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EXTENDED NEWTON’S METHOD FOR MAPPINGS
ON RIEMANNIAN MANIFOLDS WITH VALUES IN A CONE

Jin-Hua Wang, Shuechin Huang and Chong Li*

Abstract. Robinson’s generalized Newton’s method for nonlinear functions
with values in a cone is extended to mappings on Riemannian manifolds with
values in a cone. When Df satisfies the L-average Lipschitz condition, we
use the majorizing function technique to establish the semi-local quadratic
convergence of the sequences generated by the extended Newton’s method. As
applications, we also obtain Kantorovich’s type theorem, Smale’s type theorem
under the γ-condition and an extension of the theory of Smale’s approximate
zeros.

1. INTRODUCTION

In a Banach space, systems of nonlinear equalities and inequalities appear in a
wide variety of problems in applied mathematics. These systems play a central role
in the model formulation design and analysis of numerical techniques employed in
solving problems arising in optimization, complementarity, and variational inequal-
ities (see [5, 8, 7, 27, 31]). Newton’s method is a well-known and very powerful
technique for solving nonlinear systems of equations. One of the most important
results on Newton’s method is Kantorovich’s theorem [17, 18], which provides a
simple and clear criterion, based on the knowledge of the first derivative around
the initial point, ensuring the existence, uniqueness of the solution of the equation
and the quadratic convergence of Newton’s method. Another important result on
Newton’s method is Smale’s point estimate theory (i.e., α-theory and γ-theory) in
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[2, 32], where the notion of an approximate zero was introduced and the rules to
judge an initial point to be an approximate zero were established, depending only
on the information of the analytic nonlinear operator at initial point x0 and a so-
lution x∗, respectively. There are a lot of works on the weakness and/or extension
of the continuity made on the first derivatives of the operators, see for example,
[10, 11, 14, 15, 37] and references therein. It should be noted that Wang intro-
duced in [37] the notions of Lipschitz conditions with L-average to unify both
Kantorovich’s and Smale’s criteria.

Newton’s method has been extended to solve nonlinear systems of equalities
and inequalities in finite-dimensional space (see [5, 27]). Furthermore, Robinson
generalized in [31] Newton’s method to solve the inclusion problem

f(x) ∈ K, (1.1)

whereK is a nonempty closed convex cone in a Banach space Y , and f is a function
from a reflexive Banach space X into Y . The usual Newton’s method corresponds
to the special case whenK is the degenerate cone {0} ⊂ Y . The extended Newton’s
method to solve (1.1) presented in [31] is as follows:

Algorithm A. Let x0 ∈ X be given. For k = 0, 1, · · · , having x0, x1, · · · , xk,
determine xk+1 as follows. If ∆(xk) �= ∅, choose wk ∈ ∆(xk) such that

‖wk‖ := min{‖w‖ |w ∈ ∆(xk)},
and set xk+1 = xk + wk, where, for each x ∈ X , ∆(x) is defined by

∆(x) := {w ∈ X | f(x) + f ′(x)w ∈ K}.
In [31], the Kantorovich type theorem was established for the Algorithm A to

solve (1.1). Furthermore, the Gauss-Newton method has been extended to solve
convex composite optimization (see [3, 4, 20, 24] and the reference therein). Es-
pecially, Li and Ng [20] considered an extension of the Gauss-Newton method to
convex composite optimization and use the majorizing function technique to estab-
lish the semi-local linear/quadratic convergence of the sequences generated by the
generalized Gauss-Newton method, which includes the Kantorovich type theorem
and Smale’s type theorem as special cases.

Recently, there has been an increased interest in studying numerical algorithms
on manifolds for there are a lot of numerical problems posed in manifolds arising
in many natural contexts, see for example [1, 19, 25, 33, 34]. In particular, in a
Riemannian manifold framework, Newton’s method is still a main method to solve
these problems. An analogue of the well-known Kantorovich’s theorem was given
in [12] for Newton’s method for vector fields on Riemannian manifolds while exten-
sions of the famous Smale’s α-theory and γ-theory in [32] to analytic vector fields
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and analytic mappings on Riemannian manifolds were respectively done in [6]. In
the recent paper [22], the convergence criteria in [6] were improved by using the
notion of the γ-condition to the vector fields and mappings on Riemannian mani-
folds. The radii of uniqueness balls of singular points of vector fields satisfying the
γ-conditions were studied in [35], while the local behavior of Newton’s method on
Riemannian manifolds in paper [21]. Furthermore, in [23], a convergence criterion
of Newton’s method and the radii of the uniqueness balls of the singular points for
sections on Riemannian manifolds, which is independent of the curvatures, are es-
tablished under the assumption that the covariant derivatives of the sections satisfy
a kind of the L-average Lipschitz condition.

The purpose of the present paper is to extend Robinson’s generalized Newton’s
method for solving (1.1) to the inclusion problem on Riemannian manifolds, i.e.,
finding a point p∗ ∈M such that

f(p∗) ∈ K, (1.2)

where K is a nonempty closed convex cone in R
n and f is a C1 map from a

manifold M into R
n. The extended Newton’s method for the inclusion problem

(1.2) is defined as follows.

Algorithm 1.1 Let p0 ∈ M be given. For k = 0, 1, · · · , having p0, p1, · · · , pk,
determine pk+1 as follows. If Λ(pk) �= ∅, choose vk ∈ Λ(pk) such that

‖vk‖ := min{‖v‖ | v ∈ Λ(pk)} and set pk+1 = exppk
vk, (1.3)

where, for each p ∈M , Λ(p) is defined by

Λ(p) := {v ∈ TpM | f(p) + Df(p)v ∈ K}. (1.4)

In the special case when K = {0}, Algorithm 1.1 reduces to Newton’s method
on Riemannian manifolds which has been extensively explored in [6, 12, 21, 22,
23, 35] and references therein.

The fact that the linear operator Df(pk) is continuous and the assumption that
K is closed and convex, imply that Λ(pk) is a closed convex set. This, together
with the fact that Tpk

M is finite-dimensional, means that there exists vk ∈ Λ(pk)
such that ‖vk‖ = min{‖v‖ | v ∈ Λ(pk)}, whenever Λ(pk) �= ∅.

