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AN EXTENDED GAUSS-SEIDEL METHOD FOR
MULTI-VALUED MIXED COMPLEMENTARITY PROBLEMS

E. Allevi, A. Gnudi and I. V. Konnov

Abstract. The complementarity problem (CP) is one of the basic topics in
nonlinear analysis. Since the constraint set of CP is a convex cone or a cone
segment, weak order monotonicity properties can be utilized for its analysis
instead of the usual norm monotonicity ones. Such nonlinear CPs with or-
der monotonicity properties have a great number of applications, especially
in economics and mathematical physics. Most solution methods were de-
veloped for the single-valued case, but this assumption seems too restrictive
in many applications. In the paper, we consider extended concepts of multi-
valued Z-mappings and examine a class of generalized mixed complementarity
problems (MCPs) with box constraints, whose cost mapping is a general com-
position of multi-valued mappings possessing Z type properties. We develop
a Gauss-Seidel algorithm for these MCPs. Some examples of computational
experiments are also given.

1. INTRODUCTION AND PRELIMINARIES

Together with optimization and fixed point problems, the complementarity prob-
lem is one of the basic problems in Nonlinear Analysis and its theory, methods and
applications are well documented in literature; see, e.g. [2]-[3] and references
therein. We recall that the classical complementarity problem (CP) consists in find-
ing a point x∗ ∈ Rn such that

x∗ ≥ 0, f(x∗) ≥ 0, 〈x∗, f(x∗)〉 = 0, (1)
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where f : Rn → Rn is a given single-valued mapping. Here and below, 〈·, ·〉
denotes the scalar product in Rn and all the inequalities for vectors are component-
wise, i.e., x ≥ y means that xi ≥ yi for i = 1, . . . , n if x = (x1, . . . , xn) and
y = (y1, . . . , yn).

Most results in theory and solution methods of complementarity problems are tra-
ditionally devoted to the classical ones with single-valued or even affine mappings.
At the same time, many problems arising in applications involve multi-valued map-
pings and may contain additionally box type constraints instead of non-negativity of
variables; see e.g. [2, 3] and references therein. The corresponding generalization
of problem (1) can be defined as follows. We are given the box-constrained set

D = {x ∈ Rn | −∞ < ai ≤ xi ≤ bi ≤ +∞ i = 1, . . . , n}

and a multi-valued mapping G : Rn → Π(Rn), where Π(S) denotes the family of
all non-empty subsets of a set S. The mixed complementarity problem (MCP for
short) is to find a point x∗ ∈ D such that

∃g∗ ∈ G(x∗), g∗i




≥ 0 if x∗i = ai,

= 0 if x∗i ∈ (ai, bi),
≤ 0 if x∗i = bi,

for i = 1, . . . , n. (2)

Obviously, if the feasible set D coincides with the non-negative orthant Rn
+ and

G = f , then MCP(2) coincides with (1). At the same time, MCP(2) can be also
equivalently rewritten as the variational inequality: Find x∗ ∈ D such that

∃g∗ ∈ G(x∗), 〈g∗, x− x∗〉 ≥ 0 ∀x ∈ D. (3)

Usually, existence and uniqueness results of solutions for complementarity prob-
lems and variational inequalities are based upon certain monotonicity properties. As
to the classical problem (1), one of the most useful and fruitful concepts is that of the
Z-mapping (or off-diagonal antitone mapping). On the one hand, there are a lot of
equilibrium type problems in applications which lead to appearance of Z-mappings,
they being formulated as CP’s or MCP’s; see e.g. [2, 4, 14]. On the other hand,
this concept allows one to develop efficient solution methods in the single-valued
case; see e.g. [15]-[16].

However, generalization of this concept for multi-valued mappings meets con-
siderable difficulties. In particular, the streamlined extension of this concept does
not involve even the diagonal multi-valued mappings. In this talk, we consider some
kinds of multi-valued Z-mappings and discuss their properties.

Recently, in [5], a Jacobi type algorithm for solving complementarity problems
whose cost mappings are compositions of single-valued Z-mappings and multi-
valued diagonal monotone mappings was proposed. A Gauss-Seidel algorithm for
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this class of CP’s was proposed in [1]. An extended Jacobi algorithm for MCP
(2) involving general compositions of multi-valued mappings was suggested in [6].
This approach was applied to multi-valued inclusions in [7].

