TAIWANESE JOURNAL OF MATHEMATICS Vol. 13, No. 2A, pp. 459-466, April 2009 This paper is available online at http://www.tjm.nsysu.edu.tw/

WEAK AND WEAK* TOPOLOGIES AND BRODSKII-MILMAN'S THEOREM ON HYPERSPACES

Thakyin Hu and Jui-Chi Huang

Abstract. Let K be a weakly compact, convex subset of a Banach space X with normal structure. Brodskii and Milman proved that there exists a point $p \in K$ which is fixed under all isometries of K onto K. Suppose now WCC(X) is the collection of all non-empty weakly compact convex subsets of X. We shall define a certain weak topology \mathcal{T}_w on WCC(X) and have the above-mentioned result extended to the hyperspace $(WCC(X), \mathcal{T}_w)$

1. INTRODUCTION

Banach Contraction Principle and Schauder-Tychonof Theorem were published in the early 1900's. These theorems have important applications to various branches of mathematics. Suppose K is a weakly compact, convex subset with normal structure of a Banach space, Brodskii and Millman [3] proved that there exists a point $p \in K$ which is fixed under all isometries of K onto K, and Browder and Kirk ([4], [11]) proved that every non-expansive mapping of K into K has a fixed point. It is the main purpose of this paper to extend Brodskii-Milman's theorem to the hyperspace WCC(X), where X is a Banach space and WCC(X) is the collection of all non-empty weakly compact convex subsets of X.

2. NOTATIONS AND PRELIMINARIES

Let X be a Banach space, X^* its topological dual and BCC(X) be the collection of all non-empty bounded, closed convex subsets of X. For $A, B \in BCC(X)$, define $N(A; \varepsilon) = \{x \in X : d(x, a) = ||x - a|| < \varepsilon$ for some $a \in A\}$ and $h(A, B) = \inf\{\varepsilon > 0 : A \subset N(B; \varepsilon) \text{ and } B \subset N(A; \varepsilon)\}$, equivalently,

Communicated by Mau-Hsiang Shih.

Received May 2, 2007, accepted September 1, 2007.

²⁰⁰⁰ Mathematics Subject Classification: 54A05, 54A20, 54B20, 47H10.

Key words and phrases: Weak topology, Weak* topology, Brodskii-Milman's theorem, Hyperspace.

 $h(A, B) = \max\{\sup d(x, B), \sup d(x, A)\}$. Then h is known as the Hausdorff $x \in B$ $x \in A$ metric and (BCC(X), h) is known as the hyperspace over X. If $\dim(X) < \infty$ and $A_n \in BCC(X)$ is a bounded sequence (i.e. there exists $M < \infty$ such that $h(A_n, \{0\}) \leq M$ for all n = 1, 2, ...), Blaschke [2] proved that $\{A_n\}$ has a subsequence $\{A_{n_k}\}$ such that $\{A_{n_k}\}$ converges to some $A \in BCC(X)$. DeBlasi and Myjak [2] introduced the concept of weak convergence of a sequence in BCC(X) and they proved an infinite dimensional version of Blaschke's theorem. Other notions of weak convergence of bounded, closed, convex sets have been studied by other mathematicians ([1, 13]). Let WCC(X) be the collection of all non-empty weakly compact convex subsets of X and CC(X) be the collection of all non-empty compact, convex subsets of X. For general X, we have $CC(X) \subsetneq WCC(X) \subsetneq BCC(X)$. If X is reflexive, we have WCC(X) = BCC(X). If $\dim(X) < \infty$, we have CC(X) = WCC(X) = BCC(X). Weak topologies have been introduced on the hyperspaces CC(X), WCC(X) and extensions of certain fixed point theorems are obtained ([7]-[11]). Suppose now $W^*CC(X^*)$ is the collection of all non-empty weak^{*} compact, convex subsets of X^* . Because of the interplay between X and X^* , the notion of weak topology on WCC(X) leads us naturally to consider the concept of weak^{*} topology on $W^*CC(X^*)$. And we shall prove in the sequel that Brodskii-Milman's theorem can be extended to the hyperspaces WCC(X) and $W^*CC(X^*)$. To continue our discussion, we let \mathbb{Z} denote the complex plane and $CC(\mathbb{Z})$ the collection of all non-empty compact, convex subsets of \mathbb{Z} . First, observe that for each $x^* \in X^*$, the weak continuity and linearity of x^* imply that for each $A \in WCC(X)$ (i.e., A is a weakly compact, convex subset of X), we have $x^*(A) \in CC(\mathbb{Z})$ (i.e., $x^*(A)$ is a compact, convex subset of the complex plane \mathbb{Z}). Thus each x^* maps the space WCC(X) into $CC(\mathbb{Z})$. Similarly each $x \in X$ maps the space $W^*CC(X^*)$ into $CC(\mathbb{Z})$.

