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ON GLOBAL SOLUTIONS AND BLOW-UP OF SOLUTIONS FOR A
NONLINEARLY DAMPED PETROVSKY SYSTEM

Shun-Tang Wu and Long-Yi Tsai

Abstract. We consider the initial boundary value problem for a Petrovsky
system with nonlinear damping

utt + ∆2u + a |ut|m−2
ut = b |u|p−2

u,

in a bounded domain. We showed that the solution is global in time under
some conditions without the relation between m and p. We also prove that
the local solution blows-up in finite time if p > m and the initial energy is
nonngeative. The decay estimates of the energy function and the estimates of
the lifespan of solutions are given. In this way, we can extend the result of
([6]).

1. INTRODUCTION

In this paper we are concerned with the initial boundary value problem for the
following Petrovsky equation :

utt + ∆2u + a |ut|m−2 ut = b |u|p−2 u, (1.1)

with initial conditions

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω, (1.2)

and boundary condition

u(x, t) =
∂u

∂ν
(x, t) = 0, x ∈ ∂Ω, t ≥ 0, (1.3)
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where Ω ⊂ RN , N ≥ 1, is a bounded domain with a smooth boundary ∂Ω so that
Divergence theorem can be applied and ν be the unit normal vector pointing toward
the exterior of Ω and let ∂

∂ν denotes the normal derivative and a, b are some positive
constants and p, m > 2.

Guesmia ([2]) studied the problem

utt + ∆2u + q(x)u + g(ut) = 0, (1.4)

where q : Ω → R+ is a bounded function. Under some assumptions, he showed the
solution of (1.4) decays exponentially if g behaves like a linear function, whereas
the decay is ploynomially otherwise. Later, Guesmia ([3]) concerned equation (1.4)
coupled with a semilinear wave equation and derived similar results. In the related
problems, we can cite ([4, 5, 8]) and the references therein. Recently, Messaoudi
([6]) investigated problem (1.1) and showed the solution blows-up in finite time if
p > m in the case that the initial energy is negative. On the other hand, he also
proved the solution is global in time if m ≥ p. However, no decay rate of the global
solution is given and no blow-up result is discussed for the initial energy being
nonnegative.

In this paper we shall prove the global existence result without the relation
between m and p and show that the energy function decays algebraically under
some conditions. On the other hand, we also establish the blow-up properties of
local solution for problem (1.1)− (1.3) with nonpositive initial energy as well as
small positive initial energy. In this way, we can extend the result of ([6]). The
content of this paper is organized as follows. In section 2, we give some lemmas and
the local existence theorem 2.3 in ([6]). In section 3, we define an energy function
E(t) in (3.3) and show that it is a nonincreasing function of t. We obtain global
existence and decay properties of the solutions of (1.1)− (1.3) which are given in
Theorem 3.5. Finally, the blow-up properties of (1.1)− (1.3) and the estimates for
the blow-up time T ∗ are also given in the last section.

2. PRELIMINARY RESULTS

In this section, we shall give some lemmas which will be used throughout this
work.

Lemma 2.1. (Sobolev-Poincaré inequality)([1]) If 1 ≤ p ≤ 2N
[N−2m]+

(1 ≤
p < ∞ if N = 2m), then

‖u‖p ≤ B1

∥∥∥(−∆)
m
2 u

∥∥∥
2
, for u ∈ D((−∆)

m
2 )

holds with some positive constant B 1, where we put [a]+ = max{0, a}, 1
[a]+

= ∞
if [a]+ = 0 and we denote ‖·‖p to be the norm of Lp(Ω).
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Lemma 2.2. ([7]) Let φ(t) be a nonincreasing and nonnegative function on
[0, T ], T > 1, such that

φ(t)1+r ≤ ω0 (φ(t) − φ(t + 1)) on [0, T ],

where ω0 is a positive constant and r is a nonnegative constant. Then we have (i)
if r > 0, then

φ(t) ≤ (
φ(0)−r + ω−1

0 r[t − 1]+
)− 1

r on [0, T ].

(ii) If r = 0, then
φ(t) ≤ φ(0)e−ω1[t−1]+ on [0, T ],

where ω1 = ln( ω0
ω0−1 ), here ω0 > 1.

Next, we state the local existence theorem which is proved in ([6]).