When Df satisfies the L-average Lipschitz condition, we use the majorizing
function technique to establish the semi-local quadratic convergence of the sequences
generated by the extended Newton’s method. Applying the results to the special
cases, we obtain the well-known Kantorovich type theorem, theorem under the
γ-condition and Smale type theorem, respectively. Furthermore, an extension of
the theory of Smale’s approximate zeros to the setting of inclusion problems on
Riemannian manifolds is provided.
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2. NOTIONS AND PRELIMINARIES

The notations and notions about smooth manifolds used in the present paper are
standard, see for example [9].

Let M be a complete connected m-dimensional Riemannian manifold with the
Levi-Civita connection ∇ on M . Let p ∈ M , and let TpM denote the tangent
space at p to M . Let 〈·, ·〉 be the scalar product on TpM with the associated norm
‖ · ‖p, where the subscript p is sometimes omitted. For any two distinct elements
p, q ∈ M , let c : [0, 1] → M be a piecewise smooth curve connecting p and q.

Then the arc-length of c is defined by l(c) :=
∫ 1

0
‖ c′(t) ‖ dt, and the Riemannian

distance from p to q by d(p, q) := infc l(c), where the infimum is taken over all
piecewise smooth curves c : [0, 1] → M connecting p and q. Thus, by the Hopf-
Rinow Theorem (see [9]), (M, d) is a complete metric space and the exponential
map at p, expp : TpM → M is well-defined on TpM .

Recall that a geodesic c in M connecting p and q is called a minimizing geodesic
if its arc-length equals its Riemannian distance between p and q. Clearly, a curve
c : [0, 1] → M is a minimizing geodesic connecting p and q if and only if there
exists a vector v ∈ TpM such that ‖v‖ = d(p, q) and c(t) = expp(tv) for each
t ∈ [0, 1].

Let c : R → M be a C∞ curve and let Pc,·,· denote the parallel transport along
c, which is defined by

Pc,c(b),c(a)(v) = V (c(b)), ∀a, b ∈ R and v ∈ Tc(a)M,

where V is the unique C∞ vector field satisfying ∇c′(t)V = 0 and V (c(a)) = v.
Then, for any a, b ∈ R, Pc,c(b),c(a) is an isometry from Tc(a)M to Tc(b)M . Note
that, for any a, b, b1, b2 ∈ R,

Pc,c(b2),c(b1) ◦ Pc,c(b1),c(a) = Pc,c(b2),c(a) and P−1
c,c(b),c(a)

= Pc,c(a),c(b).

In particular, we write Pq,p for Pc,q,p in the case when c is a minimizing geodesic
connecting p and q. Let C1(TM) denote the set of all the C1-vector fields on M
and Ci(M) the set of all Ci-mappings from M to R (i = 0, 1, where C0-mappings
mean continuous mappings), respectively. Let f : M → R

n be a C1 mapping such
that

f = (f1, f2, · · · , fn)

with fi ∈ C1(M) for each i = 1, 2, · · · , n. Let ∇ be the Levi-Civita connection on
M , and let X ∈ C1(TM). Following [6] (see also [23]), the derivative of f along
the vector field X is defined by

∇Xf = (∇Xf1,∇Xf2, · · · ,∇Xfn) = (X(f1), X(f2), · · · , X(fn)).
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Thus, the derivative of f is a mapping Df : (C1(TM)) → C0(M) defined by

Df(X) = ∇Xf for each X ∈ C1(TM). (2.1)

We use Df(p) to denote the derivative of f at p. Let v ∈ TpM . Taking X ∈
C1(TM) such that X(p) = v, and any nontrivial smooth curve c : (−ε, ε) → M
with c(0) = p and c′(0) = v, one has that

Df(p)v := Df(X)(p) = ∇Xf(p) =
(

d
dt

(f ◦ c)(t)
)

t=0

, (2.2)

which only depends on the tangent vector v.
Another important link of the present study relates to the concept of convex

process, which was introduced by Rockafellar [28, 29] for convexity problems (see
also Robinson [30] ).

Definition 2.1. Let E be a Banach space, and let W : E → 2R
n be a set-valued

mapping. W is called a convex process from E to R
n if it satisfies

(i) W (x+ y) ⊇Wx+Wy for all x, y ∈ E;
(ii) Wλx = λWx for all λ > 0, x ∈ E;
(iii) 0 ∈W0.

As usual, the domain, range, and inverse of a convex process W are respectively
denoted by D(W ),R(W ), W−1; i.e.,

D(W ) : = {x ∈ E |Wx �= ∅},
R(W ) : = ∪{Wx | x ∈ D(W )},
W−1y : = {x ∈ E | y ∈Wx}.

Obviously, W−1 is a convex process from R
n to E . The norm of a convex

process W is defined by

‖W‖ := sup{‖Wx‖ | x ∈ D(W ), ‖x‖ ≤ 1},

where, following [30, 20] , for a set G in a Banach space, ‖G‖ denotes its distance
to the origin, that is,

‖G‖ := inf{‖a‖ | a ∈ G}.
The convex process W is said to be normed if ‖W‖ < +∞. The following
proposition is taken from [31] and will be useful.

Lemma 2.1. Let p0 ∈ M be such that Wp0 carries Tp0M onto R
n. Then the

following assertions hold:
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(i) W−1
p0

is normed.
(ii) If Q is a linear transformation from T p0M to R

n such that ‖W−1
p0

‖‖Q‖ < 1,
then the convex process W defined by

W := Wp0 +Q

carries Tp0M onto R
n. Furthermore, W−1 is normed and

‖W−1‖ ≤ ‖W−1
p0

‖
1 − ‖W−1

p0 ‖‖Q‖ .

