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DISCRETE FIXED POINT THEOREMS AND THEIR APPLICATION
TO NASH EQUILIBRIUM

Jun-ichi Sato and Hidefumi Kawasaki

Abstract. In this paper, we present discrete fixed point theorems. They are
based on monotonicity of the mapping. We apply them to a non-cooperative
n-person game and give an existence theorem of a Nash equilibrium of pure
strategies. As a special case, we consider bimatrix games.

1. INTRODUCTION

Fixed point theorems are powerful tools not only in mathematics but also in
economics. Existence theorem of a Nash equilibrium is one of the most important
applications of fixed point theorems such as Brouwer’s, Kakutani’s, and so on. The
aims of this paper are to provide discrete fixed point theorems and to apply them to
a non-cooperative n-person game.

There are three types of discrete fixed point theorems. In 1955, Tarski [9] proved
a lattice-theoretical fixed point theorem. It asserts that any increasing mapping
defined on a complete lattice has a fixed point. Recently, Shih and Dong [4] proved
that a mapping from the n-dimensional hypercube {0, 1}n to itself has the property
that all the Boolean eigenvalues of the discrete Jacobian matrix of each element of
the hypercube are zero, then it has a unique fixed point. Their result is an answer to
a combinatorial version of the Jacobian conjecture. Further, Richard [8] extended
Shih-Dong’s fixed point theorem to the product of n finite intervals of integers of
cardinality ≥ 2. On the other hand, Iimura-Murota-Tamura [2] gave a fixed point
theorem on an integrally convex set by using Brower’s fixed point theorem, and
Yang [10] obtained some extensions, see Section 4 for details. Our discrete fixed
point theorems are of the first type, and based on the following simple idea.
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• The base set V is essentially finite, see Theorem 2.1 below.

• The mapping f : V → V reduces the area of candidates for fixed points.

Here, we emphasize that our theorems need no convexity assumption.
This paper is organized as follows. In Section 2, we give discrete fixed point

theorems. In Section 3, we apply our fixed point theorems to a class of non-
cooperative games and obtain some existence theorems of a Nash equilibrium of
pure strategies. In Section 4, we compare our discrete fixed point theorems to
conventional ones.

Throughout this paper, (V,� ) is a partially ordered set and f : V → V is a
nonempty set-valued mapping. The symbol x � y means x �y and x �= y. For
any x ∈ Z

n, xi denotes the i-th component of x. We denote the component-wise
order by �. Further, x ≤ y means x � y and x �= y.

2. DISCRETE FIXED POINT THEOREMS

In this section, we present discrete fixed point theorems.

Theorem 2.1. Assume that there exist x0 ∈ V and x1 ∈ f(x0) such that
x0 � x1 and {x ∈ V ; x0 �x} is finite. Further assume that for any x ∈ V and
y ∈ f(x),

x � y ⇒ ∃z ∈ f(y) s.t. y �z. (1)

Then, f has a fixed point x∗, that is, x∗ ∈ f(x∗).

Proof. Assume that f has no fixed points. Then, x0 � x1. Hence, by (1), there
exists x2 ∈ f(x1) such that x1 �x2. Since f has no fixed points, we get x1 � x2.
Repeating this procedure, we have a sequence {xm}m∈N satisfying xm � xm+1,
which contradicts that {x ∈ V ; x0 �x} is finite.

Remark 2.1. When V has a minimum element x0, the first assumption in
Theorem 2.1 is trivially satisfied.

We can easily weaken the assumptions of Theorem 2.1 as follows. Since the
proof is trivial, we omit it.

Theorem 2.2. Assume that there exists a sequence {xm}m≥0 in V such that
xm �xm+1 ∈ f(xm) for any m ≥ 0 and {x ∈ V ; x0 �x} is finite. Then, f has a
fixed point x∗ ∈ f(x∗).

Theorem 2.3 below shows a way to find x0 and x1 such that x0 �x1 ∈ f(x0)
in the case where � is the component-wise order � or � and V is a finite set.
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Definition 2.1. For any k ∈ {1, . . . , n} and x ∈ Z
n, we denote K :=

{1, . . . , k}, xK := (xi)i∈K, K +1 := {1, . . . , k+1}, and xK+1 := (xi)i∈K+1. We
call x ∈ V a fixed point of f w.r.t. Z

k if xK ∈ fK(x) := {yK ; y ∈ f(x)}.

Theorem 2.3. Let V be a finite set in Z
n, and assume that for any k ∈

{1, . . . , n}, x ∈ V and y ∈ f(x),

xK ≤ (resp. ≥) yK ⇒ ∃z ∈ f(y) s.t. yK � (resp. �) zK .

Then, f has a fixed point x∗ ∈ f(x∗).