Theorem 2.3. (Local Existence) Suppose that 2 < p ≤ p∗, 2 < m ≤
m∗ and that u0 ∈ H2

0 (Ω) and u1 ∈ L2(Ω), then there exists a unique solution u

of (1.1)− (1.3) satisfying

u ∈ C([0, T ]; H2
0(Ω))

and
ut ∈ C([0, T ]; L2(Ω)) ∩ Lm(Ω × (0, T )).

Moreover, at least one of the following statements holds true :

(i)T = ∞,

(ii) ‖ut(t)‖2
2 + ‖∆u(t)‖2

2 → ∞ as t → T−,

where

p∗ =
2(N − 2)
N − 4

(∞, if N ≤ 4) and m∗ =
2N

N − 4
(∞, if N ≤ 4).

3. GLOBAL EXISTENCE AND ENERGY DECAY

In this section, we consider the global existence and energy decay of solutions
for problem (1.1)− (1.3).

Let
I(t) ≡ I(u(t)) = ‖∆u(t)‖2

2 − b‖u(t)‖p
p, (3.1)

and
J(t) ≡ J(u(t)) =

1
2
‖∆u(t)‖2

2 −
b

p
‖u(t)‖p

p, (3.2)
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for u(t) ∈ H2
0 (Ω), t ≥ 0.We define the energy function of the solution u of

(1.1)− (1.3) by

E(t) =
1
2
‖ut‖2

2 + J(t) for t ≥ 0. (3.3)

Remark: By (3.3), we have

E (t) =
1
2
‖ut‖2

2 +
1
2
‖∆u(t)‖2

2 −
b

p
‖u‖p

p

≥ 1
2
‖∆u(t)‖2

2 −
b

p
‖u‖p

p, t ≥ 0. (3.4)

By Lemma 2.1, we get

E(t) ≥ G(‖∆u(t)‖2), t ≥ 0, (3.5)

where
G(λ) =

1
2
λ2 − Bp

1b

p
λp,

here B1 is the Sobolev’s constant given in Lemma 2.1. Note that G(λ) has the

maximum at λ1 =
(

1
bBp

1

) 1
p−2 and the maximum value is

E1 = G (λ1) = b
− 2

p−2

(
1
2
− 1

p

)
B

−2p
p−2

1 . (3.6)

Lemma 3.1. E(t) is a nonincreasing function on [0, T ] and

E ′(t) = −a

∫
Ω
|ut|m dx. (3.7)

Proof. By using Divergence theorem and (1.1)−(1.3), we see that (3.7) follows
at once.

Lemma 3.2. Assume that E (0) < E1. Then

(i) If ‖∆u0‖2 < λ1, then ‖∆u (t)‖2 < λ1 for t ≥ 0.

(ii) If ‖∆u0‖2 > λ1, then there exists λ2 > λ1 such that ‖∆u (t)‖2 ≥ λ2 for
t ≥ 0.

Proof. From the definition of G (λ) , we see that G(λ) is increasing in (0, λ1),
decreasing in (λ1,∞) and G(λ) → −∞ as λ → ∞. Since E (0) < E1, so there
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exist λ′
2 and λ2 such that λ′

2 < λ1 < λ2 and G (λ′
2) = G (λ2) = E (0) . (i) when

‖∆u0‖2 < λ1, by (3.5) , we have

G (‖∆u0‖2) ≤ E (0) = G
(
λ′

2

)
.

It implies ‖∆u0‖2 < λ′
2.

We claim that ‖∆u (t)‖2 ≤ λ′
2 for t > 0. If not, then there exists t0 > 0 such

that ‖∆u (t0)‖2 > λ′
2. Case (a) if λ′

2 < ‖∆u (t0)‖2 < λ2, then G (‖∆u (t0)‖2) >
E (0) ≥ E(t0). It contradicts to (3.5). Case (b) if ‖∆u (t0)‖2 ≥ λ2, then by
contiunity of ‖∆u (t)‖2 , there exists 0 < t1 < t0 such that λ′

2 < ‖∆u (t1)‖2 <
λ2, then G (‖∆u (t1)‖2) > E (0) ≥ E(t1). This is a contracdition. (ii) when
‖∆u0‖2 > λ1, as in case (i) we also deduce that ‖∆u0‖2 > λ1 implies ‖∆u (t)‖2 ≥
λ2 for t ≥ 0.

