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WEAK AND WEAK∗ TOPOLOGIES AND BRODSKII-MILMAN’S
THEOREM ON HYPERSPACES

Thakyin Hu and Jui-Chi Huang

Abstract. Let K be a weakly compact, convex subset of a Banach space
X with normal structure. Brodskii and Milman proved that there exists a
point p ∈ K which is fixed under all isometries of K onto K. Suppose now
WCC(X) is the collection of all non-empty weakly compact convex subsets
of X. We shall define a certain weak topology Tw on WCC(X) and have
the above-mentioned result extended to the hyperspace (WCC(X), Tw)

1. INTRODUCTION

Banach Contraction Principle and Schauder-Tychonof Theorem were published
in the early 1900’s. These theorems have important applications to various branches
of mathematics. Suppose K is a weakly compact, convex subset with normal
structure of a Banach space, Brodskii and Millman [3] proved that there exists a
point p ∈ K which is fixed under all isometries of K onto K, and Browder and
Kirk ([4], [11]) proved that every non-expansive mapping of K into K has a fixed
point. It is the main purpose of this paper to extend Brodskii-Milman’s theorem
to the hyperspace WCC(X), where X is a Banach space and WCC(X) is the
collection of all non-empty weakly compact convex subsets of X .

2. NOTATIONS AND PRELIMINARIES

Let X be a Banach space, X∗ its topological dual and BCC(X) be the
collection of all non-empty bounded, closed convex subsets of X . For A, B ∈
BCC(X), define N (A; ε) = {x ∈ X : d(x, a) = ‖x − a‖ < ε for some a ∈ A}
and h(A, B) = inf{ε > 0 : A ⊂ N (B; ε) and B ⊂ N (A; ε)}, equivalently,
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h(A, B) = max{sup
x∈A

d(x, B), sup
x∈B

d(x, A)}. Then h is known as the Hausdorff

metric and (BCC(X), h) is known as the hyperspace over X . If dim(X) < ∞
and An ∈ BCC(X) is a bounded sequence (i.e. there exists M < ∞ such that
h(An, {0}) ≤ M for all n = 1, 2, . . .), Blaschke [2] proved that {An} has a subse-
quence {Ank

} such that {Ank
} converges to some A ∈ BCC(X). DeBlasi and My-

jak [2] introduced the concept of weak convergence of a sequence in BCC(X) and
they proved an infinite dimensional version of Blaschke’s theorem. Other notions of
weak convergence of bounded, closed, convex sets have been studied by other math-
ematicians ([1, 13]). Let WCC(X) be the collection of all non-empty weakly com-
pact convex subsets of X and CC(X) be the collection of all non-empty compact,
convex subsets of X . For general X , we have CC(X) � WCC(X) � BCC(X).
If X is reflexive, we have WCC(X) = BCC(X). If dim(X) < ∞, we have
CC(X) = WCC(X) = BCC(X). Weak topologies have been introduced on the
hyperspaces CC(X), WCC(X) and extensions of certain fixed point theorems are
obtained ([7]-[11]). Suppose now W ∗CC(X∗) is the collection of all non-empty
weak∗ compact, convex subsets of X∗. Because of the interplay between X and
X∗, the notion of weak topology on WCC(X) leads us naturally to consider the
concept of weak∗ topology on W∗CC(X∗). And we shall prove in the sequel
that Brodskii-Milman’s theorem can be extended to the hyperspaces WCC(X) and
W ∗CC(X∗). To continue our discussion, we let Z denote the complex plane and
CC(Z) the collection of all non-empty compact, convex subsets of Z. First, ob-
serve that for each x∗ ∈ X∗, the weak continuity and linearity of x∗ imply that for
each A ∈ WCC(X) (i.e., A is a weakly compact, convex subset of X), we have
x∗(A) ∈ CC(Z) (i.e., x∗(A) is a compact, convex subset of the complex plane Z).
Thus each x∗ maps the space WCC(X) into CC(Z). Similarly each x ∈ X maps
the space W ∗CC(X∗) into CC(Z).

Lemma 1.
(a) Suppose A, B ∈ WCC(X). Then h(x∗(A), x∗(B)) ≤ ‖x∗‖h(A, B) for each

x∗ ∈ X∗.
(b) Suppose A∗, B∗ ∈ W ∗CC(X∗). Then h(x(A∗), x(B∗)) ≤ ‖x‖h(A∗, B∗)

for each x ∈ X .