Proof. (By induction on k) Assume that f has no fixed points w.r.t. Z. Then,
taking arbitrary points x ∈ V and y ∈ f(x), we have either x1 < y1 or x1 > y1.
Without loss of generality, we may assume that x1 < y1. By the assumption, there
exists z1 ∈ f(y) such that y1 ≤ z1

1 . Since f has no fixed points w.r.t. Z, we
get y1 < z1

1 . Repeating this procedure, we obtain a sequence {zm}m∈N such that
zm
1 < zm+1

1 , which contradicts that V is finite.
Next, assume that f has a fixed point w.r.t. Z

k, say, x0, and no fixed points
w.r.t. Zk+1. Then, since x0

K ∈ fK(x0), there exists y0 ∈ f(x0) such that x0
K = y0

K .
However, since f has no fixed points w.r.t. Z

k+1, we see that x0
K+1 ≤ y0

K+1

or x0
K+1 ≥ y0

K+1. Here we may assume that x0
K+1 ≤ y0

K+1. Therefore, by the
assumption of the theorem, there exists z1 ∈ f(y0) such that y0

K+1 � z1
K+1. Since f

has no fixed points w.r.t. Zk+1, we have y0
K+1 ≤ z1

K+1. Repeating this procedure,
we obtain a sequence {zm}m∈N such that zm

K ≤ zm+1
K+1 for any m ∈ N, which

contradicts that V is finite.

Remark 2.2. Let σ be an arbitrary permutation of order n. Then, it is evident
that one can replace K of Theorem 2.3 by {σ(1), . . . , σ(k)}.

3. NASH EQUILIBRIUM OF PURE STRATEGIES

As an application of our discrete fixed point theorems, we shall present a class of
non-cooperative games that have a Nash equilibrium of pure strategies. We consider
the following non-cooperative n-person game G = (N, {Si}i∈N , {pi}i∈N):

• N := {1, . . . , n} is the set of all players.

• For any i ∈ N , Si denotes the set of player i’s pure strategies. Its element is
denoted by si. We assume that each Si is a finite subset of Z.

• pi : S :=
∏n

j=1 Sj → R denotes the payoff function of player i.

Furthermore, we use the following notation in this section.
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• s−i := (s1, . . . , si−1, si+1, . . . , sn).

• S is equipped with a signed component-wise order, that is, N is divided into
two subsets (possibly empty) N+ and N−, εj = ±1 are allocated to j ∈ N+

and j ∈ N−, respectively, and s �t is defined by εjsj � εjtj for any j ∈ N .
S−i =

∏
j �=i Sj is also equipped with the signed component-wise order.

• For any given s−i ∈ S−i, we denote by fi(s−i) the set of best responses of
player i, that is, fi(s−i) := {si ∈ Si ; pi(si, s−i) = maxti∈Si pi(ti, s−i)}.

• f(s) = f1(s−1) × · · · × fn(s−n) for any s = (s1, . . . , sn).

An n-tuple s∗ ∈ S is called a Nash equilibrium if s∗ ∈ f(s∗). As is well-known,
Nash’s theorem asserts that G has a Nash equilibrium if we allow mixed strategies.
However, pure strategies are not enough to guarantee a Nash equilibrium. We have
to impose an additional assumption to get a Nash equilibrium of pure strategies.
Our assumption is monotonicity.

Definition 3.1. (Monotonicity) We say a game G monotone if, for any i ∈ N ,
s0
−i, s

1
−i ∈ S−i with s0

−i � s1
−i and for any t1i ∈ fi(s0

−i), there exists t2i ∈ fi(s1
−i)

such that εit
1
i � εit

2
i .

Theorem 3.1. Any monotone non-cooperative n-person game G has a Nash
equilibrium of pure strategies.

Proof. We apply Theorem 2.1 to G. Since S is a product set, it has a minimum
element. Hence, it suffices to show that for any s0 ∈ S and s1 ∈ f(s0) satisfying
s0 � s1, there exists s2 ∈ f(s1) such that s1 �s2.

Now, assume that s0 ∈ S and s1 ∈ f(s0) satisfy s0 � s1, and define N1 :=
{i ∈ N ; s0

−i = s1
−i} and N2 := {i ∈ N ; s0

−i � s1
−i}. Then, N1 ∩ N2 = ∅,

N = N1 ∪ N2, N1 has at most one element, and εis
0
i < εis

1
i for i ∈ N1. Thus, by

taking s2
i := s1

i for i ∈ N1, we have s2
i = s1

i ∈ fi(s0
−i) = fi(s1

−i). On the other
hand, for any i ∈ N2, we have s0

−i � s1
−i and s1

i ∈ fi(s0
−i). Hence, by monotonicity,

there exists s2
i ∈ fi(s1

−i) such that εis
1
i � εis

2
i . Thus, s2 := (s2

1, . . . , s
2
n) belongs to

f(s1) and s1 �s2. Therefore, by Theorem 2.1, f has a fixed point, say, s∗, which
implies that s∗ is a Nash equilibrium of pure strategies.