3. CONVERGENCE CRITERION

Let Z be a Banach space or a Riemannian manifold. We use BZ(p, r) and
BZ(p, r) to denote respectively the open metric ball and the closed metric ball at p
with radius r, that is,

BZ(p, r) := {q ∈ Z| d(p, q)< r} and BZ(p, r) := {q ∈ Z| d(p, q) ≤ r}.
We often omit the subscript Z if no confusion occurs. Let p ∈ Z and G be a subset
of Z. Then the distance of p to G is denoted by d(p, G) and defined by

d(p, G) := inf{d(p, q) | q ∈ G}.
Let L be a positive valued nondecreasing integrable function on [0,+∞). The

notion of Lipschitz condition with the L average for operators from Banach spaces
to Banch spaces was first introduced in [37] by Wang for the study of Smale’s
point estimate theory, where the terminology “the center Lipschitz condition in the
inscribed sphere with L average” was used (see [37]). Recently, this notion has
been extended and applied to sections on Riemannian manifolds in [23]. Note that
a mapping f : M → R

n is a special example of sections. Definition 3.1 below is a
slight modification of the corresponding one in [23] for mappings on Riemannian
manifolds. Let f be a C1 mapping, and let p ∈M . We define a set-valued mapping
Wp from TpM into R

n by

Wpv := Df(p)v −K for each v ∈ TpM. (3.1)

Since K is a closed convex cone, Wp is a convex process. Obviously, for each
p ∈M , D(Wp) = TpM . The inverse of Wp is

W−1
p y := {v ∈ TpM | Df(p)v ∈ y +K} for each y ∈ R

n. (3.2)

Wp is said to carry TpM onto R
n if D(W−1

p ) = R
n. By Lemma 2.1, if Wp carries

TpM onto R
n then W−1

p is normed. In the remainder of this paper, we always
assume that p0 ∈M such that Wp0 carries Tp0M onto R

n.
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Definition 3.1. Let r > 0. Df is said to satisfy
(i) the center L-average Lipschitz condition on B(p 0, r), if for any point p ∈

B(p0, r) and any geodesic c connecting p0, p with l(c) < r, we have

‖W−1
p0

‖ · ‖Df(p)Pc,p,p0 −Df(p0)‖ ≤
∫ l(c)

0
L(u)du. (3.3)

(ii) the L-average Lipschitz condition on B(p 0, r), if for any two points p, q ∈
B(p0, r) and any geodesic c connecting p, q with d(p0, p) + l(c) < r, we have

‖W−1
p0

‖ · ‖Df(q)Pc,q,p − Df(p)‖ ≤
∫ d(p0,p)+l(c)

d(p0,p)
L(u)du. (3.4)

Obviously, the L-average Lipschitz condition implies the center L-average Lip-
schitz condition. Let r0 > 0 be such that∫ r0

0
L(u)du = 1. (3.5)

Then we have the following lemma.

Lemma 3.1. Let 0 < r ≤ r0. Suppose that Df satisfies the center L-average
Lipschitz condition on B(p0, r). Then, for each point p ∈ B(p0, r) and any geodesic
c connecting p0, p with l(c) < r, Wp carries TpM onto R

n and

‖W−1
p ‖ ≤ ‖W−1

p0
‖

1 −
∫ l(c)

0
L(u)du

. (3.6)

Proof. Since Df satisfies the center L-average Lipschitz condition on B(p0, r),
it follows that

‖W−1
p0

‖ · ‖Df(p)Pc,p,p0 − Df(p0)‖ ≤
∫ l(c)

0
L(u)du <

∫ r0

0
L(u)du = 1. (3.7)

For each v ∈ TpM , the convex process

Wpv = Df(p)v −K = [Df(p0)Pc,p0,p + (Df(p)− Df(p0)Pc,p0,p)]v −K. (3.8)

Since Pc,p0,p is an isomorphism from TpM to Tp0M (see [16, p.30]), Wp0 ◦Pc,p0,p

is a convex process from TpM into R
n and Df(p) − Df(p0)Pc,p0,p is a linear

transformation from TpM to R
n. Moreover, ‖Wp0◦Pc,p0,p‖ = ‖Wp0‖ and ‖Df(p)−

Df(p0)Pc,p0,p‖ = ‖Df(p)Pc,p,p0 − Df(p0)‖ thanks to the fact that Pc,p0,p is an
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isometry (see [9, p.56]). Thus, by (3.7) and (3.8), Lemma 2.1 is applicable to
concluding that Wp carries TpM onto R

n and

‖W−1
p ‖ ≤ ‖W−1

p0
‖

1 − ‖W−1
p0 ‖‖Df(p)Pc,p,p0 −Df(p0)‖

≤ ‖W−1
p0

‖

1 −
∫ d(p0,p)

0
L(u)du

.

The proof is complete.

Let b > 0 be such that
b =

∫ r0

0
L(u)udu (3.9)

and let ξ > 0. For our main theorem, we define the majorizing function φ by

φ(t) = ξ − t+
∫ t

0
L(u)(t− u)du for each t ≥ 0. (3.10)

Thus

φ′(t) = −1 +
∫ t

0
L(u)du and φ′′(t) = L(t) for a.e. t ≥ 0. (3.11)

Let tn denote the Newton sequence for φ with initial point t0 = 0 generated by

tn+1 = tn − φ′(tn)−1φ(tn) for each n = 0, 1, · · · . (3.12)

In particular, by (3.10), (3.11) and (3.12), one has

t1 − t0 = ξ. (3.13)

The following lemmas will play a key role in the present paper, which are known
in [37] (see also [20]).

Lemma 3.2. Suppose that 0 < ξ ≤ b. Then the following assertions hold:

(i) φ is strictly decreasing on [0, r 0] and strictly increasing on [r 0,+∞) with

φ(ξ) > 0, φ(r0) = ξ − b ≤ 0, φ(+∞) ≥ ξ > 0. (3.14)

Moreover, if ξ < b, φ has two zeros, denoted respectively by r 1 and r2, such
that

ξ < r1 <
r0
b
ξ < r0 < r2, (3.15)

and if ξ = b, then φ has a unique zero r 1 in (ξ,+∞) (in fact r1 = r0).
(ii) The sequence {tn} generated by (3.12) is strictly increasing and converges

to r1.
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(iii) The convergence of {tn} is of quadratic rate if ξ < b, and linear if ξ = b.