Proof. Let h(A, B) < r. Then A ⊂ N (B; r) and B ⊂ N (A; r). Hence
for each a ∈ A, there exists b ∈ B such that ‖a − b‖ < r and consequently,
‖x∗(a) − x∗(b)‖ ≤ ‖x∗‖‖a − b‖ ≤ ‖x∗‖ · r, which in turn implies that x∗(A) ⊂
N (x∗(B); ‖x∗‖r). Similarly, x∗(B) ⊂ N (x∗(A); ‖x∗‖r). Thus h(x∗(A), x∗(B)) ≤
‖x∗‖h(A, B), and the proof is complete.

Suppose now A, B ∈ WCC(X) with B �⊂ A, then there exists b ∈ B but
b �∈ A. It follows from Hahn-Banach theorem that there exists x∗ ∈ X∗ and real
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numbers r1, r2 such that Re x∗(a) < r1 < r2 < Re x∗(b) for all a ∈ A. Thus
|x∗(b)− x∗(a)| ≥ |Re x∗(b)−Re x∗(a)| > r2 − r1 for all a ∈ A and consequently
x∗(b) �∈ x∗(A) which implies h(x∗(B), x∗(A)) > 0 (i.e. x∗(B) �= x∗(A)). The
above brief discussion yields the following Lemma 2.

Lemma 2.

(a) A = B if and only if x∗(A) = x∗(B) for each x∗ ∈ X∗, where A, B ∈
WCC(X).

(b) A∗ = B∗ if and only if x(A∗) = x(B∗) for each x ∈ X , where A∗, B∗ ∈
W ∗CC(X∗).

Definitions. Recall that the weak topology τw on X is defined to be the weak-
est topology which makes each x∗ : (X, τw) → (Z, | · |) continuous. It follows from
Lemma 1 that each x∗ : (WCC(X), h) → (CC(Z), h) is continuous. Thus we may
define Tw to be the weakest topology on the hyperspace WCC(X) such that each
x∗ : (WCC(X), Tw) → (CC(Z), h) is continuous. Similarly, T ∗

w is defined to be
the weakest topology which makes each x : (W∗CC(X∗), T ∗

w) → (CC(Z), h) con-
tinuous. A typical weak neighborhood (Tw−neighborhood) of A ∈ WCC(X)
is denoted by W(A; x∗

1, . . . , x
∗
n; ε) = {B ∈ WCC(X) : h(x∗

i (B), x∗
i (A)) < ε

for i = 1, 2, . . . , n}, and a weak∗ neighborhood (T ∗
w −neighborhood) of A∗ ∈

W ∗CC(X∗) is denoted by W∗(A∗; x1, . . . , xn; ε)={B∗∈W ∗CC(X∗) : h(xi(B∗),
xi(A∗)) < ε for i = 1, 2, . . . , n}. Also for A, B ∈ WCC(X) and α ∈ Z, it fol-
lows from the continuity of addition and scalar multiplication that A + B and αA
belong to WCC(X). Thus a subset K ⊂ WCC(X) is defined to be convex if

for each A1, A2, . . . , An ∈ K and α1, α2, . . . , αn ∈ [0, 1] with
n∑

i=1
αi = 1, we have

n∑

i=1
αiAi ∈ K. K is said to have normal structure ([6], [14]) if for each convex

M ⊂ K, and M is not a singleten, then M has a non-diametral point (i.e., there
exists A ∈ M such that sup{h(A, B) : B ∈ M} < diamM = sup{h(A, B) :
A, B ∈ M}.

Let X = {x = {x} : x ∈ X} (i.e. X is the hyperspace consisting of sin-
gletons). Then (X, h) may be identified with (X, ‖ · ‖), and (X, Tw) may be
identified with (X, τw) naturally. Thus theorems on hyperspaces are extensions of
their counterparts on original underlying spaces. We remind our readers that we
use small letters to denote elements of the underlying Banach spaces X and X∗;
capital letters to denote subsets of X and X ∗ as well as elements of the hyper-
spaces WCC(X) and W ∗CC(X∗); script letters to denote subsets of hyperspaces.
Thus B[0, r] = {x ∈ X |‖x‖ ≤ r} and B∗[0, r] are closed balls of X and X∗;
B[0, r] = {A ∈ WCC(X) : h(A, {0}) ≤ r} and B∗[0, r] are closed balls of
WCC(X) and W ∗CC(X∗), respectively.
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We shall need the following Lemma 3 which has been noted in ([6], [7]) and
is easily verifiable.

