Vol. 13, No. 2B, pp. 753-755, April 2009

This paper is available online at http://www.tjm.nsysu.edu.tw/

WHAT IS INVEXITY WITH RESPECT TO THE SAME η ?

Juan Enrique Martínez-Legaz

Abstract. Many papers on both scalar and multiobjective optimization problems use the assumption that the objective and constraint functions are invex with respect to the same function η . In this note we characterize the finite families of functions for which this condition holds.

1. Introduction

One of the most frequently used generalized convexity notions is the concept of invexity:

Definition 1. [6]. A differentiable function f defined on an open subset X of \mathbb{R}^n is invex if there exists a vector function $\eta: X \times X \to \mathbb{R}^n$ such that

$$f(y) \ge f(x) + \langle \nabla f(x), \eta(y, x) \rangle$$
 $(x, y \in X)$.

This notion was introduced in order to provide a sufficient condition for Kuhn-Tucker points of nonlinear programming problems to be optimal. Some time later the following simple characterization of invexity clarified the essence of this notion:

Theorem 2. [3]. A differentiable function f defined on an open subset X of \mathbb{R}^n is invex if and only if every stationary point is a global minimum.

In both scalar and vector constrained programming problems, it is usually required that all functions involved are invex with respect to the same function η (see, e.g., [8, 7, 1, 4, 2]). However, the problem of finding a characterization of those finite families of functions that are invex with respect to a common function η has apparently received no attention. This note provides such a characterization, which in fact follows from Gale's theorem of the alternative for linear inequalities in a rather straightforward way.

Received December 15, 2008.

2000 Mathematics Subject Classification: 26B25, 90C26.

Key words and phrases: Invex function, Gale's theorem of the alternative.

This research has been supported by the Ministerio de Ciencia y Tecnología, Project MTM2008-06695-C03-03/MTM, the Barcelona GSE Research Network and the Generalitat de Catalunya.

Theorem 3. [5]. (Gale's theorem of the alternative for linear inequalities). For a given $m \times n$ matrix A and a given coumn vector $b \in \mathbb{R}^m$, either

the system
$$Ax \leq b$$
 has a solution $x \in \mathbb{R}^n$

or

the system
$$A^T \lambda = 0$$
, $\langle b, \lambda \rangle = -1$ has a solution $\lambda \geq 0$,

but never both.

Thus, according to Gale's theorem of the alternative, if a linear inequality system

$$\langle a_i, x \rangle \le b_i \qquad (i = 1, , , m)$$

(with $a_i \in \mathbb{R}^n$ and $b_i \in \mathbb{R}$) has no solution x then there exist $\lambda_i \geq 0$ (i = 1, ..., m) such that $\sum_{i=1}^m \lambda_i a_i = 0$ and $\sum_{i=1}^m \lambda_i b_i = -1$.

The next theorem characterizes invexity with respect to a common function η .

Theorem 4. Let $f_1, ..., f_p$ be differentiable functions defined on an open subset X of \mathbb{R}^n . The following statements are equivalent:

- (i) The functions $f_1, ..., f_p$ are invex with respect to the same η .
- (ii) The functions $\sum_{i=1}^{p} \lambda_i f_i$ $((\lambda_1, ..., \lambda_p) \in \mathbb{R}_+^p)$ are invex with respect to the same η .
- (iii) The functions $\sum_{i=1}^{p} \lambda_i f_i$ $((\lambda_1, ..., \lambda_p) \in \mathbb{R}_+^p)$ are invex.
- (iv) For every $(\lambda_1,...,\lambda_p) \in \mathbb{R}^p_+$, every stationary point of $\sum_{i=1}^p \lambda_i f_i$ is a global minimum.

Proof. Implications $(i) \Longrightarrow (ii) \Longrightarrow (iii) \Longrightarrow (iv)$ are obvious, so we only have to prove implication $(iv) \Longrightarrow (i)$. To this aim, assume, by contradiction, that there is no function $\eta: X \times X \to \mathbb{R}^n$ such that

$$f_i(y) \ge f_i(x) + \langle \nabla f_i(x), \eta(y, x) \rangle$$
 $(x, y \in X; i = 1, ..., p).$

In other words, there exist $x, y \in X$ such that the linear inequality system

$$\langle \nabla f_i(x), \eta(y, x) \rangle \leq f_i(y) - f_i(x) \qquad (i = 1, ., p)$$

in the unknown vector $\eta\left(y,x\right)$ has no solution. Hence, by Thm. 3, there is $(\lambda_{1},...,\lambda_{p})\in\mathbb{R}^{p}_{+}$ such that $\sum_{i=1}^{p}\lambda_{i}\nabla f_{i}\left(x\right)=0$ and $\sum_{i=1}^{p}\lambda_{i}\left(f_{i}\left(y\right)-f_{i}\left(x\right)\right)=-1$. Therefore $\sum_{i=1}^{p}\lambda_{i}f_{i}$ has a stationary point x which is not a global minimum, since $\sum_{i=1}^{p}\lambda_{i}f_{i}\left(y\right)=\sum_{i=1}^{p}\lambda_{i}f_{i}\left(x\right)-1<\sum_{i=1}^{p}\lambda_{i}f_{i}\left(x\right)$. This contradicts (iv).

REFERENCES

- 1. T. Antczak, An η -approximation method in nonlinear vector optimization, *Nonlinear Anal.*, *Theory Methods Appl.*, **63** (2005), 225-236.
- 2. T. Antczak, Saddle-point criteria in an η -approximation method for nonlinear mathematical programming problems involving invex functions, *J. Optim. Theory Appl.*, **132** (2007), 71-87.
- 3. A. Ben-Israel and B. Mond, What is invexity?, *J. Aust. Math. Soc.*, *Ser. B*, **28** (1986), 1-9.
- 4. A. Cambini and L. Martein, Generalized convexity and optimality conditions in scalar and vector optimization, in: *Handbook of generalized convexity and generalized monotonicity*, Springer, New York, 2005, pp. 151-193.
- 5. D. Gale, The Theory of Linear Economic Models, McGraw-Hill, New York, 1960.
- 6. M. A. Hanson, On sufficiency of the Kuhn-Tucker conditions, *J. Math. Anal. Appl.*, **80** (1981), 545-550.
- 7. Z. A. Khan and M. A. Hanson On ratio invexity in mathematical programming, *J. Math. Anal. Appl.*, **205** (1997), 330-336.
- 8. T. Weir, A note on invex functions and duality in multiple objective optimization, *Opsearch*, **25** (1988), 98-104.

Juan Enrique Martínez-Legaz Departament d'Economia i d'Història Econòmica, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain

E-mail: JuanEnrique.Martinez.Legaz@uab.es