Lemma 3.3. Let 0 ≤ c < +∞. Define

χ(t) =
1
t2

∫ t

0

L(c+ u)(t− u)du for each 0 ≤ t < +∞.

Then χ is increasing on [0,+∞).

Now we are ready to prove the main theorem.

Theorem 3.1. Suppose that

ξ := ‖W−1
p0

‖d(f(p0), K) ≤ b. (3.16)

and that Df satisfies the L-average Lipschitz condition on B(p 0, r1). Then the
sequence {pk} generated by Algorithm 1.1 with initial point p 0 is well-defined and
converges to a solution p∗ ∈ B(p0, r1) of the inclusion problem (1.2). Moreover,
if {vk} and {pk} are sequences generated by (1.3), then the following assertions
hold for each n = 1, 2, · · ·:

d(pk, pk−1) ≤ ‖vk−1‖ ≤ tk − tk−1, (3.17)

‖vk‖ ≤ (tk+1 − tk)
( ‖vk−1‖
tk − tk−1

)2

(3.18)

and
d(pk−1, p

∗) ≤ r1 − tk−1. (3.19)

Proof.
Below, we verify the following implication:

(3.17) holds for all k = 1, · · · , n =⇒ (3.18) holds for k = n. (3.20)

Note that for each j = 1, · · · , n,

d(pj, p0) ≤
j∑

i=1

d(pi, pi−1) ≤
j∑

i=1

(ti − ti−1) = tj < r1.

Hence, pn ∈ B(p0, r1). Thus, Lemma 3.1 is applicable to concluding that Wpn

carries TpnM onto R
n and

‖W−1
pn

‖ ≤ ‖W−1
p0

‖

1 −
∫ d(p0,pn)

0
L(u)du

≤ ‖W−1
p0

‖

1 −
∫ tn

0
L(u)du

. (3.21)



642 Jin-Hua Wang, Shuechin Huang and Chong Li

Therefore, Λ(pn) �= ∅ and so there exists vn ∈ Λ(pn) such that

‖vn‖ = min{‖v‖ | v ∈ Λ(pn)}. (3.22)

Then, pn+1 exists. Now consider the problem of finding v ∈ TpnM such that

f(pn) + Df(pn)v ∈ f(pn−1) + Df(pn−1)vn−1 +K. (3.23)

Since vn−1 ∈ Λ(pn−1), we have f(pn−1) + Df(pn−1)vn−1 ∈ K . Thus,

Λ(pn) = {v ∈ TpnM | f(pn) + Df(pn)v ∈ f(pn−1) + Df(pn−1)vn−1 +K}.
This together with (3.22) implies that

vn ∈W−1
pn

[−f(pn) + f(pn−1) + Df(pn−1)vn−1]. (3.24)

Hence, it follows that

‖vn‖ ≤ ‖W−1
pn

‖‖ − f(pn) + f(pn−1) + Df(pn−1)vn−1‖. (3.25)

Let cn be the geodesic connecting pn−1, pn such that cn(t) = exppn−1
(tvn−1) for

each t ∈ [0, 1]. Noting that

−f(pn) + f(pn−1) + Df(pn−1)vn−1

= −[f(pn)− f(pn−1) −Df(pn−1)vn−1]

= −
∫ 1

0
[Df(cn(τ))Pcn,cn(τ ),pn−1

−Df(pn−1)]vn−1dτ,

one has from (3.4) that

‖W−1
p0

‖‖ − f(pn) + f(pn−1) + Df(pn−1)vn−1‖

≤
∫ 1

0
‖W−1

p0
‖‖Df(cn(τ))Pcn,cn(τ ),pn−1

−Df(pn−1)‖‖vn−1‖dτ

≤
∫ 1

0

∫ d(pn−1,p0)+τ‖vn−1‖

d(pn−1,p0)
L(u)du‖vn−1‖dτ

=
∫ ‖vn−1‖

0
L(d(pn−1, p0) + u)(‖vn−1‖ − u)du

≤
∫ ‖vn−1‖

0
L(tn−1 + u)(‖vn−1‖ − u)du.

(3.26)

Since (3.17) holds for k = n, we obtains from Lemma 3.3 that∫ ‖vn−1‖

0
L(tn−1 + u)(‖vn−1‖ − u)du

‖vn−1‖2

≤

∫ tn−tn−1

0
L(tn−1 + u)(tn − tn−1 − u)du

(tn − tn−1)2
.

(3.27)
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Thus, combining (3.21), (3.25), (3.26) and (3.27) yields that

‖vn‖ ≤

∫ tn−tn−1

0

L(tn−1 + u)(tn − tn−1 − u)du

1 − ∫ tn
0 L(u)du

‖vn−1‖2

(tn − tn−1)2
. (3.28)

Note that

φ(tn) = φ(tn) − φ(tn−1) − φ′(tn−1)(tn − tn−1)

=
∫ 1

0
[φ′(tn−1 + τ(tn − tn−1)) − φ′(tn−1)]dτ(tn − tn−1)

=
∫ 1

0

∫ tn−1+τ (tn−tn−1)

tn−1

L(u)du‖vn−1‖dτ

=
∫ tn−tn−1

0
L(tn−1 + u)((tn − tn−1) − u)du.

This, together with (3.28), implies that

‖vn‖ ≤ (−φ′(tn)−1φ(tn))
( ‖vn−1‖
tn − tn−1

)2

= (tn − tn−1)
( ‖vn−1‖
tn − tn−1

)2

.