Lemma 3.3. Let u be the solution of (1.1)− (1.3). Assume the conditions of
Theorem 2.3 hold. If 0 < ‖∆u0‖2 < λ1 and

α = bBp
1

(
2p

p − 2
E(0)

)p−2
2

< 1, (3.8)

then I(t) > 0, for t ∈ [0, T ].

Proof. First, we note that 0 < ‖∆u0‖2 < λ1 implies I(0) > 0, then it follows
from the continuity of u(t) that

I(t) ≥ 0, (3.9)

for some interval near t = 0. Let tmax > 0 be a maximal time (possibly tmax = T ),
when (3.9) holds on [0, tmax). From (3.2) and (3.1), we have

J(t) =
p − 2
2p

‖∆u‖2
2 +

1
p
I(t). (3.10)

By (3.10), (3.3) and (3.7), we deduce

‖∆u‖2
2 ≤ 2p

p − 2
J(t) ≤ 2p

p − 2
E(t) ≤ 2p

p − 2
E(0). (3.11)

Then, by Lemma 2.1, (3.11) and (3.8), we obtain

b‖u‖p
p ≤ bBp

1‖∆u‖p
2 ≤ bBp

1

(
2p

p − 2
E(0)

)p−2
2 ‖∆u‖2

2

= α ‖∆u‖2
2 < ‖∆u(t)‖2

2 on [0, tmax).

(3.12)

Thus
I(t) = ‖∆u(t)‖2

2 − b‖u‖p
p > 0 on [0, tmax).
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This implies that we can take tmax = T.

Remark. Inequality (3.8) (i.e. α < 1) is equivalent to E(0) < E1.

Lemma 3.4. Let u satisfies the assumptions of Lemma 3.3. Then there exists
0 < η < 1 such that

b‖u(t)‖p
p ≤ (1 − η) ‖∆u(t)‖2

2 on [0, T ],

where η = 1 − α.

Proof. From (3.12), we get

b‖u(t)‖p
p ≤ α ‖∆u(t)‖2

2 , t ∈ [0, T ].

Let η = 1 − α, then we have the result.

Remark. From Lemma 3.4, we can deduce that

‖∆u(t)‖2
2 ≤ 1

η
I(t), t ∈ [0, T ]. (3.13)

Theorem 3.5. ([Global Existence and Energy decay]). Suppose that 0 <

‖∆u0‖2 < λ1 and 0 < E(0) < E1, then the problem (1.1)−(1.3) admits a global
solution u if u0 ∈ H2

0 (Ω) and u1 ∈ L2(Ω). Furthermore, we have the following
decay estimates:

E(t) ≤
(

E(0)−
m−2

2 +
(m − 2)τ

2
[t − 1]+

)− 2
m−2

on [0,∞),

where τ is given in (3.27).

Proof. First, we want to show that the solution of (1.1) − (1.3) is global in
time in the sense of Theorem 2.3. From (3.3) and (3.11), we see that

‖ut‖2
2 + ‖∆u‖2

2 ≤ (2 +
2p

p − 2
)E(0).

Then, by Theorem 2.3, we have the global existence result. By integrating (3.7) over
[t, t + 1], t > 0, we have

E(t)− E(t + 1) ≡ D(t)m, (3.14)

where

D(t)m = a

∫ t+1

t
‖ut‖m

m dt. (3.15)
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By virture of (3.15) and Hölder inequality, we observe that

∫ t+1

t

∫
Ω
|ut|2 dxdt ≤ c(Ω)D(t)2, (3.16)

where c(Ω) = (vol(Ω))
m−2

m . Hence, from (3.16), there exist t1 ∈ [t, t + 1
4 ] and

t2 ∈ [t + 3
4 , t + 1] such that

‖ut(ti)‖2
2 ≤ 4c(Ω)D(t)2, i = 1, 2. (3.17)

Next, multiplying (1.1) by u and integrating it over Ω × [t1, t2], we get

∫ t2

t1

I(t)dt = −
∫ t2

t1

∫
Ω

uttudxdt − a

∫ t2

t1

∫
Ω
|ut|m−2 utudxdt. (3.18)

Then, by using (1.1) and integrating by parts on the first term of the right hand side
of (3.18), we obtain

∫ t2

t1

I(t)dt

≤
2∑

i=1

‖ut(ti)‖2 ‖u(ti)‖2 +
∫ t2

t1

‖ut‖2
2 dt − a

∫ t2

t1

∫
Ω
|ut|m−2 utudxdt.