Lemma 1.

- (a) Suppose $A, B \in WCC(X)$. Then $h(x^*(A), x^*(B)) \leq ||x^*||h(A, B)$ for each $x^* \in X^*$.
- (b) Suppose $A^*, B^* \in W^*CC(X^*)$. Then $h(x(A^*), x(B^*)) \leq ||x|| h(A^*, B^*)$ for each $x \in X$.

Proof. Let h(A, B) < r. Then $A \subset N(B; r)$ and $B \subset N(A; r)$. Hence for each $a \in A$, there exists $b \in B$ such that ||a - b|| < r and consequently, $||x^*(a) - x^*(b)|| \le ||x^*|| ||a - b|| \le ||x^*|| \cdot r$, which in turn implies that $x^*(A) \subset$ $N(x^*(B); ||x^*||r)$. Similarly, $x^*(B) \subset N(x^*(A); ||x^*||r)$. Thus $h(x^*(A), x^*(B)) \le$ $||x^*||h(A, B)$, and the proof is complete.

Suppose now $A, B \in WCC(X)$ with $B \not\subset A$, then there exists $b \in B$ but $b \notin A$. It follows from Hahn-Banach theorem that there exists $x^* \in X^*$ and real

numbers r_1 , r_2 such that Re $x^*(a) < r_1 < r_2 <$ Re $x^*(b)$ for all $a \in A$. Thus $|x^*(b) - x^*(a)| \ge |\text{Re } x^*(b) - \text{Re } x^*(a)| > r_2 - r_1$ for all $a \in A$ and consequently $x^*(b) \notin x^*(A)$ which implies $h(x^*(B), x^*(A)) > 0$ (i.e. $x^*(B) \neq x^*(A)$). The above brief discussion yields the following Lemma 2.

Lemma 2.

- (a) A = B if and only if $x^*(A) = x^*(B)$ for each $x^* \in X^*$, where $A, B \in WCC(X)$.
- (b) $A^* = B^*$ if and only if $x(A^*) = x(B^*)$ for each $x \in X$, where $A^*, B^* \in W^*CC(X^*)$.

Definitions. Recall that the weak topology τ_w on X is defined to be the weakest topology which makes each $x^*: (X, \tau_w) \to (\mathbb{Z}, |\cdot|)$ continuous. It follows from Lemma 1 that each $x^* : (WCC(X), h) \to (CC(\mathbb{Z}), h)$ is continuous. Thus we may define \mathcal{T}_w to be the weakest topology on the hyperspace WCC(X) such that each $x^*: (WCC(X), \mathcal{T}_w) \to (CC(\mathbb{Z}), h)$ is continuous. Similarly, \mathcal{T}_w^* is defined to be the weakest topology which makes each $x: (W^*CC(X^*), \mathcal{T}^*_w) \to (CC(\mathbb{Z}), h)$ continuous. A typical weak neighborhood (\mathcal{T}_w -neighborhood) of $A \in WCC(X)$ is denoted by $\mathcal{W}(\overline{A}; x_1^*, \dots, x_n^*; \varepsilon) = \{\overline{B} \in WCC(X) : h(x_i^*(B), x_i^*(A)) < \varepsilon\}$ for i = 1, 2, ..., n, and a weak neighborhood ($\underline{T_w^*}$ -neighborhood) of $A^* \in$ $W^*CC(X^*)$ is denoted by $W^*(A^*; x_1, \dots, x_n; \varepsilon) = \{\overline{B^* \in W^*CC(X^*)} : h(x_i(B^*), \varepsilon)\}$ $x_i(A^*) < \varepsilon$ for $i = 1, 2, \dots, n$. Also for $A, B \in WCC(X)$ and $\alpha \in \mathbb{Z}$, it follows from the continuity of addition and scalar multiplication that A + B and αA belong to WCC(X). Thus a subset $\mathcal{K} \subset WCC(X)$ is defined to be <u>convex</u> if for each $A_1, A_2, \ldots, A_n \in \mathcal{K}$ and $\alpha_1, \alpha_2, \ldots, \alpha_n \in [0, 1]$ with $\sum_{i=1}^n \alpha_i = 1$, we have $\sum_{i=1}^{n} \alpha_i A_i \in \mathcal{K}. \ \mathcal{K} \text{ is said to have <u>normal structure</u> ([6], [14]) if for each convex$ $\mathcal{M} \subset \mathcal{K}$, and \mathcal{M} is not a singleten, then \mathcal{M} has a non-diametral point (i.e., there exists $A \in \mathcal{M}$ such that $\sup\{h(A, B) : B \in \mathcal{M}\} < \operatorname{diam} \mathcal{M} = \sup\{h(A, B) : B \in \mathcal{M}\}$

