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CONTINUITY OF RESTRICTIONS OF (a, k)-REGULARIZED
RESOLVENT FAMILIES TO INVARIANT SUBSPACES

Sen-Yen Shaw and Hsiang Liu

Abstract. Let X be a Banach space which is continuously embedded in
another Banach space Y and is an invariant subspace for an (a, k)-regularized
resolvent family R(·) of operators on Y . It is shown that the restriction of
R(·) to X is strongly continuous with respect to the norm of X if and only
if all its partial orbits are relatively weakly compact in X. This property is
shared by many particular cases of (a, k)-regularized resolvent families, such
as integrated solution families, integrated semigroups, and integrated cosine
functions.

1. INTRODUCTION

Let Y be a Banach space with norm ‖ · ‖Y and let X ⊂ Y be a linear subspace.
Suppose X is equipped with a norm ‖ · ‖X such that (X, ‖ · ‖X) becomes a Banach
space and such that (X, ‖·‖X) is continuously embedded in Y , i.e., the identity map
from (X, ‖ · ‖X) onto (X, ‖ · ‖Y ) is continuous, or equivalently, ‖x‖Y ≤ M‖x‖X

for some M > 0 and all x ∈ X . Let B(Y ) and B(X) denote the Banach algebras
of all bounded linear operators on Y and on X , respectively.

For a C0-semigroup {T (·); t ≥ 0} ⊂ B(Y ) of linear operators on Y which
leaves X invariant, S.C. Hille [3] gives a characterization of strong continuity of
the restricted semigroup {T (t)X := T (t)|X ; t ≥ 0} ⊂ B(X) in terms of norm and
weak compactness of the partial orbits

Ox(τ) := {T (t)Xx; 0 ≤ t ≤ τ} ⊂ X

for τ > 0 and all x ∈ X .
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The purpose of this paper is to prove this same property for cosine operator
functions and more generally for an (a, k)-regularized resolvent family.

Let a, k ∈ L1
loc([0,∞)) be positive functions, and let A be a densely defined

closed linear operator in Y . Consider the Volterra equation of convolution type

V E(a, A) u(t) =
∫ t

0
a(t − s)Au(s)ds + f(t), t ≥ 0.

A strongly continuous function {R(t); t ≥ 0} ⊂ B(Y ) is called an (a, k)-regularized
resolvent family on Y for VE(a, A) if it satisfies the conditions:
(R1) R(0) = k(0)I ;
(R2) R(t)y ∈ D(A) and AR(t)y = R(t)Ay for all y ∈ D(A) and t ≥ 0;
(R3) (a ∗ R)(t)y ∈ D(A) and R(t)y = k(t)y + (a ∗ R)(t)Ay for all y ∈ D(A)

and t ≥ 0.

It is easy to see that (a ∗ R)(t)y ∈ D(A) and

R(t)y = k(t)y + A(a ∗ R)(t)y for all y ∈ Y and t ≥ 0. (1.1)

The notion of a (a, k)-regularized resolvent family was introduced and studied
in [6, 7, 8]. See also [5, 14]. It contains α-times integrated solution families
(k(t) = tα/Γ(α + 1)) [9], resolvent families (k(t) ≡ 1) [10], α-times integrated
semigroups (a ≡ 1, k(t) = tα/Γ(α + 1)) [4], C0-semigroups (a = k ≡ 1) [2], and
α-times integrated cosine functions (a(t) = t, k(t) = tα/Γ(α + 1)) [13] as special
cases. In each of these particular cases, the operator A is just the generator of the
respective family.

In particular, a (t, 1)-regularized resolvent family for VE(t, A) is just a cosine
operator function {C(t); t ≥ 0} (cf. [12, 15]), which is defined as a strongly
continuous function on [0,∞) satisfying

C(0) = I and C(s + t) + C(s − t) = 2C(s)C(t) for all s ≥ t ≥ 0.

By extending C(·) to the whole real line R as an even function, we see that the
above equality holds for all s, t ∈ R.