Lemma 3. Let A, B, C, D ∈ WCC(X) and α ∈ Z. Then

(a) h(αA, αB) = |α|h(A, B), and
(b) h(A + B, C + D) ≤ h(A, C) + h(B, D).

3. MAIN RESULTS

We shall use the Uniform Boundedness Principle and Hahn-Banach Theorem to
establish some fundamental properties of the hyperspaces. We prove that weakly
compact subsets of WCC(X) are weakly closed and bounded and weak∗ compact
subsets of W ∗CC(X∗) are weak∗ closed and bounded. Also, we will prove that
closed balls U [A, δ] and U [A∗, δ] are weakly closed and weak∗-closed respectively.
These properties are essential tools to establish the main theorem of this paper,
namely, extension of Brodskii-Milman’s theorem to the hyperspaces.

Theorem 1.
(a) A weakly compact subset K ⊂ WCC(X) is weakly closed and bounded.
(b) A weak∗-compact subset K∗ ⊂ W ∗CC(X∗) is weak∗-closed and bounded.

Proof. We shall prove only part (b) since the proof of part (a) is essentially the
same. Suppose K∗ is weak∗-compact. Then K∗ is weak∗-closed since the weak∗-
topology T ∗

w is Hausdorff. Also for each x ∈ X , it follows from the definition that
x : (W ∗CC(X∗), T ∗

w) → (CC(Z), h) is continuous and hence x(K∗) = {x(A∗) :
A∗ ∈ K∗} is a compact subset of the metric space (CC(Z), h), which implies the
existence of some Mx < ∞ such that sup{h(x(A∗), x({0})) : A∗ ∈ K∗} ≤ Mx <

∞. Note that h(x(A∗), x({0})) = sup{‖x(a∗)‖ : a∗ ∈ A∗}. Thus if we set K∗ =⋃

A∗∈K∗
A∗ =

⋃

A∗∈K∗
{a∗ : a∗ ∈ A∗} ⊆ X∗, we have sup{h(x(A∗), x({0})) : A∗ ∈

K∗} = sup
A∗∈K∗

[sup{‖x(a∗)‖ : a∗ ∈ A∗}] = sup{‖x(a∗)‖ : a∗ ∈ K∗} ≤ Mx < ∞.

Consequently, K∗ ⊂ X∗ is a collection of linear functionals that is pointwise
bounded at each x ∈ X . It follows now from the uniform boundedness principle
that K∗ is a bounded subset of X ∗, i.e., sup{‖a∗‖ : a∗ ∈ K∗} ≤ N < ∞ for some
N . now for each A∗ ∈ K∗, we have h(A∗, {0}) = sup{‖a∗‖ : a∗ ∈ A∗} ≤ N ,
since A∗ ⊂ K∗. Thus K∗ is a bounded subset of (W ∗CC(X∗), h) and the proof
is complete.

Theorem 2.

(a) The closed ball U [A, δ] of the hyperspace (WCC(X), h) is weakly closed
(i.e. Tw-closed),
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(b) the closed ball U [A∗, δ] of the hyperspace (W ∗CC(X∗), h) is weak∗-closed
(i.e., T ∗

w -closed).

Proof. We shall prove part (b) only since the proof of part (a) is similar.
Let B∗ /∈ U [A∗, δ] with h(A∗, B∗) = δ + r where r > 0. Since h(A∗, B∗) =
max{ sup

x∗∈A∗
d(x∗, B∗), sup

x∗∈B∗
d(x∗, A∗)}, we shall consider the cases h(A∗, B∗) =

sup
x∗∈A∗

d(x∗, B∗) and h(A∗, B∗) = sup
x∗∈B∗

d(x∗, A∗) separately.

