*(x,u),
a=1
which contradicts (16). Hence (12)and (13) cannot hold.
The proof for (b) or (c) is similar to the one used for the proof of (a). [

Remark 3.1. If [ =0 and a(z,u) = 1, then Theorem 3.2 reduces to Theorem
2.1 of Yang et al. [14] in the sense of efficient solutions.

Theorem 3.3. (Strong Duality). If z € S is a weakly efficient solution of (MPE),
and assume that there exists z* € R™ such that (Vg;(z),2*) > 0, Vj € I(Z),
(Vig(z),z*) =0, k = 1,---,q, the vector Vig(z), k = 1,---,q are linearly
independent. Then there exist A € R?, w; € D;, i =1,---,p, y € R™, z € R?
such that (z, A, w, , z) is feasible for (MDE) and z7w; = s(z|D;), i = 1,--- ,p.
Moreover, if the assumptions of Theorem 3.1 are satisfied, then (z, A\, w, 9, 2) is a
weakly efficient solution of (MDE).

Proof. By Theorem 2.2, there exist A € R, 5 € R™, z € R7and w; € D, i
1,---,p, such that Zle )\Z(sz(i') + u_)i) — Z;ﬂzl nggj(f) + 22:1 I/lek(i‘)
0, y;9;(z) =0, j=1,---,m,and w; € D;, i = 1,---,p. Thus (z, \, w, 7, 2)
is a feasible for (MDE) and z7w; = s(z|D;), i = 1,---,p. Notice that f;(z) +
s(2|Di) = fi(z) + 7" w; = fi(Z) + 2Tw; — Y;cp 9i9i(%) + 271(Z). By Theorem
3.1, we obtain that the following cannot hold:

(f1(2) + s(2|D1), -+, [(2) + s(2]Dp))

< (fi(u) +ulwy + Z yigi(u) + 271 (u)
il

v fp(w) +uTwy =Y gigi(u) + 271 (w))

i€ly
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where (u, \, w, y, ) is any feasible solution of (MDE). Since z7w; = s(Z|D;), we
have that the following cannot hold:

(fi(@) + 7w — Zyzgz )+ 2T1(2)

i€l

y T f()+x wp Zyzgz +z l( ))

i€ly
< (f1(u) +ulw;y — Zyigi(u) + 271 (u)
il
oo fow) +ulw, — Z vigi(u) + 271(u)).

i€l

Since (z, \,w,y,z) is a feasible solution for (MDE), (z, A\, w, 7, 2) is a weakly
efficient solution of (MDE). Hence the result holds. ]

Theorem 3.4. (Strong Duality). If z € S is an efficient solution of (MPE),
and assume that there exists z* € R™ such that (Vg;(z),2*) > 0, Vj € I(z),
(Vig(z),z*) =0, k =1,---,¢q, the vector Vlk(f), k =1,---,q are linearly
independent. Then there exist A € R?, w; € D;, i =1,---,p, y € R™, z € RY
such that (z, A, w, g, z) is feasible for (MDE) and z7w; = s(x\ i), i=1,--+,p.
Moreover, if the assumptlons of Theorem 3.2 are satisfied, then (z, A, w, 7, z) is an
efficient solution of (MDE).

The proof is similar to the one used for the previous strong duality theorem.

4. SpeciaL CASES

We give some special cases of our duality results.

(1) If [ = 0, then the primal problem (MPE) and the dual problem (MDE)
become the primal problem (VP) and the dual problem (VD) considered in
Yang et al. [14] respectively.

(VP) Minimize (fi(z)+ s(z|D1),- -, fp(z) + s(xz|Dp))
subjectto  g(z) = 0,
(VD) Maximize

(fl +’LL w1 — Zyzgz ( )+u wp Zyzgz )

ZEIQ ZEIO

subject to Z)\ (Vfi(w) +w;) —yTVg(u) =0,

Zyzgz : 7 —1,---,7“,

1€l



10.

11.
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y207 w’ieD’iv ’L.:lv"'vpv
A=(AL- -, Ap) € AT

Let D, {Biw cw? Byw £ 1, }. Then s(z|D;) = (¢ B;2)'/? and the sets
D;, i =1,---,p, are compact and convex. If | =0, [ = M and I, = 0,
a=1,---,r,then (MPE) and (MDE) reduce to (VP) and (VDP); in Lal et al.

[71, respectlvely fl=0,L=0L=MandI,=0, a«a=2,---,r, then
(MPE) and (MDE) reduce to (VP) and (VDP), in Lal et al. [7], respectively.
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