As a special case, let us consider the following bimatrix game.

• A = (aij) is a payoff matrix of player 1 (P1), that is, p1(i, j) = aij .

• B = (bij) is a payoff matrix of player 2 (P2), that is, p2(i, j) = bij.

• S1 := {1, . . . , m1} is the set of pure strategies of P1, where m1 ∈ N.

• S2 := {1, . . . , m2} is the set of pure strategies of P2, where m2 ∈ N.
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• For any j ∈ S2, I(j) := {i∗ ∈ S1 ; ai∗j = maxi∈S1 aij} is the set of best
responses of P1.

• For any i ∈ S1, J(i) := {j∗ ∈ S2 ; bij∗ = maxj∈S2 bij} is the set of best
responses of P2.

• f(i, j) := I(j)× J(i) denotes the set of best responses of (i, j) ∈ S1 × S2.

• A pair (i∗, j∗) is a Nash equilibrium of pure strategies if (i∗, j∗) ∈ f(i∗, j∗).

Then Definition 3.1 reduces to Definition 3.2 below.

Definition 3.2. (Monotone bimatrix game). We say payoff matrix A monotone
if for any j0, j1 ∈ S2 such that ε2j

0 < ε2j
1 and for any i1 ∈ I(j0), there exists

i2 ∈ I(j1) such that ε1i
1 � ε1i

2. Also, we say payoff matrix B monotone if for
any i0, i1 such that ε1i

0 < ε1i
1 and for any j1 ∈ J(i0), there exists j2 ∈ J(i1) such

that ε2j
1 � ε2j

2. When both A and B are monotone, we say the bimatrix game
monotone.

The following corollary is a direct consequence of Theorem 3.1.

Corollary 3.1. Any monotone bimatrix game has a Nash equilibrium of pure
strategies.

Next, we present some examples of monotone bimatrix games.

Example 3.1. The following matrices are monotone for (ε1, ε2) = (1, 1), where
framed numbers correspond to best responses, and circled numbers correspond to
the Nash equilibrium.

A =




5 7 1 9
8 2 3 5

4 7 4© 8
7 6 2 9




, B =




7 2 6 3

3 9 5 4

8 6 8© 5

1 3 3 2




.

Indeed, the following inequalities show that A and B are monotone.
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Moreover, since (i, j) = (3, 3) belongs to the set of best responses to itself, (3, 3)
is a Nash equilibrium of pure strategies.

Remark 3.1. Suppose that both players test whether each payoff matrix is
monotone, respectively. If they answer “yes”, then the matrix game has a Nash
equilibrium of pure strategies. They don’t need to answer the set of their best
responses. This is an advantage of Theorem 3.1.

Example 3.2. The following matrices are monotone for (ε1, ε2) = (1,−1).

A =




4 2 1
5 7 4©
8 6 3


 , B =




2 3 9

4 5 6©
7 8 6




Indeed, A and B are monotone if and only if

−j0 < −j1, i1 ∈ I(j0) ⇒ ∃i2 ∈ I(j1) s.t. i1 � i2,

i0 < i1, j1 ∈ J(i0) ⇒ ∃j2 ∈ J(i1) s.t. − j1 � −j2.

Therefore, the bimatrix game has a Nash equilibrium of pure strategies (2, 3).

Example 3.3. The following matrices are not monotone for (ε1, ε2) = (1, 1).

A′ =




5 1 7 9
8 3 2 5
7 2 6 9
4 4© 7 8


 , B′ =




7 6 2 3

3 5 9 4

1 3 3 2

8 8© 6 5




However, we can transform them into monotone matrices. Indeed, by exchanging the
second and third columns and the third and fourth rows, A′ and B′ are transformed
into A and B in Example 3.1 respectively. Thus, the original bimatrix game has a
Nash equilibrium of pure strategies (4, 2).

We can weaken monotonicity so that we can deal with Example 3.4 below.

Definition 3.3. (Sequentially monotone bimatrix game). We say payoff matrix
A sequentially monotone if there exists a sequence of best responses jk ∈ J(k)
such that ε2j

k � ε2j
k+1 for any k = 1, . . . , m1 − 1. We say payoff matrix B

sequentially monotone if there exists a sequence of best responses ik ∈ I(k) such
that ε1i

k � ε1i
k+1 for any k = 1, . . . , m2−1. When both A and B are sequentially

monotone, we say the bimatrix game sequentially monotone.
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It is clear that any monotone bimatrix game is sequentially monotone.

Corollary 3.2. Any sequentially monotone bimatrix game has a Nash equilib-
rium of pure strategies.