The main theorem (Theorem 2.4), to be proved in Section 2, asserts that when an
(a, k)-regularized resolvent family R(·) on Y for VE(a, A) leaves the subspace X

invariant, the restricted family R(·)X forms an (a, k)-regularized resolvent family
on X for VE(a, AX) if and only if for all x ∈ X and τ > 0 the partial orbits

Ox(τ) := {R(t)Xx; 0 ≤ t ≤ τ} ⊂ X

are relatively weakly compact in X . Here AX denote the part AX of A in X (i.e.,
D(AX) = {x ∈ X ; x ∈ D(A) and Ax ∈ X} and AXx = Ax for x ∈ D(AX))
and Xw denote the weak topology of the Banach space X .
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Clearly the necessity part of the above theorem is obvious. The sufficiency part
comprises two implications: the first one from the Xw-compactness of partial orbits
to the Xw-continuity of the orbits, and the second one from the Xw-continuity to the
norm continuity. It will be seen in Proposition 2.3 that the first implication holds for
any strongly continuous operator functions which leave X invariant. But the second
implication seems not to hold in general. The proof of the second implication in
Theorem 2.4 involves the operator A and condition (R3). However, a proof of the
second implication without involving the generator A is possible for C0-semigroups
and cosine operator functions. One can refer to [2, Theorem 5.8] and [16, p. 233]
for such proofs for C0-semigroups. For cosine operator functions we will give in
Theorem 3.1 an alternative proof without using the generator A.

2. MAIN RESULT

For a τ > 0 let u : [0, τ ] → Y be a strongly continuous function such that
u[0, τ ] := {u(t); t ∈ [0, τ ]} ⊂ X .

Lemma 2.1.

(i) If {xα} ⊂ X is a net Xw-convergent (Xw being the weak topology of X) to
some x ∈ X , then {xα} is also Yw-convergent to x.

(ii) Every Yw-closed subset of X is also Xw-closed, and every [0, τ ]×Yw-closed
subset of [0, τ ]× X is also [0, τ ]× Xw-closed.

(iii) Let u : [0, τ ] → X be Xw-continuous as well as Yw-continuous. If u(·) is
Xw-Riemann integrable (i.e., there is a unique x ∈ X such that 〈x, x ∗〉 =∫ τ
0 〈u(t), x∗〉, existing as a Riemann integral), then it is also Y w-Riemann

integrable, and Xw-
∫ τ
0 u(t)dt = Yw-

∫ τ
0 u(t)dt.

Proof. (i) For any y∗ ∈ Y ∗, the functional x∗ := y∗|X is continuous on
(X, ‖ · ‖X) because the topology of X is stronger than the topology of Y restricted
to X . Hence x∗ ∈ X∗ and so we have 〈xα, y∗〉 = 〈xα, x∗〉 → 〈x, x∗〉 = 〈x, y∗〉.
This means that xα is Yw-convergent to x.

(ii) and (iii) follow from (i).

Lemma 2.2. Let (S, σ) be a Hausdorff topological space. A function u :
[0, τ ] → S is continuous if and only if u[0, τ ] is relatively compact in S and the
graph G(u, [0, τ ]) := {(t, u(t)); 0 ≤ t ≤ τ} is closed in [0, τ ]× S.

Proof. Necessity. The mappings t → u(t) and t → (t, u(t)) are continuous
functions from [0, τ ] to S and to [0, τ ]× S, respectively. Hence u[0, τ ] is compact
in S and G(u, [0, τ ]) is compact and hence closed in [0, τ ]× S.
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Sufficiency. For any t0 ∈ [0, τ ] and for any sequence {tn} ⊂ [0, τ ] such that
tn → t0, the relative compactness of u[0, τ ] implies that {tn} contains a subsequence
{tnk

} such that u(tnk
) converges to some x ∈ S. By the closedness of G(u, [0, τ ])

in [0, τ ] × S, we must have that x = u(t0). Then u(tn) must converge to u(t0),
otherwise we can choose a subsequence of {u(tn)} which contains no subsequence
with limit u(t0). This is a contradiction. Since {tn} is arbitrary, this shows that
u(·) is continuous at t0.

Let S(·) = {S(t); t ≥ 0} be a strongly continuous function of linear operators
on Y , and suppose X is invariant under S(·). Then S(·)X = {S(t)|X ; t ≥ 0} is
a function of operators on (X, ‖ · ‖X). As shown by Lemma 2.1, for each x ∈ X
the orbit Ox(τ) := {S(t)x; 0 ≤ t ≤ τ} of S(·)Xx is weakly closed in X , and the
graph of S(·)Xx is weakly closed in [0,∞)×X . However, S(·)X is not necessarily
continuous. The following theorem gives characterizations for S(·)X to be strongly
continuous.

Proposition 2.3. The following conditions satisfy the relations: (a) ⇒ (b) ⇒
(c) ⇔ (d).