Consequently, the implication (3.20) holds. Clearly, if (3.17) holds for each k =
1, 2, · · · , then {pk} is a Cauchy sequence by the monotonicity of {tn} and hence
converges to some point p∗ ∈ B(p0, r1). Thus, (3.19) is clear. Moreover, for
arbitrary k,

[f(pk+1) − f(p∗)]− [f(pk+1)− f(pk) −Df(pk)vk] ∈ K − f(p∗). (3.29)

The continuity assumptions imply that the left-hand side of (3.29) approaches zero,
and since K −f(p∗) is closed, we have 0 ∈ K−f(p∗). So f(p∗) ∈ K . Therefore,
to complete the proof, we only need to prove that (3.17) and (3.18) hold for each
k = 1, 2, · · · . We proceed by mathematical induction. Since Wp0 carries Tp0M

onto R
n, we have

Λ(p0) = {v ∈ Tp0M | f(p0) + Df(p0)v ∈ K} �= ∅.
Thus, there exists v0 ∈ Λ(p0) such that ‖v0‖ = min{‖v‖ | v ∈ Λ(p0)}. Below we
show that ‖v0‖ ≤ ξ. To proceed, let c ∈ K , and let v ∈W−1

p0
(c− f(p0)). Then by

(3.2), we have that

Df(p0)v ∈ c− f(p0) +K ⊆ −f(p0) +K,

and so f(p0)+Df(p0)v ∈ K, that is, v ∈ Λ(p0). Hence, W−1
p0

(c−f(p0)) ⊆ Λ(p0).
Thus,

d(0,Λ(p0)) ≤ ‖W−1
p0

(c− f(p0))‖ ≤ ‖W−1
p0

‖‖c− f(p0)‖.
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Since this is valid for each c ∈ K, it follows that

‖v0‖ = d(0,Λ(p0)) ≤ ‖W−1
p0

‖d(f(p0), K) = ξ.

Hence,
d(p1, p0) ≤ ‖v0‖ ≤ ξ = t1 − t0,

i.e., (3.17) holds for k = 1. Then, by (3.20), (3.18) holds for k = 1. Furthermore,
assume that (3.17) and (3.18) hold for all 1 ≤ k ≤ n. Then

‖vn‖ ≤ (tn+1 − tn)
( ‖vn−1‖
tn − tn−1

)2

≤ tn+1 − tn.

This shows that (3.17) holds for k = n + 1, and hence (3.17) holds for all k with
1 ≤ k ≤ n + 1. Thus, (3.20) implies that (3.18) holds for k = n + 1. Therefore,
(3.17) and (3.18) hold for each k = 1, 2, · · · . The proof is complete.

4. SPECIAL CASES AND APPLICATIONS

This section is devoted to four applications of the result in the previous section.
The first three are concerned with Kantorovich’s type theorem, theorem under the
γ-condition and Smale’s type theorem, respectively. The last one is concerned with
an extension of the theory of Smale’s approximate zeros to the setting of inclusion
problems on Riemannian manifolds.

4.1. Kantorovich’s type theorem

Throughout this subsection, we assume that the function L is a positive con-
stant function. Recall from [12] that Df is Lipschitz continuous on B(p 0, r)
with modulus λ > 0 if for any two points p, q ∈ B(p0, r) and any geodesic
c : [0, 1] → B(p0, r) connecting p, q with c(0) = p, c(1) = q, one has

‖Df(q)Pc,q,p − Df(p)‖ ≤ λl(c).

Clearly, if Df is Lipschitz continuous on B(p0, r) with modulus λ, then Df satisfies
L-average Lipschitz condition on B(p0, r) with Lipschitz constant L = λ‖W −1

p0
‖,

i.e., if for any two points p, q ∈ B(p0, r) and any geodesic c : [0, 1] → B(p0, r)
connecting p, q with c(0) = p, c(1) = q and d(p0, p) + l(c) < r, one has

‖W−1
p0

‖‖Df(q)Pc,q,p − Df(p)‖ ≤ λ‖W−1
p0

‖l(c).
The corresponding majorizing function φ reduces to a quadratic function, i.e.,

φ(t) = ξ − t+
λ‖W−1

p0
‖

2
t2 for each t ≥ 0.
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Then by (3.9),
r0 =

1
λ‖W−1

p0 ‖ and b =
1

2λ‖W−1
p0 ‖ .

Moreover, if ξ ≤ 1
2λ‖W−1

p0 ‖ , the zeros of φ are equal to

r1 =
1 −

√
1 − 2λ‖W−1

p0 ‖ξ
λ‖W−1

p0 ‖ and r2 =
1 +

√
1 − 2λ‖W−1

p0 ‖ξ
λ‖W−1

p0 ‖ . (4.1)

The Newton sequence {tn} for φ with t0 = 0 (see. [13, 26, 36, 37]) satisfies

r1 − tn =
(1 − ρ)ρ2n−1

1 − ρ2n r1 for each n = 0, 1, · · · , (4.2)

where ρ =
1−
√

1−2λ‖W−1
p0 ‖ξ

1+
√

1−2λ‖W−1
p0 ‖ξ

.

Thus, the following corollary is a trivial application of Theorem 3.1.

Corollary 4.1. Suppose that

ξ = ‖W−1
p0

‖d(f(p0), K) ≤ 1
2λ‖W−1

p0 ‖
and that Df satisfies the Lipschitz continuous on B(p 0, r1) with modulus λ. Then
the sequence {pk} generated by Algorithm 1.1 with initial point p 0 is well-defined
and converges to a solution p∗ ∈ B(p0, r1) of the inclusion problem (1.2). More-
over, if {pk} is the sequence generated by (1.3), then for each n = 0, 1, · · · ,

d(pn, p
∗) ≤ (1− ρ)ρ2n−1

1 − ρ2n r1 ≤ ρ2n−1r1. (4.3)

4.2. Theorem under the γ-condition

Let k, κ be positive integers such that k ≤ κ. Let f be a Cκ-mapping. Following
[23], define inductively the derivative of order k for f . Recall that ∇ is the Levi-
Civita connection on M . Let Cκ(TM) denote the set of all the Cκ-vector fields on
M and Cκ(M) the set of all Cκ-mappings from M to R, respectively.

Recall from (2.1) that the map D1f = Df : (Cκ(TM))1 → Cκ−1(M) is
defined by

Df(X) = ∇X(f) for each X ∈ Cκ(TM).