Case 1. Suppose h(A∗, B∗) = sup
x∗∈A∗

d(x∗, B∗), then there exists a∗
0 ∈ A∗ such

that d(a∗
0, B

∗) ≥ h(A∗, B∗) − r
3 . It follows that for each b∗ ∈ B∗, ‖a∗0 − b∗‖ ≥

d(a∗0, B∗) ≥ h(A∗, B∗)− r
3 = (δ+r)− r

3 = δ+ 2r
3 > δ+ r

3 and hence b∗ /∈ N [a∗0; δ+
r
3 ] showing that N [a∗

0; δ+ r
3 ]∩B∗ = ∅, where both N [a∗0; δ+ r

3 ] and B∗ are weak∗-
compact convex sets. It follows now from the Hahn-Banach theorem that there
exists x ∈ X and real numbers r1, r2 such that Re x(b∗) < r1 < r2 < Re x(x∗)
for b∗ ∈ B∗ and x∗ ∈ N [a∗0; δ + r

3 ]. Let ε = r2−r1
2 . Suppose now A∗

k ∈ U [A∗, δ],
we have h(A∗

k, A
∗) ≤ δ which in turn implies the existence of some a∗

k ∈ A∗
k with

‖a∗k − a∗0‖ < δ + r
3 or a∗k ∈ N (a∗0; δ + r

3 ) ⊂ N [a∗0; δ + r
3 ]. Thus |x(a∗

k) − x(b∗)| ≥
|Re x(a∗k) − Re x(b∗)| > r2 − r1 > ε for all b∗ ∈ B∗, i.e. x(a∗k) /∈ N (x(B∗); ε)
which in turn implies x(A∗

k) �⊂ N (x(B∗); ε) and hence h(x(A∗
k), x(B∗)) ≥ ε. Thus

A∗
k /∈ W(B∗; x; ε) proving that each B∗ /∈ U [A∗, δ] has a weak∗-neighborhood

W(B∗; x; ε) disjoint from U [A∗, δ]. Thus the complement of U [A∗, δ] is weak∗-
open and hence U [A∗, δ] is weak∗-closed.

Case 2. Suppose h(A∗, B∗) = sup
x∗∈B∗

d(x∗, A∗). It follows that there exists

b∗0 ∈ B∗ such that d(b∗0, A
∗) ≥ h(A∗, B∗) − r

3 . Let D∗ =
⋃

a∗∈A∗
N [a∗; δ + r

3 ] =

A∗ + N [0; δ + r
3 ] where both A∗ and N [0; δ + r

3 ] are weak∗-compact, convex and
hence D∗ is also weak∗-compact, convex. Now for each x∗ ∈ D∗,there exists
a∗ ∈ A∗ with ‖x∗− a∗‖ ≤ δ + r

3 . Thus ‖a∗− b∗0‖ ≤ ‖a∗− x∗‖+ ‖x∗ − b∗0‖ which
in turn implies that ‖x∗− b∗0‖ ≥ ‖a∗− b∗0‖−‖a∗ −x∗‖ ≥ d(b∗0, A

∗)−‖a∗ −x∗‖ ≥
h(A∗, B∗)− r

3−‖a∗−x∗‖ ≥ (δ+r)− r
3−(δ+ r

3) = r
3 . Consequently, d(b∗0, D

∗) ≥ r
3

and we may apply Hahn-Banach theorem to get some x ∈ X and real numbers
r1, r2 such that Re x(x∗) < r1 < r2 < Re x(b∗0) for all x∗ ∈ D∗, which
implies |x(b∗0) − x(x∗)| ≥ |Re x(b∗0) − Re x(x∗)| > r2 − r1 > r2−r1

2 = ε for all
x∗ ∈ D∗. Next, if A∗

k ∈ U [A∗, δ] implies h(A∗
k, A

∗) ≤ δ < δ + r
3 and hence

A∗
k ⊂ N (A∗; δ + r

3 ) ⊂ D∗. Consequently, |x(b∗0) − x(a∗k)| ≥ r2 − r1 > ε for
each a∗k ∈ A∗

k , which implies x(B∗) �⊂ N (x(A∗
k), ε). Thus h(x(A∗

k), x(B∗)) ≥ ε
showing that A∗

k /∈ W(B∗; x; ε). Therefore, the complement of U(A∗, δ] is weak∗-
open and hence U [A∗, δ] is weak∗-closed and the proof is complete.
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Theorem 3.

(a) Suppose K is a non-empty, weakly compact (i.e. Tw-compact), convex subset
of WCC(X) and K has normal structure. Then K contains a point A 0 which
is fixed under all isometries of K onto K.