In this paper, we describe and substantiate a Gauss-Seidel algorithm for a general
class of MCP’s of form (2).

2. PROPERTIES OF MULTI-VALUED Z-MAPPINGS

We start our considerations from recalling several order monotonicity properties
of single-valued mappings.

Definition 1. A mapping F : D → Rn is said to be

(a) antitone if the mapping −F is isotone;
(b) isotone if for each pair of points x′, x′′ ∈ D such that x′ ≥ x′′, it holds that

F (x′) ≥ F (x′′);
(c) inverse isotone if for each pair of points x′, x′′ ∈ D such that F (x′) ≥ F (x′′),

it holds that x′ ≥ x′′;
(d) a Z-mapping if for each pair of points x′, x′′ ∈ D such that x′ ≥ x′′, it holds

that Fk(x′) ≤ Fk(x′′) for each index k with x′k = x′′k;
(e) an M -mapping, if it is an inverse isotone Z-mapping.

These properties have been investigated rather well, especially, in the affine
case, then they are strongly related with the corresponding classes of matrices; see
e.g. [2]. In particular, if F is of the form

F (x) = Ax+ b,

F is a Z-mapping (respectively, an M -mapping) if and only if A is a Z-matrix (re-
spectively, an M -matrix). In the general nonlinear case, these properties are strongly
related to those of the Jacobian of F . Also, there exist many useful relationships
among these concepts. For example, if F is of the form

F (x) = x− V (x),

where V is an isotone mapping, then F is clearly a Z-mapping.
Observe that there exist several equivalent or slightly modified definitions of Z

properties, they are also known as off-diagonal antitonicity and gross substitutability;
see e.g. [14, 15].

We present some extensions of the concept of the Z-mapping for the multi-
valued case.
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Definition 2. A multi-valued mapping G : D → Π(Rn) is said to be

(a) a Z-mapping if for each pair of points x′, x′′ ∈ D such that x′ ≥ x′′, x′ 
= x′′,
it holds that g ′k ≤ g′′k for all g′ ∈ G(x′), g′′ ∈ G(x′′) and for each index k
such that x′k = x′′k;

(b) an upper (a lower) Z-mapping if for each pair of points x′, x′′ ∈ D such that
x′ ≥ x′′ and for each g′ ∈ G(x′) there exists g ′′ ∈ G(x′′) (respectively, for
each g′′ ∈ G(x′′) there exists g ′ ∈ G(x′)) such that g ′k ≤ g′′k for every index
k such that xk = yk;

(c) a weak Z-mapping if it is both an upper and a lower Z-mapping.

Note that the additional condition x′ 
= x′′ can not be dropped in (a) since
otherwise the Z-mapping becomes single-valued. Hence, the streamlined extension
(a) of the Z-mapping may appear too restrictive.

Definition 3. A mapping G : R
n → Π(Rn) is said to be

(a) diagonal if G(x) =
n∏

i=1
Gi(xi);

(b) quasi-diagonal [8] if G(x) =
n∏

i=1
Gi(x).

Clearly, (a)=⇒(b). Moreover, each single-valued mapping is quasi - diagonal.
Next, observe that each diagonal single-valued mapping is Z, but this is not the case
if it is multi-valued. Hence, various compositions of multi-valued diagonal and Z-
mappings may not possess the Z property as well. For this reason, it seems more
suitable to utilize weaker concepts of multi-valued Z-mappings given in Definition
2, (b)-(c), which contain arbitrary diagonal multi-valued mappings.

We recall also the known continuity and monotonicity type properties for multi-
valued mappings.

Definition 4. A mapping G : R
n → Π(Rn) is said to be

(a) monotone, if for each pair of points x′, x′′ ∈ R
n and for all g′ ∈ G(x′), g′′ ∈

G(x′′), it holds that
〈g′ − g′′, x′ − x′′〉 ≥ 0;

(b) a Kakutani-mapping (K-mapping) if it is upper semicontinuons and has
nonempty, convex, and compact image sets.
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3. EXTENDED GAUSS-SEIDEL ALGORITHM FOR MCP

We consider MCP (2), where G : D → Π(Rn) is of the form

G(x) =
l∑

s=1

F (s) ◦H (s)(x), (4)

where F (s) : Rn → Π(Rn) is a quasi-diagonal, an upper Z- and a K-mapping on
some rectangle containing H (s)(D), H(s) : D → Π(Rn) is a diagonal monotone
K-mapping for each s = 1, . . . , l.