Proof. Define the initial point x1 by (min{1, m1}, min{1, m2}). Then x1 is
a minimum point of S = {1, . . . , m1} × {1, . . . , m2} w.r.t. the signed component-
wise order. Suppose that we have obtained xk = (i, j) ∈ S. Then, by sequential
monotonicity, there exist ij ∈ I(j) and j i ∈ J(i) such that (ε1i, ε2j) � (ε1i

j, ε2j
i),

which implies (i, j) �(ij, ji). Define xk+1 := (ij, ji), then xk+1 ∈ I(j)× J(i) =
f(i, j) = f(xk) and xk �xk+1. Therefore, by Theorem 2.2, the bimatrix game has
a Nash equilibrium of pure strategies.

Example 3.4. Although matrix A below is not monotone for (ε1, ε2) = (1, 1),
it is sequentially monotone. In fact, asterisked numbers give a sequence of best
responses in Definition 3.3.

A =




5 2 1 9
8∗ 7∗ 4© ∗ 5
4 7 3 8
8 6 2 9∗


 , B =




7∗ 2 6 3

3 5 9©∗ 4

8 6 8∗ 5

1 3 3∗ 2




.

4. CONCLUDING REMARKS

In this section, we compare our results to others. Throughout this section, V

is a subset of Z
n and f : V → V is a nonempty set-valued mapping. N (y) :=

{z ∈ Z
n ; y� � z � �y�} for all y ∈ R

n, where �·� and ·� are rounding up
and rounding down to the nearest integer, respectively. It is called the integral
neighbourhood. ‖y‖2 := (

∑n
i=1 y2

i )
1/2 and ‖y‖∞ := max{|yi| ; i ∈ N} for y ∈

R
n. For x1, x2 ∈ Z

n, x1 � x2 is defined by ‖x1 −x2‖∞ � 1. We say V integrally
convex if y ∈ coV implies y ∈ co(V ∩ N (y)), where coV denotes the convex
hull of V , see e.g. [2][3]. For each x ∈ V , πf(x) denotes the projection of x onto
co f(x), that is,

‖πf (x)− x‖2 = min
y∈co f(x)

‖y − x‖2.

We say f direction preserving if for any x, y ∈ V with x � y

xi < (πf (x))i ⇒ yi � (πf(y))i ∀i = 1, 2, . . . , n. (2)
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Theorem 4.1. ([2, Theorem 2]). Let V be a nonempty finite integrally convex
set. If f is a nonempty- and discretely convex-valued direction preserving set-valued
mapping, then f has a fixed point.

For the sake of simplicity, we consider the case where f is single-valued. Then,
since πf (x) = f(x), (2) reduces to

xi < fi(x) ⇒ yi � fi(y) ∀i = 1, 2, . . . , n. (3)

On the other hand, (1) in Theorem 2.1 reduces to

x ≤ f(x) ⇒ f(x) � f(f(x)). (4)

For example, when V consists of sixteen points as in Figures 1 and 2, it is integrally
convex. In order to apply Theorem 4.1, we have to test (3) for eight solid points in
Figure 1. On the other hands, when we apply our results, it suffices to test (4) only
for one point in Figure 2.

Fig. 1. We have to test eight solid points to apply Theorem 4.1.

Fig. 2. It is enough to test only x to apply our theorem.

Another advantage is that we don’t need any convexity assumption on V . Yang
[10] extended Theorem 4.1 by introducing a local gross direction preserving cor-
respondence, which is weaker than direction preserving correspondence. However,
his theorems also need information on eight points and convexity assumption, see
[10, Definition 4.6, Theorem 3.12] for details.
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Tarski gave an excellent fixed point theorem on a complete lattice, that is, every
subset of the lattice has a least upper bound and a greatest lower bound.

Theorem 4.2. ([9, Theorem 1]). Let f be an increasing mapping on a complete
lattice to itself, that is, x �y implies f(y) �f(y). Then f has a fixed point.

Its advantage is that V can be infinite. However, when V is finite, the assump-
tion on the lattice seems restrictive. For example, when V is equipped with the
component-wise order and has a hole as in Figure 3, it is not a complete lattice.
Indeed, since gray points are upper bounds of set U in Figure 3, U has no least
upper bound. Further, since f is not a set-valued mapping, even if one applies
Theorem 4.2 to non-cooperative games, Examples 3.1, 3.2, and 3.4 are outside of
his scope.

Fig. 3. This set is not a complete lattice since U has no least upper bound.

Shih-Dong’s fixed point theorem is a remarkable result. Since the base set of
their theorem is the Boolean algebra {0, 1}n, there seems no direct relationship
between their fixed point theorem and ours. Finally, we close this paper with
introducing Shih-Lee’s formulation [5][6]. They provided Lefschetz type fixed
points theorem for simplex mapping on some simplex not using homology theory,
see [5, Theorem 2]. Moreover, they apply similar idea of [5] to prove existence of
discretized economic equilibrium, see [6, Theorem 5].
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