Define the map Dkf : (Cκ(TM))k → Cκ−k(M) by
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Dkf(X1, · · · , Xk−1, Xk) = ∇Xk
(Dk−1f(X1, · · · , Xk−1))

−
k−1∑
i=1

Dk−1f(X1, · · · ,∇Xk
Xi, · · · , Xk−1)

(4.4)

for each X1, · · · , Xk−1, Xk ∈ Cκ(TM). Then, one can use mathematical in-
duction to prove easily that Dkf(X1, · · · , Xk) is tensorial with respect to each
component Xi, that is, k multi-linear map from (Cκ(TM))k to Cκ−k(M), where
the linearity refers to the structure of Ck(M)-module. This implies that the value
of Dkf(X1, · · · , Xk) at p ∈ M only depends on the k-tuple of tangent vectors
(v1, · · · , vk) = (X1(p), · · · , Xk(p)) ∈ (TpM)k. Consequently, for a given p ∈M ,
the map Dkf(p) : (TpM)k → R

n, defined by

Dkf(p)v1· · ·vk :=Dkf(X1, · · · , Xk)(p) for any (v1, · · · , vk)∈(TpM)k, (4.5)

is well-defined, where Xi ∈ Cκ(TM) satisfy Xi(p) = vi for each i = 1, · · · , k.
Let r > 0 and γ > 0 be such that rγ < 1.

Definition 4.1. f is said to satisfy the γ-condition at p0 in B(p0, r), if for any
two points p, q ∈ B(p0, r), any geodesic c connecting p, q with d(p0, p)+ l(c) < r,
one has

‖W−1
p0

‖‖D2f(q)‖ ≤ 2γ
(1 − γ(d(p0, p) + l(c)))3

. (4.6)

Let L be the function defined by

L(u) =
2γ

(1− γu)3
for each u with 0 ≤ u <

1
γ
. (4.7)

The following proposition shows that the γ-condition implies the L-average Lips-
chitz condition.

Proposition 4.1. Suppose that f satisfies the γ-condition at p 0 in B(p0, r).
Then Df satisfies the L-average Lipschitz condition in B(p 0, r) with L given by
(4.7).

Proof. Let p, q ∈ B(p0, r), and let c be a geodesic connecting p, q such that
d(p0, p) + l(c) < r. It is sufficient to prove that

‖W−1
p0

‖‖(Df(q)Pc,q,p −Df(p))‖ ≤
∫ d(p0,p)+l(c)

d(p0,p)

2γ
(1 − γu)3

du. (4.8)

Let v ∈ TpM be arbitrary. Then there exists a unique vector field Y such that
Y (c(0)) = v and ∇c′(t)Y = 0. Then Y (c(s)) = Pc,c(s),pv for each s ∈ [0, 1]. Thus
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by definition, one has that

Df(q)Pc,q,pv −Df(p)v = Df(Y )(q)−Df(Y )(p)

=
∫ 1

0

D(Df(Y )(c(s)))c′(s)ds.
(4.9)

Since ∇c′(s)Y (c(s)) = 0, it follows that

D2f(c(s))Y (c(s))c′(s) = c′(s)(Df(Y )(c(s)))− Df(∇c′(s)Y (c(s)))

= D(Df(Y )(c(s)))c′(s).

This, together with (4.9), implies that

Df(q)Pc,q,pv −Df(p)v =
∫ 1

0

D2f(c(s))Y (c(s))c′(s)ds. (4.10)

Noting that c is a geodesic connecting p and q, there exists v ∈ TpM such that
q = expp(v) and l(c) = ‖v‖. It follows from (4.10) and (4.6) that

‖W−1
p0

‖‖Df(q)Pc,q,pv −Df(p)v‖

≤
∫ 1

0

2γ
(1− γ(d(p0, p) + s‖v‖))3‖v‖‖v‖ds

=
∫ d(p0,p)+l(c)

d(p0,p)

2γ
(1 − γu)3

du‖v‖.

As v ∈ TpM is arbitrary, (4.8) is seen to hold.

Corresponding to the function L given by (4.7), one has from (3.9) and elemen-
tary calculation (cf. [37]) that

r0 =
2 −√

2
2γ

, b =
3− 2

√
2

γ
(4.11)

and

φ(t) = ξ − t+
γt2

1 − γt
for each t with 0 ≤ t <

1
γ
. (4.12)

Thus, from [37], we have the following lemma.

Lemma 4.1. Assume that ξ ≤ b, namely,

γξ ≤ 3 − 2
√

2. (4.13)
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Then the following assertions hold:
(i) φ has two zeros given by

r1
r2

}
=

1 + γξ ∓√(1 + γξ)2 − 8γξ
4γ

; (4.14)

(ii) the sequence {tn} generated by Newton′s method for φ with the initial point
t0 = 0 satisfies

tn =
1− η2n−1

1 − η2n−1ζ
r1 for each n = 0, 1, · · · , (4.15)

where

η :=
1− γξ −√(1 + γξ)2 − 8γξ
1− γξ +

√
(1 + γξ)2 − 8γξ

and ζ :=
1 + γξ −√(1 + γξ)2 − 8γξ
1 + γξ +

√
(1 + γξ)2 − 8γξ

;(4.16)

(iii) we have

tn+1 − tn
tn − tn−1

=
1 − η2n

1 − η2n−1 · 1− η2n−1−1ζ

1 − η2n+1−1ζ
η2n−1 ≤ η2n−1 for each n = 1, 2, · · · .(4.17)

In view of Proposition 4.1 and Lemma 4.1, the following corollary follows
directly from Theorem 3.1.

Corollary 4.2. Suppose that

ξ = ‖W−1
p0

‖d(f(p0), K) ≤ 3− 2
√

2
γ

and that f satisfies the γ-condition at p 0 in B(p0, r1). Then the sequence {pk}
generated by Algorithm 1.1 with initial point p 0 is well-defined and converges to a
solution p∗ ∈ B(p0, r1) of the inclusion problem (1.2). Moreover, if {v k} and {pk}
are sequences generated by (1.3), then the following assertions hold:

‖vk‖ ≤ η2k−1‖vk−1‖ for each k ≥ 1, (4.18)

and
d(pk, p

∗) ≤ η2k−1r1 for each k ≥ 0, (4.19)

where η is given by (4.16).