Recently, a Jacobi type algorithm for solving such MCP’s was proposed in [6].
In [7], it was adjusted to the multi-valued inclusion

0 ∈ G(x∗),

where G satisfies the above assumptions with replacing the upper Z property with
the weak Z one; see Definition 2. Various examples of applications of MCP (2),
(4) satisfying the above assumptions can be found e.g. in [11, 12, 10, 9] and [6].
We now describe a Gauss-Seidel algorithm for this problem.

Let us first introduce the auxiliary set for MCP (2), (4) as follows:

Q = {x ∈ D | ∃g ∈ G(x), xi < bi ⇒ gi ≥ 0 ∀i = 1, . . . , n} .

Algorithm (Gauss-Seidel). Choose a point x̃ ∈ Q and, beginning from the
point x0 = x̃, construct a sequence {xk} in conformity with the following rules.

At the k-th iteration, k = 0, 1, . . . , we have a point xk ∈ Q such that xk ≤ x0

and that there exists gk ∈
l∑

s=1
F (s)(h(s),k) for some h(s),k ∈ H (s)(xk), s = 1, . . . , l,

satisfying conditions:

xk
i < bi ⇒ gk

i ≥ 0 for i = 1, . . . , n.

In the sequel we will use the notation:(
xk+1,k
−i , yi

)
=

(
xk+1

1 , . . . , xk+1
i−1 , yi, x

k
i+1, . . . , x

k
n

)
,

and (
h

(s),k+1,k
−i , p

(s)
i

)
=

(
h

(s),k+1
1 , . . . , h

(s),k+1
i−1 , p

(s)
i , h

(s),k
i+1 , . . . , h

(s),k
n

)
,

where p(s)
i ∈ R, so that

(
h

(s),k+1,k
−0 , p

(s)
0

)
=

(
h

(s),k
1 , . . . , h

(s),k
n

)
. Next, for each

separate index i = 1, . . . , n, we determine numbers xk+1
i , p(1)

i , . . . , p
(l)
i such that

ai ≤ xk+1
i ≤ xk

i , p
(s)
i ∈ H

(s)
i (xk+1

i ), p(s)
i ≤ h

(s),k
i for s = 1, . . . , l, (5)
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and

∃g̃k
i ∈

l∑
s=1

F
(s)
i (h(s),k+1,k

−i , p
(s)
i ), g̃k

i




≥ 0 if xk+1
i = ai,

= 0 if xk+1
i ∈ (ai, bi),

≤ 0 if xk+1
i = bi,

(6)

with the help of the bisection procedure below. Afterwards, set h(s),k+1
i = p

(s)
i for

s = 1, . . . , l. If i = n, the k-th iteration is complete.

Procedure (Bisection). It is applied when the indices k and i are fixed and
consists of the following sequence of steps.

Step 1. If there exist elements p(s)i ∈ H
(s)
i (ai) for s = 1, . . . , l and an element

g̃k
i ∈

l∑
s=1

F
(s)
i (h(s),k+1,k

−i , p
(s)
i ) such that g̃k

i ≥ 0, then set xk+1
i = ai and stop.

Otherwise set x′i = ai, α
(s)
i = p

(s)
i ∈ H

(s)
i (ai) for s = 1, . . . , l and go to Step 2.

Step 2. If xk
i = bi and there exist elements p(s)

i ∈ H
(s)
i (bi) for s = 1, . . . , l

and an element g̃k
i ∈

l∑
s=1

F
(s)
i (h(s),k+1,k

−i , p
(s)
i ) such that g̃k

i ≤ 0, then set xk+1
i = bi

and stop. Otherwise set x′′i = xk
i , β

(s)
i = p

(s)
i = h

(s),k
i for s = 1, . . . , l and go to

Step 3.