$A, B \in \mathcal{M}\}.$

Let $\overline{X} = \{\overline{x} = \{x\} : x \in X\}$ (i.e. \overline{X} is the hyperspace consisting of singletons). Then (\overline{X}, h) may be identified with $(X, \|\cdot\|)$, and $(\overline{X}, \mathcal{T}_w)$ may be identified with (X, τ_w) naturally. Thus theorems on hyperspaces are extensions of their counterparts on original underlying spaces. We remind our readers that we use small letters to denote elements of the underlying Banach spaces X and X^* ; capital letters to denote subsets of X and X^* as well as elements of the hyperspaces WCC(X) and $W^*CC(X^*)$; script letters to denote subsets of hyperspaces. Thus $B[0, r] = \{x \in X | \|x\| \le r\}$ and $B^*[0, r]$ are closed balls of X and X^* ; $\mathcal{B}[0, r] = \{A \in WCC(X) : h(A, \{0\}) \le r\}$ and $\mathcal{B}^*[0, r]$ are closed balls of WCC(X) and $W^*CC(X^*)$, respectively.

We shall need the following Lemma 3 which has been noted in ([6], [7]) and is easily verifiable.

Lemma 3. Let $A, B, C, D \in WCC(X)$ and $\alpha \in \mathbb{Z}$. Then

- (a) $h(\alpha A, \alpha B) = |\alpha| h(A, B)$, and
- (b) $h(A+B, C+D) \le h(A, C) + h(B, D)$.

3. MAIN RESULTS

We shall use the Uniform Boundedness Principle and Hahn-Banach Theorem to establish some fundamental properties of the hyperspaces. We prove that weakly compact subsets of WCC(X) are weakly closed and bounded and weak^{*} compact subsets of $W^*CC(X^*)$ are weak^{*} closed and bounded. Also, we will prove that closed balls $\mathcal{U}[A, \delta]$ and $\mathcal{U}[A^*, \delta]$ are weakly closed and weak^{*}-closed respectively. These properties are essential tools to establish the main theorem of this paper, namely, extension of Brodskii-Milman's theorem to the hyperspaces.

Theorem 1.

- (a) A weakly compact subset $\mathcal{K} \subset WCC(X)$ is weakly closed and bounded.
- (b) A weak*-compact subset $\mathcal{K}^* \subset W^*CC(X^*)$ is weak*-closed and bounded.