(a) S(·)X is strongly continuous on X .
(b) For each x ∈ X and for all τ > 0, Ox(τ) := {S(t)x; 0 ≤ t ≤ τ} is compact

in X .
(c) For each x ∈ X and for all τ > 0, Ox(τ) is relatively Xw-compact (resp.

bounded, when X is reflexive).
(d) S(·)X is weakly continuous on X .

Proof. “(a) ⇒ (b) ⇒ (c)” and “(d) ⇒ (c)” are obvious.
(c) ⇒ (d). Since S(·)x is strongly continuous in Y , G(S(·)x, [0, τ ]) is strongly

compact, and hence it is a [0, τ ] × Yw-compact subset of [0, τ ] × X . By Lemma
2.1, G(S(·)x, [0, τ ]) is [0, τ ]× Xw-closed. This fact together with (c) implies (d),
by Lemma 2.2.

Let a, k ∈ L1
loc[0,∞) be positive functions, and let A be a densely defined closed

operator in Y . Let R(·) = {R(t); t ≥ 0} be a (a, k)-resolvent family on Y for
VE(a, A). Suppose X is invariant under R(·). Then R(·)X = {R(t)|X; t ≥ 0} is a
function of operators on (X, ‖ · ‖X). The following theorem gives characterizations
for R(·)X to be a (a, k)-resolvent family of operators on X .

Theorem 2.4. For a (a, k)-resolvent family R(·) of operators on Y for
VE(a, A) such that X is invariant under R(·), the following conditions are equiv-
alent:

(a) R(·)X is strongly continuous on X .
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(b) For each x ∈ X and for all τ > 0, Ox(τ) := {R(t)x; 0 ≤ t ≤ τ} is compact
in X .

(c) For each x ∈ X and for all τ > 0, Ox(τ) is relatively Xw-compact (resp.
bounded, when X is reflexive).

(d) R(·)X is weakly continuous on X .

Moreover, in this case AX is a densely defined operator in X and R(·) X is a
(a, k)-resolvent family of operators on X for VE(a, A X).

Proof. Because of Proposition 2.3, it remains to prove “(d) ⇒ (a)”.
(d) ⇒ (a). First note that the Xw-continuity of R(·)Xx implies that Ox(τ) is

Xw-compact, and hence so is its Xw-closed convex hull cow(Ox(τ)), by Krein’s
theorem.

For every x ∈ X , we consider the vectors xr := 1
(a∗1)(r)

∫ r
0 a(r−s)R(s)xds, r >

0, defined as Riemann integrals in ‖ · ‖Y . Then xr ∈ D(A), by (1.1). xr is also
equal to the Pettis integral

Xw-
∫ r

0

1
(a ∗ 1)(r)

a(r − s)R(s)Xxds (∈ X)

of the Xw-continuous function R(·)Xx on [0, r], which exists and lies in cow(Ox(τ)) (⊂
X) by the Xw-continuity of R(·)Xx, the Xw-compactness of cow(Ox(τ)), and the
fact that 1

(a∗1)(r)

∫ r
0 a(r−s)ds = 1 (cf. [11, Theorem 3.27]). Thus xr ∈ D(A)∩X .

Since (a ∗ 1)(r)Axr = A
∫ r
0 a(r − s)R(s)xds = R(r)x − k(r)x ∈ X , xr belongs

to D(AX) and (a ∗ 1)(r)AXxr = R(r)Xx − k(r)x.
Hence D := {x′

r := (a∗1)(r)
(a∗k)(r)xr; x ∈ X, r > 0} and span(D) are subsets of

D(AX). Clearly, the Xw-continuity of R(·)Xx at 0 imply that

|〈x′
r − x, x∗〉| ≤ 1

(a ∗ k)(r)

∫ r

0
a(r − s)|〈R(s)Xx − k(s)x, x∗〉|ds

≤ sup
0≤s≤r

‖〈R(s)Xx − k(s)x, x∗〉| → 0

as r → 0+ for all x∗ ∈ X∗, i.e., x′
r → x weakly as r → 0+. Hence D is Xw-

dense in X and the same are span(D) and D(AX). As linear subspaces of X , both
span(D) and D(AX) are also strongly dense in X , by the Hahn-Banach theorem.

Since the weak continuity of R(·)X implies it is locally bounded, to show that
R(·)X is strongly continuous, it remains to show that ‖R(t+h)Xxr−R(t)Xxr‖X →
0 as h → 0 (with t + h ≥ 0) for all x ∈ X , t ≥ 0, and r > 0.