Step 3. Generate a sequence of inscribed segments [x′i, x
′′
i ] contracting to a

point zi by choosing yi = 1
2 (x′i + x′′i ) and setting either x′′i = yi if there ex-

ist numbers β(s)
i ∈ H

(s)
i (yi) for s = 1, . . . , l such that g̃i ≥ 0 for some g̃i ∈

l∑
s=1

F
(s)
i (h(s),k+1,k

−i , β
(s)
i ) or x′i = yi otherwise, i.e. when g̃i < 0 for any element

g̃i ∈
l∑

s=1
F

(s)
i (h(s),k+1,k

−i , α
(s)
i ) for arbitrary numbers α(s)

i ∈ H
(s)
i (yi), s = 1, . . . , l.

Step 4. Set xk+1
i = zi and compute numbers p(s)

i ∈ H
(s)
i (zi) for s = 1, . . . , l

such that conditions (5), (6) are satisfied.

We establish a convergence result for the Gauss-Seidel algorithm.

Theorem 1. Suppose that the set Q is nonempty. Then the Gauss-Seidel
algorithm with the bisection procedure is well defined and generates a sequence
{xk} converging to a solution x∗ of MCP (2), (4) such that a ≤ x∗ ≤ x̃.



An Extended Gauss-Seidel Method for Multi-valued Mixed Complementarity Problems 783

Proof. First we show that the localization of the initial segment is right
in Step 3 of the bisection procedure when it holds that g i < 0 for all gi ∈

l∑
s=1

F
(s)
i (h(s),k+1,k

−i , α
(s)
i ) and g̃i ≥ 0 for some g̃i ∈

l∑
s=1

F
(s)
i (h(s),k+1,k

−i , β
(s)
i ) with

α
(s)
i ≤ β

(s)
i for s = 1, . . . , l. In fact, at the point zi, we define a multi-valued

mapping Φ : Rl → Π(R) on the rectangle [α(1)
i , β

(1)
i ]× · · · × [α(l)

i , β
(l)
i ] as follows

Φ(pi) =
l∑

s=1

F
(s)
i (h(s),k+1,k

−i , p
(s)
i ) with pi = (p(1)

i , . . . , p
(l)
i ) ∈ Rl.

By construction, −Φ(αi) ⊆ R+ and Φ(βi)
⋂
R+ 
= ∅ for αi = (α(1)

i , . . . , α
(l)
i ) and

βi = (β(1)
i , . . . , β

(l)
i ). Since Φ is a K-mapping, there exists a number λ ∈ [0, 1]

such that 0 ∈ Φ(pi) for the point pi = λαi + (1− λ)βi ∈ Rl. Since each H(s)
i has

convex images, it follows that p(s)i ∈ H
(s)
i (zi) for s = 1, . . . , l, then all the relations

in (5), (6) are satisfied.
If i = 1, then termination in Step 1 or 2 clearly yields (5), (6). Otherwise,

in Step 2 we must have x′1 < x′′1 = xk
1 and β

(s)
1 = h

(s),k
1 , but g ′′1 ≥ 0 for

some g′′1 ∈
l∑

s=1
F

(s)
1 (h(s),k) and h(s),k = (h(s),k+1,k

−1 , β
(s)
1 ) if xk

1 < b1, i.e. the

localization of the initial segment is right, which yields (5), (6). Suppose that
this is the case for 1, 2, . . . , i − 1. Then, by construction, h(s),k+1

m ≤ h
(s),k
m for

m = 1, 2, . . . , i− 1. Again, termination in Step 1 or 2 yields (5), (6). Otherwise,
xk

i = bi leads to the right localization of the initial segment. In case xk
i = x′′i < bi

we have h(s),k ≥ (h(s),k+1,k
−i , h

(s),k
i ), but gk

i ≥ 0 for some gk
i ∈

l∑
s=1

F
(s)
i (h(s),k)

by construction. By using the upper Z property of F(s), we see that there exists

g̃i ∈
l∑

s=1
F

(s)
i (h(s),k+1,k

−i , h
(s),k
i ) such that g̃i ≥ gk

i ≥ 0, hence x′i < x′′i = xk
i and the

localization of the initial segment is right. Therefore, (5), (6) hold true for each i.
So, the procedure is well-defined. We now proceed to show that there exists

gk+1
i ∈

l∑
s=1

F
(s)
i (h(s),k+1) such that

xk+1
i < bi ⇒ gk+1

i ≥ 0 for i = 1, . . . , n.