Proof. We shall prove only part (b) since the proof of part (a) is essentially the same. Suppose \mathcal{K}^* is weak*-compact. Then \mathcal{K}^* is weak*-closed since the weak*topology \mathcal{T}_w^* is Hausdorff. Also for each $x \in X$, it follows from the definition that $x: (W^*CC(X^*), \mathcal{T}^*_w) \to (CC(\mathbb{Z}), h)$ is continuous and hence $x(\mathcal{K}^*) = \{x(A^*):$ $A^* \in \mathcal{K}^*$ is a compact subset of the metric space $(CC(\mathbb{Z}), h)$, which implies the existence of some $M_x < \infty$ such that $\sup\{h(x(A^*), x(\{0\})) : A^* \in \mathcal{K}^*\} \le M_x < \infty$ ∞ . Note that $h(x(A^*), x(\{0\})) = \sup\{||x(a^*)|| : a^* \in A^*\}$. Thus if we set $K^* =$ $\bigcup_{A^* \in \mathcal{K}^*} A^* = \bigcup_{A^* \in \mathcal{K}^*} \{a^* : a^* \in A^*\} \subseteq X^*, \text{ we have } \sup\{h(x(A^*), x(\{0\})) : A^* \in \mathcal{K}^*\} \in X^* \}$ $\mathcal{K}^{A^{*} \in \mathcal{K}^{*}} = \sup_{A^{*} \in \mathcal{K}^{*}} [\sup\{\|x(a^{*})\| : a^{*} \in A^{*}\}] = \sup\{\|x(a^{*})\| : a^{*} \in K^{*}\} \le M_{x} < \infty.$ $A^* \in \mathcal{K}$ Consequently, $K^* \subset X^*$ is a collection of linear functionals that is pointwise bounded at each $x \in X$. It follows now from the uniform boundedness principle that K^* is a bounded subset of X^* , i.e., $\sup\{\|a^*\| : a^* \in K^*\} \le N < \infty$ for some N. now for each $A^* \in \mathcal{K}^*$, we have $h(A^*, \{0\}) = \sup\{\|a^*\| : a^* \in A^*\} \le N$, since $A^* \subset K^*$. Thus \mathcal{K}^* is a bounded subset of $(W^*CC(X^*), h)$ and the proof is complete.

Theorem 2.

(a) The closed ball $\mathcal{U}[A, \delta]$ of the hyperspace (WCC(X), h) is weakly closed (i.e. \mathcal{T}_w -closed),

462

Weak and Weak* Topologies and Brodskii-Milman's Theorem on Hyperspaces

(b) the closed ball U[A*, δ] of the hyperspace (W*CC(X*), h) is weak*-closed (i.e., T^{*}_w-closed).

Proof. We shall prove part (b) only since the proof of part (a) is similar. Let $B^* \notin \mathcal{U}[A^*, \delta]$ with $h(A^*, B^*) = \delta + r$ where r > 0. Since $h(A^*, B^*) = \max\{\sup_{\substack{x^* \in A^* \\ x^* \in A^*}} d(x^*, B^*), \sup_{\substack{x^* \in B^* \\ x^* \in A^*}} d(x^*, B^*) \text{ and } h(A^*, B^*) = \sup_{\substack{x^* \in B^* \\ x^* \in B^*}} d(x^*, A^*) \text{ separately.}$

Case 1. Suppose $h(A^*, B^*) = \sup_{x^* \in A^*} d(x^*, B^*)$, then there exists $a_0^* \in A^*$ such that $d(a_0^*, B^*) \ge h(A^*, B^*) - \frac{r}{3}$. It follows that for each $b^* \in B^*$, $||a_0^* - b^*|| \ge d(a_0^*, B^*) \ge h(A^*, B^*) - \frac{r}{3} = (\delta + r) - \frac{r}{3} = \delta + \frac{2r}{3} > \delta + \frac{r}{3}$ and hence $b^* \notin N[a_0^*; \delta + \frac{r}{3}]$ showing that $N[a_0^*; \delta + \frac{r}{3}] \cap B^* = \emptyset$, where both $N[a_0^*; \delta + \frac{r}{3}]$ and B^* are weak*-compact convex sets. It follows now from the Hahn-Banach theorem that there exists $x \in X$ and real numbers r_1, r_2 such that $\operatorname{Re} x(b^*) < r_1 < r_2 < \operatorname{Re} x(x^*)$ for $b^* \in B^*$ and $x^* \in N[a_0^*; \delta + \frac{r}{3}]$. Let $\varepsilon = \frac{r_2 - r_1}{2}$. Suppose now $A_k^* \in \mathcal{U}[A^*, \delta]$, we have $h(A_k^*, A^*) \le \delta$ which in turn implies the existence of some $a_k^* \in A_k^*$ with $||a_k^* - a_0^*|| < \delta + \frac{r}{3}$ or $a_k^* \in N(a_0^*; \delta + \frac{r}{3}) \subset N[a_0^*; \delta + \frac{r}{3}]$. Thus $|x(a_k^*) - x(b^*)| \ge |\operatorname{Re} x(a_k^*) - \operatorname{Re} x(b^*)| > r_2 - r_1 > \varepsilon$ for all $b^* \in B^*$, i.e. $x(a_k^*) \notin N(x(B^*); \varepsilon)$ which in turn implies $x(A_k^*) \notin N(x(B^*); \varepsilon)$ and hence $h(x(A_k^*), x(B^*)) \ge \varepsilon$. Thus $A_k^* \notin \mathcal{W}(B^*; x; \varepsilon)$ proving that each $B^* \notin \mathcal{U}[A^*, \delta]$ has a weak*-neighborhood $\mathcal{W}(B^*; x; \varepsilon)$ disjoint from $\mathcal{U}[A^*, \delta]$. Thus the complement of $\mathcal{U}[A^*, \delta]$ is weak*-closed.