Since R(·)Xxr is assumed to be Xw-continuous, by the above argument and
(R3), we see that the Pettis integral Xw-

∫ t
0 a(t − s)R(s)XAXxrds exists and
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R(t)Xxr − k(t)xr = R(t)xr − k(t)xr =
∫ t

0
a(t − s)R(s)Axrds

= Xw-
∫ t

0
a(t − s)R(s)XAXxrds.

It follows that for any fixed t ≥ 0 and all |h| < 1 such that t + h ≥ 0

|〈R(t + h)Xxr − R(t)Xxr, x
∗〉|

=
∣∣∣
∫ t+h

0
a(t + h − s)〈R(s)XAXxr, x

∗〉ds

−
∫ t

0

a(t − s)〈R(s)XAXxr, x
∗〉ds

∣∣∣

≤
∣∣∣∣
∫ t+h

t

a(t + h − s)〈R(s)XAXxr, x
∗〉ds

∣∣∣∣
+

∣∣∣∣
∫ t

0

(a(t + h − s) − a(t − s)) 〈R(s)XAXxr, x
∗〉ds

∣∣∣∣
≤

(∫ h

0

a(s)ds +
∫ t

0

|a(t + h − s) − a(t − s)| ds

)

· sup
0≤s≤t+1

‖R(s)X‖‖AXxr‖X‖x∗‖

for all x∗ ∈ X∗, so that

‖R(t + h)Xxr − R(t)Xxr‖X

≤
(∫ h

0
a(s)ds +

∫ t

0
|a(t + h − s) − a(t − s)| ds

)

·‖ sup
0≤s≤t+1

‖R(s)X‖‖AXxr‖X ,

which converges to 0 as h → 0, by Lebesgue’s Dominated Convergence Theorem.
Hence R(·)Xx is strongly continuous at t.

Finally, to show that R(·)X is a (a, k)-resolvent family for VE(a, AX), let x ∈
D(AX). Then x ∈ D(A)∩X and Ax ∈ X so that R(s)Xx = R(s)x ∈ D(A)∩X

and AR(s)Xx = AR(s)x = R(s)Ax = R(s)AXx = R(s)XAXx ∈ X , which
means that R(s)Xx ∈ D(AX) and AXR(s)Xx = R(s)XAXx for all x ∈ D(AX).
Moreover, by (R3) we have
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X-
∫ t

0
a(t − s)AXR(s)Xxds = X-

∫ t

0
a(t − s)R(s)XAXxds

= Y -
∫ t

0

a(t − s)R(s)Axds = R(t)x− k(t)x

= R(t)Xx − k(t)x

for x ∈ D(Ax). Hence R(·)X is a (a, k)-resolvent family of operators on X for
VE(a, AX). The proof is complete.

Corollary 2.5. The assertion of Theorem 2.4 still holds if R(·) is replaced
with an α-times integrated semigroup T (·) or an α-times integrated cosine function
C(·).

3. ANOTHER PROOF FOR THE CASE OF COSINE OPERATOR FUNCTIONS

Let C(·) = {C(t); t ∈ R} be a strongly continuous cosine operator function on
Y with infinitesimal generator A, and suppose X is invariant under C(·). Then
C(·)X = {C(t)|X ; t ∈ R} is a cosine function of operators on (X, ‖ · ‖X). The
following theorem is a special case of Corollary 2.5 (except the inclusion of condition
(b’)). Moreover, the part “(d)⇒ (a)” is to be proved without using the generator A.

Theorem 3.1. For a strongly continuous cosine operator function C(·) on Y
such that X is invariant under C(·), the following conditions are equivalent:

(a) C(·)X is strongly continuous cosine operator function on X .
(b) For each x ∈ X and for all τ > 0, Ox(τ) := {C(t)x; 0 ≤ t ≤ τ} is compact

in X .
(b′) For each x ∈ X there exists a τ0 > 0 such that Ox(τ0) is compact in X .
(c) For each x ∈ X and for all τ > 0, Ox(τ) is relatively Xw-compact (resp.

bounded, when X is reflexive).
(d) C(·)X is weakly continuous on X .

In this case, the infinitesimal generator of C(·) X is AX , which is a densely
defined closed operator in X .

Proof. In view of Proposition 2.3, we need to prove “(b’) ⇒ (b)” and “(d) ⇒
(a)”.

(b’) ⇒ (b). First, we note that the continuity of C(·)x implies that Ox(τ) is
closed in (Y, ‖ · ‖Y ), and hence is closed in (X, ‖ · ‖X) because (X, ‖ · ‖X) is
continuously embedded in Y .
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For n ≥ 2, we have for all 0 ≤ r ≤ τ0

C((n − 1)τ0 + r)Xx = 2C((n − 1)τ0)XC(r)Xx − C((n − 1)τ0 − r)Xx

∈ 2C((n − 1)τ0)XOx(τ0) −Ox((n − 1)τ0).