Proof. By Theorem 3.1, the sequence {pk} with initial point p0 converges to a
solution p∗ ∈ B(p0, r1) of the inclusion problem (1.2), and the following estimates
hold for each k:

‖vk‖ ≤ (tk+1 − tk)
( ‖vk−1‖

tk−tk−1

)2

≤
(

tk+1−tk
tk−tk−1

)
‖vk−1‖
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and
d(pk, p

∗) ≤ r1 − tk.

Hence (4.18) and (4.19) are true because, by (4.15) and (4.17), one has

r1 − tk =
η2k−1(1 − ζ)
1 − η2k−1ζ

r1 ≤ η2k−1r1

and
tk+1 − tk
tk − tk−1

≤ η2k−1
.

4.3. Smale’s type theorem

Throughout the remainder of the present paper, we always assume that f is an
analytic mapping. We define, for a point p0 ∈M ,

γ(f, p0) := sup
k≥2

(
‖W−1

p0
‖‖Dkf(p0)‖
k!

) 1
k−1

. (4.20)

The following proposition is taken from [23].

Proposition 4.2. Let r =
1

γ(f, p0)
. Let p ∈M , and let v ∈ Tp0M be such that

‖v‖ < r and p = expp0
(v). Then

Djf(p) =

( ∞∑
k=0

1
k!
Dk+jf(p0)vk

)
P j

c,p0,p for each j = 0, 1, 2, · · · , (4.21)

where c is a geodesic connecting p0, p such that c(t) = expp0
tv for each t ∈ [0, 1],

and P j
c,p0,p stands for the map from (T pM)j to (Tp0M)j defined by

P j
c,p0,p(v1, · · · , vj) = (Pc,p0,pv1, · · · , Pc,p0,pvj) for each (v1, · · · , vj) ∈ (TpM)j.

We will show that any analytic mapping satisfies the γ-condition. For this
purpose, we need a simple known fact (cf. [2, P.150]):

∞∑
j=0

(k + j)!
k! j!

tj =
1

(1− t)k+1
for each t ∈ [−1, 1] and k = 0, 1, · · · . (4.22)

For simplicity, we use the function ψ defined by

ψ(u) := 1 − 4u+ 2u2 for each u ∈ [0, 1−
√

2
2

). (4.23)

Note that ψ is strictly decreasing on [0, 1−
√

2
2 ).
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Lemma 4.2. Let p ∈M , and let c be a geodesic connecting p0 and p such that

u := γ(f, p0) l(c) < 1 −
√

2
2
. (4.24)

Then Wp carries TpM onto R
n and

‖W−1
p ‖ ≤ ‖W−1

p0
‖(1− u)2

ψ(u)
and γ(f, p) ≤ γ(f, p0)

(1− u)ψ(u)
. (4.25)

Proof. Assume that c is defined by

c(t) = expp0
(tv) for each t ∈ [0, 1], (4.26)

where v ∈ Tp0M . Then p = expp0
(v) and l(c) = ‖v‖; hence, by (4.24),

γ ‖v‖ = u < 1 −
√

2
2
< 1. (4.27)

Thus, Proposition 4.2 (with j = 1) is applicable to concluding that

‖W−1
p0

‖‖Df(p)Pc,p,p0 −Df(p0)‖ ≤
∞∑

k=1

‖W−1
p0

‖‖Dk+1f(p0)‖
k!

‖v‖k.

It follows from (4.20), (4.22) and (4.27) that

‖W−1
p0

‖‖Df(p)Pc,p,p0 −Df(p0)‖ ≤
∞∑

k=1

(k+1)γ(f, p0)k‖v‖k =
1

(1 − u)2
−1 < 1.

(4.28)
Note that the convex process

Wpv = Df(p)v−K = [Df(p0)Pc,p0,p + (Df(p)−Df(p0)Pc,p0,p)]v−K. (4.29)

Since Pc,p0,p is an isomorphism from TpM to Tp0M (cf. [16, p.30]), Wp0 ◦ Pc,p0,p

is a convex process from TpM into R
n and Df(p) − Df(p0)Pc,p0,p is a linear

transformation from TpM to R
n. Moreover, ‖Wp0◦Pc,p0,p‖ = ‖Wp0‖ and ‖Df(p)−

Df(p0)Pc,p0,p‖ = ‖Df(p)Pc,p,p0 − Df(p0)‖ thanks to the fact that Pc,p0,p is an
isometry (cf. [9, p.56]). Thus, by (4.28) and (4.29), Lemma 2.1 is applicable to
concluding that Wp carries TpM onto R

n and

‖W−1
p ‖ ≤ ‖W−1

p0
‖

1 − ‖W−1
p0 ‖‖Df(p)Pc,p,p0 −Df(p0)‖

≤ ‖W−1
p0

‖(1− u)2

ψ(u)
.
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To establish the second inequality of (4.25), let k = 2, 3, · · · , and observe that

‖W−1
p ‖

∥∥Dkf(p)
∥∥

k!
≤ (1− u)2

ψ(u)
‖W−1

p0
‖‖D

kf(p)‖
k!

. (4.30)

In view of (4.26) and (4.27), one can apply Proposition 4.2 (with j = k) to conclude
that

‖W−1
p0

‖‖D
kf(p)‖
k! = ‖W−1

p0
‖
∥∥∥∥∥∥

1
k!

∞∑
j=0

1
j!
Dk+jf(p0)vjP k

c,p0,p

∥∥∥∥∥∥
≤

∞∑
j=0

(k + j)!
k!j!

‖W−1
p0

‖
∥∥∥∥Dk+jf(p0)

(k + j)!

∥∥∥∥ ‖v‖j

≤
∞∑

j=0

(k + j)!
k!j!

γ(f, p0)k+j−1‖v‖j.

(4.31)

This, together with (4.22), implies that

‖W−1
p0

‖‖D
kf(p)‖
k!

≤ γ(f, p0)k−1

(1 − γ(f, p0)‖v‖)k+1
. (4.32)

Combining this with the first inequality of (4.25) and (4.30) gives that

‖W−1
p ‖

∥∥Dkf(p)
∥∥

k!
≤ 1
ψ(u)

(
γ

1 − u

)k−1

, (4.33)

thanks to (4.27). Consequently,

γ(f, p) = sup
k≥2

(
‖W−1

p0
‖ · ‖Dkf(p)‖
k!