Case 2. Suppose $h(A^*, B^*) = \sup_{x^* \in B^*} d(x^*, A^*)$. It follows that there exists $b_0^* \in B^*$ such that $d(b_0^*, A^*) \ge h(A^*, B^*) - \frac{r}{3}$. Let $D^* = \bigcup_{a^* \in A^*} N[a^*; \delta + \frac{r}{3}] = A^* + N[0; \delta + \frac{r}{3}]$ where both A^* and $N[0; \delta + \frac{r}{3}]$ are weak*-compact, convex and hence D^* is also weak*-compact, convex. Now for each $x^* \in D^*$, there exists $a^* \in A^*$ with $||x^* - a^*|| \le \delta + \frac{r}{3}$. Thus $||a^* - b_0^*|| \le ||a^* - x^*|| + ||x^* - b_0^*||$ which in turn implies that $||x^* - b_0^*|| \ge ||a^* - b_0^*|| - ||a^* - x^*|| \ge d(b_0^*, A^*) - ||a^* - x^*|| \ge h(A^*, B^*) - \frac{r}{3} - ||a^* - x^*|| \ge (\delta + r) - \frac{r}{3} - (\delta + \frac{r}{3}) = \frac{r}{3}$. Consequently, $d(b_0^*, D^*) \ge \frac{r}{3}$ and we may apply Hahn-Banach theorem to get some $x \in X$ and real numbers r_1, r_2 such that $\operatorname{Re} x(x^*) < r_1 < r_2 < \operatorname{Re} x(b_0^*)$ for all $x^* \in D^*$, which implies $|x(b_0^*) - x(x^*)| \ge |\operatorname{Re} x(b_0^*) - \operatorname{Re} x(x^*)| > r_2 - r_1 > \frac{r_2 - r_1}{2} = \varepsilon$ for all $x^* \in D^*$. Next, if $A_k^* \in \mathcal{U}[A^*, \delta]$ implies $h(A_k^*, A^*) \le \delta < \delta + \frac{r}{3}$ and hence $A_k^* \subset N(A^*; \delta + \frac{r}{3}) \subset D^*$. Consequently, $|x(b_0^*) - x(a_k^*)| \ge r_2 - r_1 > \varepsilon$ for each $a_k^* \in A_k^*$, which implies $x(B^*) \not \subset N(x(A_k^*), \varepsilon)$. Thus $h(x(A_k^*), x(B^*)) \ge \varepsilon$ showing that $A_k^* \notin \mathcal{W}(B^*; x; \varepsilon)$. Therefore, the complement of $\mathcal{U}(A^*, \delta]$ is weak*-coopen and hence $\mathcal{U}[A^*, \delta]$ is weak*-closed and the proof is complete.

Theorem 3.

- (a) Suppose K is a non-empty, weakly compact (i.e. T_w-compact), convex subset of WCC(X) and K has normal structure. Then K contains a point A₀ which is fixed under all isometries of K onto K.
- (b) Suppose K^{*} is a non-empty, weak^{*}-compact (i.e. T^{*}_w-compact), convex subset of W^{*}CC(X^{*}) and K^{*} has normal structure. Then K^{*} contains a point A^{*}₀ which is fixed under all isometries of K^{*} onto K^{*}.