It follows that

Ox(τ) ⊂ Ox((n − 1)τ0) ∪ [2C((n − 1)τ0)XOx(τ0)−Ox((n − 1)τ0)]

for all τ ∈ [0, nτ0]. Since C((n− 1)τ0)X is a continuous operator on X , if Ox(τ0)
and Ox((n − 1)τ0) are compact in X , then so is the set on the right hand side of
the above inclusion. Thus, as a closed subset of a compact set, Ox(τ) is compact
in X for all τ ∈ [0, nτ0]. Hence, by induction, one can infer (b) from (b’).

(d) ⇒ (a). Note that the Xw-continuity of C(·)Xx implies that Ox(τ) is Xw-
compact, and hence so is its Xw-closed convex hull cow(Ox(τ)), by Krein’s theo-
rem.

To show that C(·)Xx is continuous in norm ‖ · ‖X on [0,∞) for every x ∈ X ,
we consider the vectors xr := 1

r

∫ r
0 C(s)Xxds, r > 0, where the integrals are

defined as Pettis integrals, which exist and lie in cow(Ox(τ)) (⊂ X) by the Xw-
continuity of C(·)Xx and the Xw-compactness of cow(Ox(τ)) (cf. [11, Theorem
3.27]). Hence D := {xr; x ∈ X, r > 0} is a subset of X . The Xw-continuity of
C(·)Xx at 0 also shows that xr → x weakly as r → 0+. Hence D is Xw-dense in
X and its linear span span(D) is weakly (and strongly) dense in X . For t ∈ R and
all x∗ ∈ X∗, we have

〈C(t)Xxr, x
∗〉 = 〈xr, (C(t)X)∗x∗〉 =

1
r

∫ r

0
〈C(s)Xx, (C(t)X)∗x∗〉ds

=
1
r

∫ r

0
〈C(t)XC(s)Xx, x∗〉ds

=
1
2r

∫ r

0

〈(C(t + s)X + C(s − t)X)x, x∗〉ds

=
1
2r

(∫ t+r

t

+
∫ r−t

−t

)
〈C(s)Xx, x∗〉ds

and hence

〈C(t + h)Xxr − C(t)Xxr, x
∗〉

=
1
2r

(∫ t+h+r

t+h
+

∫ r−t−h

−t−h
−

∫ t+r

t
−

∫ r−t

−t

)
〈C(s)Xx, x∗〉ds

=
1
2r

(∫ t+h+r

t+r
−

∫ t+h

t
+

∫ r−t−h

r−t
−

∫ −t−h

−t

)
〈C(s)Xx, x∗〉ds
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for all |h| < 1.
Since the weak continuity of C(·)X implies it is locally bounded, we have

‖C(t + h)Xxr − C(t)Xxr‖X

≤ 1
2r

4h sup{‖C(s)X‖; |s| ≤ |t| + 1 + r}‖x‖X → 0

as h → 0. Thus ‖C(t + h)Xx − C(t)Xx‖X → 0 as h → 0 for all x ∈ span(D).
Since span(D) is strongly dense in X and C(·)X is locally bounded, ‖C(t+h)Xx−
C(t)Xx‖X → 0 holds for all x ∈ X , i.e., C(t+h)X → C(t)X in the strong operator
topology as h → 0.

Finally, we show that C(·)X is generated by AX . Let B be the infinitesimal
generator of C(·)X . Since the ‖ · ‖X−topology of X is stronger than the ‖ · ‖Y -
topology of X , clearly B ⊂ AX . To show the converse, we need only to show
D(AX) ⊂ D(B). Note that C(·) and C(·)X are exponentially bounded, so that for
sufficiently large λ > 0 we have

λ(λ2 − B)−1x =
∫ ∞

0
e−λtC(t)Xxdt =

∫ ∞

0
e−λtC(t)xdt = λ(λ2 − A)−1x

for all x ∈ X , where the first Riemann integral is in the sense of ‖ · ‖X and the
second one is in the sense of ‖ · ‖Y . If x ∈ D(AX), then (λ2 − A)x ∈ X , and so

x = (λ2 − A)−1(λ2 − A)x = (λ2 − B)−1(λ2 − A)x ∈ D(B).

Hence B = AX and the proof is complete.
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