(3.19)

By Hölder inequality and Poincaré inequality, it follows that

∣∣∣∣a
∫ t2

t1

∫
Ω

|ut|m−2 utudxdt

∣∣∣∣≤ a

∫ t2

t1

‖u‖m ‖ut‖m−1
m dt

≤ aB1

∫ t2

t1

‖∆u‖2 ‖ut‖m−1
m dt

≤ aB1

(
2p

p− 2

)1
2

sup
t1≤s≤t2

E(s)
1
2

∫ t2

t1

‖ut‖m−1
m dt

≤ aB1

(
2p

p− 2

)1
2

D(t)m−1 sup
t1≤s≤t2

E(s)
1
2 .

(3.20)

And by using (3.17), Poincaré inequality and (3.11), we also have

‖ut(ti)‖2 ‖u(ti)‖2 ≤ c1D(t) sup
t1≤s≤t2

E(s)
1
2 , (3.21)
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where c1 = 2B1

√
c(Ω)

(
2p

p−2

) 1
2
. Then by (3.20) − (3.21) and (3.16), we obtain

from (3.19)∫ t2

t1

I(t)dt

≤ 2c1D(t) sup
t1≤s≤t2

E(s)
1
2 + aB1

(
2p

p − 2

)1
2

D(t)m−1 sup
t1≤s≤t2

E(s)
1
2

+c(Ω)D(t)2.

(3.22)

On the other hand, from (3.3) and using (3.10) and (3.13), we deduce

E(t) ≤ 1
2
‖ut‖2

2 + c2I(t), (3.23)

where c2 =
(

p−2
2pη + 1

p

)
. By integrating (3.23) over (t1, t2), we obtain

∫ t2

t1

E(t)dt ≤ 1
2

∫ t2

t1

‖ut‖2
2 dt + c2

∫ t2

t1

I(t)dt.

Hence, by (3.16) and (3.22), we have

∫ t2
t1

E(t)dt ≤ 1
2
c(Ω)D(t)2 + c2[2c1D(t) sup

t1≤s≤t2

E(s)
1
2

+aB1

(
2p

p − 2

)1
2

D(t)m−1 sup
t1≤s≤t2

E(s)
1
2 + c(Ω)D(t)2].

(3.24)

Moreover, multiplying (1.1) by ut and then integrating it over [t, t2] × Ω, we get

E(t) = E(t2) + a

∫ t2

t
‖ut‖m

m ds.

Since t2 − t1 ≥ 1
2 , it follows that

E(t2) ≤ 2
∫ t2

t1

E(t)dt.

Then, thanks to (3.14), we arrive at

E(t) ≤ 2
∫ t2

t1

E(t)dt + a

∫ t2

t
‖ut‖m

m ds

= 2
∫ t2

t1

E(t)dt + D(t)m.

(3.25)
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Thus, by using (3.24) and Lemma 3.2, we see that

E(t) ≤ (c(Ω) + 4c1c2)D(t)2 + D(t)m

+2c2

[
2c1D(t) + aB1

(
2p

p − 2

)1
2

D(t)m−1

]
E(t)

1
2 , t ≥ 0.

Hence, by Young’s inequality, we deduce

E(t) ≤ c3

[
D(t)2 + D(t)m + D(t)2(m−1)

]
, (3.26)

where c3 is some positive constant. Therefore, we have the following decay estimate.
From (3.26) and (3.14), we get

E(t) ≤ c3

[
1 + D(t)m−2 + D(t)2m−4

]
D(t)2

≤ c3

[
1 + E(0)

m−2
m + E(0)

2m−4
m

]
D(t)2.

This implies that
E(t)

m
2 ≤ (c4(E(0)))

m
2 D(t)m,

where c4(E(0)) = c3

[
1 + E(0)

m−2
m + E(0)

2m−4
m

]
. Note that lim

E(0)→0
c4(E(0)) =

c3 > 0. Hence, by applying Lemma 2.2 yields

E(t) ≤
(

E(0)−
m−2

2 +
(m − 2)τ

2
[t − 1]+

)− 2
m−2

on [0,∞), (3.27)

where τ = (c4(E(0)))−
m
2 .

4. BLOW-UP POPERTY

In this section, we shall show that the solution of problem (1.1) blows up in
finite time if p > m and E(0) < E1.