Proof. We shall prove part (a) only. Let $\mathcal{F} = \{T : \mathcal{K} \to \mathcal{K} \mid T \text{ is a surjective } due to the formula of the two terms of the terms of t$ isometry}. Observe that $T \in \mathcal{F}$ implies $T^{-1} \in \mathcal{F}$ since $T : \mathcal{K} \to \mathcal{K}$ is 1 - 1, onto. We may now use Zorn's Lemma to obtain a set $\mathcal{K}_0 \subset \mathcal{K}$ which is minimal with respect to being non-empty, weakly compact, convex and invariant under T(i.e., $T(\mathcal{K}_0) \subset \mathcal{K}_0$) for each $T \in \mathcal{F}$. If \mathcal{K}_0 consists of a single element, we are done. Otherwise $0 < \text{diam}(\mathcal{K}_0) = d$. Since \mathcal{K}_0 is weakly compact, it follows from Theorem 1(a) that diam $(\mathcal{K}_0) = d < \infty$. Since \mathcal{K} has normal structure, it follows that \mathcal{K}_0 has a non-diametral point, i.e., there exists $A_0 \in \mathcal{K}_0$ such that $\sup\{h(A_0,A): A \in \mathcal{K}_0\} = d_1 < d$. Let $\mathcal{K}_1 = \mathcal{K}_0 \cap (\bigcap_{A \in \mathcal{K}_0} \mathcal{U}[A,d_1])$. Since $A \in \mathcal{K}_0$ $A_0 \in \mathcal{K}_1$, therefore $\mathcal{K}_1 \neq \emptyset$. \mathcal{K}_1 is convex since all sets involved are convex. Also each $\mathcal{U}[A, d_1]$ is weakly closed by Theorem 2. Thus \mathcal{K}_1 is weakly closed and hence weakly compact since it is contained in the weakly compact set \mathcal{K}_0 . Since $T(\mathcal{K}_0) \subset \mathcal{K}_0$ for each $T \in \mathcal{F}$, for any given $B \in \mathcal{K}_0$, we have $T^{-1}(B) \in \mathcal{K}_0$ and $T(T^{-1}(B)) = B$ showing that $T(\mathcal{K}_0) = \mathcal{K}_0$ for each $T \in \mathcal{F}$. Next, we claim that $T(\mathcal{K}_1) \subset \mathcal{K}_1$ for each \mathcal{K}_1 . To prove our claim, we let $B \in \mathcal{K}_1$ and $T \in \mathcal{F}$ be given, then for any $A \in \mathcal{K}_0$, we have $T^{-1}(A) \in \mathcal{K}_0$ and h(T(B), A) = $h(T(B), T(T^{-1}(A)) = h(B, T^{-1}(A)) \leq d_1$. Consequently, $h(T(B), A) \leq d_1$ for any $A \in \mathcal{K}_0$ and hence $T(B) \in \mathcal{K}_0 \cap \{ \cap \mathcal{U}[A, d_1] \} = \mathcal{K}_1$ and the claim is

proved. Thus \mathcal{K}_1 is a non-empty weakly compact, convex subset of \mathcal{K}_0 which is invariant under each $T \in \mathcal{F}$. Moreover, $d_1 < d$ implies that $\mathcal{K}_1 \subsetneq \mathcal{K}_0$. That is a contradiction to the minimality of \mathcal{K}_0 and the theorem is proved.

 $A \in \mathcal{K}_0$

Suppose X is uniformly convex or $\dim(X) < \infty$. Then it is well-known that X has normal structure ([6], [14]). We shall prove that the hyperspace CC(X) has normal structure if $\dim(X) < \infty$.

Theorem 4. Suppose $\dim(X) < \infty$. Then CC(X) has normal structure.

Proof. It follows from Blaschke's theorem that every closed and bounded subset $\mathcal{K} \subset (CC(X), h)$ is compact. Also every set \mathcal{K} and its closure has the same diameter. Thus it is sufficient to prove that if $\mathcal{K} \subset CC(X)$ is *h*-compact and convex with diam $(\mathcal{K}) = d > 0$, then \mathcal{K} has a non-diametral point $A_0 \in \mathcal{K}$ (i.e. $\sup\{h(A_0, A) : A \in \mathcal{K}\} = d_1 < d$). Assume the contrary, then every point