By construction, (xk+1,k
−i , xk+1

i ) ≥ xk+1, besides, by (5), (h(s),k+1,k
−i , p

(s)
i ) ≥ p(s)

for p(s) = (p(s)
1 , . . . , p

(s)
n ), p(s)

i ∈ H
(s)
i (xk+1

i ), and, by the upper Z property of F(s),
we see that for each f̃ (s)

i ∈ F (s)
i (h(s),k+1,k

−i , p
(s)
i ) there exists f (s)

i ∈ F
(s)
i (p(s)) such



784 E. Allevi, A. Gnudi and I. V. Konnov

that f̃ (s)
i ≤ f

(s)
i for i = 1, . . . , n. By (6), we now conclude that xk+1

i < bi implies

gk+1
i =

l∑
s=1

f
(s)
i ≥

l∑
s=1

f̃
(s)
i = g̃k

i ≥ 0

for i = 1, . . . , n. But gk+1 ∈ G(xk+1), therefore xk+1 ∈ Q. It means that
the algorithm is also well-defined. On account of (5), the sequence {xk} is non-
increasing and bounded from below. Therefore, it converges to a point x∗ such
that a ≤ x∗ ≤ x̃. Analogously, on account of (5), we have h(s),k+1 ≤ h(s),k and
h(s),k ∈ H (s)(xk), but for each s the sequence {h(s),k} must be bounded, hence

lim
k→∞

h(s),k = h(s),∗

for some h(s),∗ ∈ H (s)(x∗). Without loss of generality we can suppose that

lim
k→∞

g̃k
i = g∗i ∈

l∑
s=1

F
(s)
i (h(s),∗),

i.e. g∗ ∈ G(x∗), and (6) now implies (2). Thus x∗ is a solution of MCP (2), (4).
The proof is complete.

The above theorem contains also the existence result.

Corollary 1. If the set Q is nonempty, then MCP (2), (4) has a solution.

In general, the Gauss-Seidel algorithm above is not so hard for implementation,

however, verification of the relations for all the elements of the set
l∑

s=1
F

(s)
i (h(s),k+1,k

−i ,

p
(s)
i ) where p(s)

i ∈ H
(s)
i (yi) for s = 1, . . . , m and for some yi in Steps 1-3 may

meet certain difficulties. Then we can simplify the procedure by replacing Steps
1-3 with the following.

Step 1’. Compute elements p(s)i ∈ H
(s)
i (ai) for s = 1, . . . , l and an element

g̃k
i ∈

l∑
s=1

F
(s)
i (h(s),k+1,k

−i , p
(s)
i ). If g̃k

i ≥ 0, then set xk+1
i = ai and stop. Otherwise

set x′i = ai, α
(s)
i = p

(s)
i for s = 1, . . . , l and go to Step 2 ′.

Step 2’. If xk
i = bi and gk

i ≤ 0, then set xk+1
i = bi and stop. Otherwise set

x′′i = xk
i , β

(s)
i = h

(s),k
i for s = 1, . . . , l. If x′i = x′′i , set zi = xk

i and go to Step 4.

Step 3’. Generate a sequence of inscribed segments [x′i, x
′′
i ] contracting to a

point zi by choosing yi = 1
2(x′i + x′′i ), computing β̃(s)

i ∈ H
(s)
i (yi) for s = 1, . . . , l
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and g̃i ∈
l∑

s=1
F

(s)
i (h(s),k+1,k

−i , β̃
(s)
i ), and setting x′′i = yi, β

(s)
i = β̃

(s)
i for s = 1, . . . , l

if g̃i ≥ 0 and x′i = yi, α
(s)
i = β̃

(s)
i for s = 1, . . . , l if g̃i < 0.

It is easy to see that the assertion of Theorem 1 remains true for this modified
version of the algorithm.