Theorem 4.1. (Nonexistence of Global Solutions) Suppose that p > m. If
one of the following is satisfied

(i) E(0) < 0

(ii) 0 ≤ E (0) < E1 and ‖∆u0‖2 > λ1,

then the local solution of the problem (1.1) − (1.3) blows up at a finite time T.

The lifespan T is estimated by 0 < T ≤ L(0)1−θ

c11(θ−1) , here L(t) and c11 are given in
(4.13) and (4.22) respectively. θ is a constant given in (4.17).
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Proof. (I) For 0 ≤ E (0) < E1, we set

H (t) = E2 − E (t) , t ≥ 0, (4.1)

where E2 = E(0)+E1

2 . By (3.7), we see that

H ′ (t) = a

∫
Ω
|ut|m dx ≥ 0. (4.2)

Thus, we have
H(t) ≥ H (0) = E2 − E (0) > 0, t ≥ 0. (4.3)

Let
A (t) =

∫
Ω

uutdx. (4.4)

By differentiating (4.4) and using (1.1) , we obtain

A′ (t) = ‖ut‖2
2 − ‖∆u‖2

2 − a

∫
Ω
|ut|m−2 utudx + b ‖u‖p

p . (4.5)

Hence, by (3.3), we deduce

A′ (t) = a1 ‖ut‖2
2 + a2 ‖∆u(t)‖2

2 − a

∫
Ω
|ut|m−2 utudx

+pH(t) − pE2.

(4.6)

where a1 = 1 + p
2 and a2 = p

2 − 1. We observe that ai > 0, i = 1, 2. Moreover

a2 ‖∆u(t)‖2
2 − pE2

= a2
λ2

2 − λ2
1

λ2
2

‖∆u(t)‖2
2 + a2λ

2
1

‖∆u(t)‖2
2

λ2
2

− pE2

≥ c1 ‖∆u(t)‖2
2 + c2,

where λ2 is given in Lemma 3.1, c1 = a2
λ2

2−λ2
1

λ2
2

and c2 = a2λ
2
1 − pE2. By Lemma

3.1 (ii), we have c1 > 0 and by (3.6), we see that

c2 =
(p − 2)λ2

1

2
− p(E1 + E(0))

2

=
p (E1 − E(0))

2
> 0.

(4.7)

Thus, by (4.6) and (4.7), we arrive at

A′ (t) ≥ a1 ‖ut‖2
2 + c1 ‖∆u(t)‖2

2 − a

∫
Ω
|ut|m−2 utudx + pH(t). (4.8)
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On the other hand, by Hölder inequality, we have

a
∣∣∣∫Ω |ut|m−2 utudx

∣∣∣ ≤ a ‖u‖m ‖ut‖m−1
m

≤ c3 ‖u‖1− p
m

p ‖u‖
p
m
p ‖ut‖m−1

m ,

(4.9)

where c3 = a(vol(Ω))
p−m
mp . Note that, from (4.1) and (3.4), we get

H (t) ≤ E1 − 1
2
‖∆u‖2

2 +
b

p
‖u‖p

p

≤ E1 − 1
2
λ2

1 +
b

p
‖u‖p

p,

where the last inequality is derived by Lemma 3.1(ii). Thus, by (3.6) and (4.3), we
see that

0 < H (0) ≤ H (t) ≤ b

p
‖u‖p

p for t ≥ 0. (4.10)

Then, using (4.10), we have from (4.9)

a

∣∣∣∣
∫

Ω

|ut|m−2 utudx

∣∣∣∣ ≤ c4 ‖u‖
p
m
p H(t)

1
p
− 1

m ‖ut‖m−1
m .

Hence by Young’s inequality and (4.2), we obtain

a

∣∣∣∣
∫

Ω
|ut|m−2 utudx

∣∣∣∣ ≤ c5

(
εm ‖u‖p

p + ε−m′
H ′(t)

)
H(t)−α1, (4.11)

where α1 = 1
m − 1

p > 0, ε > 0, m′ = m
m−1 , c4 = c3(

p
b )

1
p
− 1

m and c5 = c4 max(1, 1
a).

Letting 0 < α < α1 and by (4.10) , we see that

a

∣∣∣∣
∫

Ω
|ut|m−2 utudx

∣∣∣∣
≤ c5

(
εmH (0)−α1 ‖u‖p

p + ε−m′
H (0)α−α1 H(t)−αH ′(t)

)
.