) 1
k−1

≤ γ(f, p0)
1 − u

sup
k≥2

1

ψ(u)
1

k−1

=
γ(f, p0)

(1− u)ψ(u)
,

where the last equality holds because the supremum attains at k = 2 as 0 < ψ(u) ≤
1 by (4.24).

Proposition 4.3. Let 0 < r ≤ 2−√
2

2γ(f,p0)
. Then f satisfies the γ-condition at p 0

in B(p0, r) with γ = γ(f, p0).

Proof. Let p, q ∈ B(p0, r). Let c1 be a minimizing geodesic connecting
p0, p and c2 a geodesic connecting p, q such that, for some v1 ∈ Tp0M and v2 ∈
TpM , p = expp0

v1, q = expp v2, l(c1) = ‖v1‖ = d(p0, p), l(c2) = ‖v2‖ with
l(c1) + l(c2) < r. Write u = l(c1)γ(f, p0). Then u < 1 −

√
2

2 , and so Lemma 4.2
is applicable to concluding that

γ(f, p) ≤ γ(f, p0)
(1− u)ψ(u)

.
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Hence,
1

γ(f, p)
≥ (1 − u)ψ(u)

γ(f, p0)
. (4.34)

Since

‖v1‖ + ‖v2‖ < r ≤ 1 −
√

2
2

γ(f, p0)
,

it follows from (4.34) that

‖v2‖ <
1 −

√
2

2

γ(f, p0)
− ‖v1‖ =

1 −
√

2
2 − γ(f, p0)‖v1‖
γ(f, p0)

≤ (1 − u)ψ(u)
γ(f, p0)

≤ 1
γ(f, p)

.

Therefore, q ∈ B(p, 1
γ(ξ,p)) and it follows from Proposition 4.2 that

D2f(q) =
∞∑
i=0

1
i!
Di+2f(p)vi

2P
2
c2,p,q

=
∞∑
i=0

1
i!

∞∑
j=0

1
j!
Dj+i+2f(p0)v

j
1P

i+2
c1,p0,pv

i
2P

2
c2,p,q.

(4.35)

Since
‖W−1

p0
‖ · ‖Dj+i+2f(p0)‖
(j + i+ 2)!

≤ γ(f, p0)j+i+1, one has from (4.35) that

‖W−1
p0

‖ · ‖D2f(q)‖ ≤
∞∑
i=0

1
i!

∞∑
j=0

(j + i+ 2)!
j!

γ(f, p0)j+i+1‖v1‖j‖v2‖i. (4.36)

Using (4.22) to calculate the quantity on the right-hand side of the inequality (4.36),
we obtain that

‖W−1
p0

‖ · ‖D2f(q)‖ ≤ 2γ
(1 − γ(‖v1‖+ ‖v2‖)3 =

2γ
(1− γ(d(p0, p) + l(c2))3

and the proof is complete.
The following corollary results from Proposition 4.3 and Corollary 4.2.

Corollary 4.3. Let γ = γ(f, p0). Suppose that

ξ = ‖W−1
p0

‖d(f(p0), K) ≤ 3 − 2
√

2
γ

.

Then the sequence {pk} generated by Algorithm 1.1 with initial point p 0 is well-
defined and converges to a solution p ∗ of the inclusion problem (1.2). Moreover, if
{vk} and {pk} are sequences generated by (1.3), then (4.18) and (4.19) hold.
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4.4. Extension of Smale’s approximate zeros

The following notion of approximate singular point was introduced in [23] for
Newton’s method on Riemannian manifold. Let ν be a section from a Riemannian
manifold M to another one E . Recall that Newton’s method for ν is defined as
follows:

pk+1 = exppk
(−Dν(pk)−1ν(pk)) for each k = 0, 1, · · · , (4.37)

where D is a connection of ν.

Definition 4.2. Suppose that p0 ∈M is such that the sequence {pk} generated
by Newton’s method (4.37) with initial point p0 is well-defined for ν and satisfies

Θ(pk) ≤
(

1
2

)2k−1

Θ(pk−1) for all k = 1, 2, · · · , (4.38)

where Θ(pk) denotes some measurement of the approximation degree between pk
and the singular point p∗. Then p0 is said to be an approximate singular point of ν
in the sense of Θ(pk).

We now extend the notion of approximate singular point to the extended New-
ton’s method for mappings on Riemannian manifolds with values in a cone.

Definition 4.3. Suppose that p0 ∈M is such that the sequence {pk} generated
by Algorithm 1.1 with initial point p0 is well-defined, converges to a solution of the
inclusion problem (1.2) and satisfies (4.38). Then p0 is said to be an approximate
solution of (1.2) in the sense of Θ(pk).

Then we have the following corollary about approximate solution of (1.2).

Corollary 4.4. Let γ = γ(f, p0). Suppose that

ξ = ‖W−1
p0

‖d(f(p0), K) ≤ 13− 3
√

17
4γ

.

Then the sequence {pk} generated by Algorithm 1.1 with initial point p 0 is well-
defined and converges to a solution p ∗ of the inclusion problem (1.2). Furthermore,
if {vk} and {pk} are sequences generated by (1.3), then p0 is an approximate
solution of (1.2) in the sense of ‖vk‖.

Proof. Since 13−3
√

17
4γ < 3−2

√
2

γ , Corollary 4.3 is applicable to concluding that
the sequence {pk} generated by Algorithm 1.1 with initial point p0 is well-defined
and converges to a solution p∗ of the inclusion problem (1.2). Moreover, if {vk}
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and {pk} are sequences generated by (1.3), then (4.18) holds for η given by (4.16).
Noting that η increases as ξ dose on (0, 13−3

√
17

4γ ], and the value of η at ξ = 13−3
√

17
4γ

is 1
2 . Hence, (4.18) holds for η = 1

2 . Therefore, p0 is an approximate solution of
(1.2) in the sense of ‖vk‖.
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