It was also shown in [6] that the auxiliary setQ is a meet semi-sublattice, i.e., for
each pair of points x, y ∈ Q it contains their minimal point (meet) z = min{x, y}
with zi = min{xi, yi} for i = 1, . . . , n; if (4) is replaced by

G(x) = F ◦H(x) + V (x), (7)

where V : D → Π(Rn) is a quasi-diagonal, an upper Z- and a K-mapping,
H : D → Π(Rn) is a diagonal monotone K-mapping, and F : R n → Π(Rn) is a
quasi-diagonal, an upper Z- and a K-mapping on a rectangle containing H(D).
Hence, the set Q has the least element minQ which is a solution of GCP.

4. NUMERICAL EXPERIMENTS

In this section we present some results of numerical experiments obtained under
the following computer environment:

OS: Windows XP Pro; CPU: Pentium (R) M 1.6 GHz; Memory: 1.5 GB; Software:
Matlab.

For each numerical example we compare work of the Jacobi and Gauss-Seidel
algorithms with the same input values and the same stopping criteria. We made all
the calculations with double precision, the zero tolerance was chosen to be 10−10.
The stopping criteria were the following:
for the bisection procedure: |x′i − x′′i | < 10−4,
for the main process: ‖x(k+1) − x(k)‖ < 10−2 and it was terminated if the number
of iterations became equal to MAXITER.

In order to test the algorithms we took the following CP:

x∗ ≥ 0, ∃g(x∗) ∈ G(x∗), g∗ ≥ 0, 〈g∗, x∗〉 = 0 (8)

with the multi-valued mapping G : Rn → Π(Rn) of the form:

G(x) = Ax− b+ Φ(x) + Ψ(x), (9)

where A is an n× n matrix with nonpositive off-diagonal entries, the mappings Φ
and Ψ are diagonal. Note that G in (9) is a particular case of that in (4), where
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Table 1: Test 1 - Average of CPU time (sec)

Algorithm n = 3 n = 10 n = 50 n = 100
Jacobi 0.650 5.611 151.098 283.245
Gauss-Seidel 0.400 3.817 122.441 245.461
G-S/J 61.54% 68.03% 81.03% 86.66%

l = 3, F (1) = Ax − b, F (2) = I , F (3) = I , H(1) = I , H(2) = Φ, H(3) = Ψ.
Hence, we can apply the Gauss-Seidel algorithm to this problem and all the results
of Section 2 remain true.

More precisely, Φ and Ψ were chosen as follows:

Φ(x) =
n∏

i=1

Φi(xi), Φi(xi) = max
{
x2

i − 1/ sin(i), 0
}
, i = 1, . . . , n;

Ψ(x) =
n∏

i=1

Ψi(xi), Ψi(xi) = ∂ψi(xi),

ψi(xi) = αi|xi − βi|, αi = (1 + i)/i, βi = 1/ cos(i), i = 1, . . . , n.

That is, Φ is nonsmooth and continuous, Ψ is a multi-valued K-mapping and all
the assumptions are satisfied.

Test 1. The matrix A was defined as follows:

aij =




−| sin(i) cos(j)| i 
= j;

1 +
∑
j �=i

|aij| i = j; i, j = 1, . . . , n;

the feasible starting point x̃ = (9, . . . , 9)T . Then we obtain the diagonally dominant
matrix. We chose also

bi = sin(i)/i, i = 1, . . . , n.

A comparison of the average CPU time for the Jacobi and Gauss-Seidel algorithms
is shown in Table 1.

Test 2. The matrix A was defined as follows:

aij =

{ −| sin(i) cos(j)| i 
= j;

sin(i) cos(i) i = j;
i, j = 1, . . . , n;
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Table 2: Test 2 - Average of CPU time (sec)

Algorithm n = 3 n = 10 n = 50 n = 100
Jacobi 0.222 1.602 10.386 24.2362
Gauss-Seidel 0.1094 1.231 9.725 23.856
G-S/J 49.3% 76.9% 93.64% 98.43%

the feasible starting point x̃ = (100, . . . , 100)T . Then A is not diagonally dominant
and its diagonal is not positive. We chose also

bi = sin(i)/i, i = 1, . . . , n.

A comparison of the average CPU time for the Jacobi and Gauss-Seidel algo-
rithms is shown in Table 2.
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