(4.12)

Now, we define

L (t) = H (t)1−α + δ1A(t), t ≥ 0, (4.13)

where δ1 is a positive constant to be specified later. By differentiating (4.13), and
then by (4.12) and (4.8), we see that

L′ (t) ≥
(
1 − α − δ1c5ε

−m′
H (0)α−α1

)
H(t)−αH ′(t)

+δ1

[
a1 ‖ut‖2

2 + c1 ‖∆u(t)‖2
2 + pH(t)

]
−δ1c5ε

mH (0)−α1 ‖u‖p
p.

(4.14)
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Letting a3 = min{a1, c1,
p
2} and decomposing δ1pH(t) in (4.14) by

δ1pH(t) = 2a3δ1H(t) + (p− 2a3)δ1H(t).

Thus, by (4.1) and (3.3), we obtain

L′ (t) ≥
(
1 − α − δ1c5ε

−m′
H (0)α−α1

)
H(t)−αH ′(t)

+δ1

[
2a3b

p
− c5ε

mH (0)−α1

]
‖u‖p

p + δ1 (a1 − a3) ‖ut‖2
2

δ1(c1 − a3) ‖∆u(t)‖2
2 + (p− 2a3)δ1H (t) .

(4.15)

Now, we choose ε > 0 small such that 2a3b
p − c5ε

mH (0)−α1 ≥ a3b
2p , and 0 < δ1 <

(1−α)
c5

εm′
H (0)α1−α . Then (4.15) becomes

L′ (t) ≥ c6δ1

(
‖u‖p

p + ‖ut‖2
2 + H (t) + ‖∆u‖2

2

)
, (4.16)

here c6 = min
{

a3b
2p , a1 − a3, c1 − a3, p − 2a3

}
. Thus L(t) is a nondecreasing

function on t ≥ 0. Letting δ1 be small enough in (4.13), then we have L (0) > 0.
Hence

L (t) > 0, for t ≥ 0.

Now set
θ =

1
1 − α

. (4.17)

Since α < α1 < 1, it is evident that 1 < θ < 1
1−α1

. By Young’s inequality and
Hölder inequality, it follows that

L (t)θ ≤ 2θ−1

[
H (t) +

(
δ1

∫
Ω

utudx

)θ
]

. (4.18)

On the other hand, for p > 2 and using Hölder inequality, we have∫
Ω

utudx ≤ ‖ut‖2 ‖u‖2

≤ c7 ‖ut‖2 ‖u‖p ,

here c7 = (vol(Ω))
(p−2)

2p . And by Young’s inequality, we obtain(∫
Ω utudx

)θ ≤ c8 ‖ut‖θ
2 ‖u‖θ

p

≤ c9

(
‖u‖θβ1

p + ‖ut‖θβ2
2

)
,

(4.19)
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where 1
β1

+ 1
β2

= 1, c8 = cθ
7, and c9 = c9(c8, β1, β2) > 0. In particular, we take

θ1β2 = 2, i.e. β2 = 2 (1 − α) .
Therefore, for α small enough, the numbers β1 and β2 are close to 2. Now

choose α ∈
(
0, (α1,

1
2 − 1

p)
)

. Note that from (4.10), we see that

b

pH(0)
‖u‖p

p ≥ 1.

Thus we obtain

‖u‖θβ1
p ≤

(
b

pH(0)

)1− θβ1
p

‖u‖p
p , (4.20)

because
θβ1 =

2
1 − 2α

< p.

Consequently by (4.18)− (4.20), we have

L (t)θ ≤ c10

[
H (t) + ‖u‖p

p + ‖ut‖2
2

]
, (4.21)

here c10 is some positive constant. From (4.16) and (4.21), we get

L′ (t) ≥ c11L (t)θ , t ≥ 0, (4.22)

here c11 = c6δ1
c10

. An integration of (4.22) over (0, t) then yields

L (t) ≥
(
L (0)1−θ − c11 (θ − 1) t

)− 1
θ−1

. (4.23)

Since L (0) > 0, (4.23) shows that L becomes infinite in a finite time T ≤ T ∗ =
L(0)1−θ

c11(θ−1) . (II) For E(0) < 0, we set

H(t) = −E(t),

instead of (4.2). Then, applying the same argunments as in part (I), we have the
result.
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