of \mathcal{K} is a diametral point. Let $A_1 \in \mathcal{K}$, A_1 is diametral and \mathcal{K} is compact implies the existence of some $A_2 \in \mathcal{K}$ such that $h(A_1, A_2) = d$. By convexity of \mathcal{K} , $(A_1 + A_2)/2 \in \mathcal{K}$ and $(A_1 + A_2)/2$ is diametral. Let $A_3 \in \mathcal{K}$ be such that $h((A_1 + A_2)/2, A_3) = d$. Since $d = h((A_1 + A_2)/2, A_3) = h((A_1 + A_2)/2, (A_3 + A_3)/2) \leq \frac{1}{2}h(A_1, A_3) + \frac{1}{2}h(A_2, A_3) \leq \frac{1}{2}d + \frac{1}{2}d = d$. It follows that $h(A_1, A_3) = h(A_2, A_3) = d$. Inductively, if $A_1, A_2, \ldots, A_n \in \mathcal{K}$ has been chosen such that $h(A_i, A_j) = d$ where $i, j \in \{1, 2, \ldots, n\}$ and $i \neq j$. Then $(A_1 + A_2 + \cdots + A_n)/n \in \mathcal{K}$ is diametral implies the existence of $A_{n+1} \in \mathcal{K}$ such that $h(A_i, A_{n+1}) = d$ for $i = 1, 2, \ldots, n$. Consequently $\{A_i\}$ is an infinite sequence of \mathcal{K} such that $h(A_i, A_j) = d$ for $i \neq j$. Thus $\{A_i\}$ is an infinite sequence that has no convergent subsequence. That is a contradiction to the compactness of \mathcal{K} , and hence the theorem is proved.

References

- 1. G. Bear, *Topologies on Closed and Closed Convex Sets*, Mathematics and its Applications, 268, Kluwer Academic Publishers, Dordrecht, 1993.
- 2. W. Blaschke, 'Kreis und Kugel', Chelsea Publishing Company, New York, 1949.
- 3. M. S. Brodskii and D. P. Milman, On the center of a convex set, *Dokl. Akad. Nauk. SSSR N. X.*, **59** (1948), 837-840.
- 4. F. E. Browder, Nonexpansive nonlinear operators in a Banach space, *Proc. Nat. Acad. Sci. U.S.A.*, **54** (1965), 1041-1044.
- 5. F. S. DeBlasi and J. Myjak, Weak convergence of convex sets, Arch. Math., 47 (1986), 448-456.
- K. Goebel and W. A. Kirk, *Topics in Metric Fixed Point Theory*, Cambridge University Press, 1990.
- T. Hu and J.-C. Fang, Weak topology and Browder-Kirk's theorem on hyperspace, J. Math. Anal. Appl. (2007), doi:10.1016/j.jmaa.2006.12.078.
- 8. T. Hu and J.-C. Huang, Weak topology and Markov-Kakutani theorem on hyperspace, *Publ. Math. Debrecen*, **53** (1998), 113-117.
- T. Hu and W. S. Heng, An extension of Markov-Kakutani's fixed point theorem, Indian J. Pure Appl. Math., 32 (2001), 899-902.
- 10. T. Hu, J.-C. Huang and B. E. Rhoades, A general principle for Ishikawa iterations for multi-valued mappings, *Indian J. Pure Appl. Math.*, **28** (1997), 1091-1098.
- 11. T. Hu and J.-C. Huang, Weak and strong convergence in the hyperspace CC(X), *Taiwanese J. Math.*, accepted.
- 12. W. A. Kirk, A fixed point theorem for mappings which do not increase distances, *Amer. Math. Monthly*, **72** (1965), 1004-1006.
- 13. Y. Sonntag and C. Zalinescu, Scalar convergence of convex sets, J. Math. Anal. Appl., 164 (1992), 219-241.

14. E. Zeidler, Nonlinear Functional Analysis and its Applications I: Fixed Point Theorems, Springer, New York, 1986.

Thakyin Hu Department of Mathematics, Tamkang University, Tamsui, Taipei, Taiwan 25137, R.O.C.

Jui-Chi Huang Center for General Education, Technology and Science Institute of Northern Taiwan, No. 2, Xue Yuan Road, Peito, Taipei 112, Taiwan, R.O.C. E-mail: juichi@tsint.edu.tw juichi.h0207@msa.hinet.net

466