(b) Suppose K∗ is a non-empty, weak∗-compact (i.e. T ∗
w -compact), convex subset

of W ∗CC(X∗) and K∗ has normal structure. Then K ∗ contains a point A∗
0

which is fixed under all isometries of K ∗ onto K∗.

Proof. We shall prove part (a) only. Let F = {T : K → K | T is a surjective
isometry}. Observe that T ∈ F implies T−1 ∈ F since T : K → K is 1 − 1,
onto. We may now use Zorn’s Lemma to obtain a set K0 ⊂ K which is minimal
with respect to being non-empty, weakly compact, convex and invariant under T
(i.e., T (K0) ⊂ K0) for each T ∈ F . If K0 consists of a single element, we are
done. Otherwise 0 < diam(K0) = d. Since K0 is weakly compact, it follows
from Theorem 1(a) that diam(K0) = d < ∞. Since K has normal structure, it
follows that K0 has a non-diametral point, i.e., there exists A0 ∈ K0 such that
sup{h(A0, A) : A ∈ K0} = d1 < d. Let K1 = K0 ∩ (

⋂

A∈K0

U [A, d1]). Since

A0 ∈ K1, therefore K1 �= ∅. K1 is convex since all sets involved are convex.
Also each U [A, d1] is weakly closed by Theorem 2. Thus K1 is weakly closed and
hence weakly compact since it is contained in the weakly compact set K0. Since
T (K0) ⊂ K0 for each T ∈ F , for any given B ∈ K0, we have T−1(B) ∈ K0

and T (T−1(B)) = B showing that T (K0) = K0 for each T ∈ F . Next, we
claim that T (K1) ⊂ K1 for each K1. To prove our claim, we let B ∈ K1 and
T ∈ F be given, then for any A ∈ K0, we have T−1(A) ∈ K0 and h(T (B), A) =
h(T (B), T (T−1(A)) = h(B, T−1(A)) ≤ d1. Consequently, h(T (B), A) ≤ d1 for
any A ∈ K0 and hence T (B) ∈ K0 ∩ {

⋂

A∈K0

U [A, d1]} = K1 and the claim is

proved. Thus K1 is a non-empty weakly compact, convex subset of K0 which is
invariant under each T ∈ F . Moreover, d1 < d implies that K1 � K0. That is a
contradiction to the minimality of K0 and the theorem is proved.

Suppose X is uniformly convex or dim(X) < ∞. Then it is well-known that
X has normal structure ([6], [14]). We shall prove that the hyperspace CC(X) has
normal structure if dim(X) < ∞.

Theorem 4. Suppose dim(X) < ∞. Then CC(X) has normal structure.

Proof. It follows from Blaschke’s theorem that every closed and bounded
subset K ⊂ (CC(X), h) is compact. Also every set K and its closure has the
same diameter. Thus it is sufficient to prove that if K ⊂ CC(X) is h-compact
and convex with diam(K) = d > 0, then K has a non-diametral point A0 ∈ K
(i.e. sup{h(A0, A) : A ∈ K} = d1 < d). Assume the contrary, then every point
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of K is a diametral point. Let A1 ∈ K, A1 is diametral and K is compact implies
the existence of some A2 ∈ K such that h(A1, A2) = d. By convexity of K,
(A1 +A2)/2 ∈ K and (A1 +A2)/2 is diametral. Let A3 ∈ K be such that h((A1 +
A2)/2, A3) = d. Since d = h((A1+A2)/2, A3) = h((A1+A2)/2, (A3+A3)/2) ≤
1
2h(A1, A3)+ 1

2h(A2, A3) ≤ 1
2d+ 1

2d = d. It follows that h(A1, A3) = h(A2, A3) =
d. Inductively, if A1, A2, . . . , An ∈ K has been chosen such that h(Ai, Aj) = d
where i, j ∈ {1, 2, . . . , n} and i �= j. Then (A1+A2+· · ·+An)/n ∈ K is diametral
implies the existence of An+1 ∈ K such that h(Ai, An+1) = d for i = 1, 2, . . . , n.
Consequently {Ai} is an infinite sequence of K such that h(Ai, Aj) = d for i �= j.
Thus {Ai} is an infinite sequence that has no convergent subsequence. That is a
contradiction to the compactness of K, and hence the theorem is proved.
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